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ABSTRACT 

So successful have been Maxwell's equations that the electrodynamic formula- 
tions of Ampere, Weber, and Riemann have been almost forgotten. The purpose of 
this paper is to present a rejuvenation of the older theories, based entirely on the force 
between charged particles. The new formulation leads to the correct formulas for 
force, induced emf, and radiation. In fact, it may be regarded as an alternative to 
Maxwell's equations, with the advantages of Galilean relativity and a closer contact 
with reality (charges rather than fictitious flux lines). 

I. INTRODUCTION 

In the early part of the 19th century, Ampere (1), 3 Gauss (2), Weber 
(3), and Riemann (4) developed a theory of electrodynamics, free from 
the magnetic-field fiction and based on an extension of the familiar equa- 
tion of Coulomb. At that  time, the electron was unknown and ideas 
of metallic conduction were of the haziest kind; yet  a true particle- 
theory was produced, both magnetic flux and the aether being ignored. 

The att i tude of these early investigators was surprisingly modern:  
their hard-headed phenomenological approach is much closer to the 
spirit of modern physics than is the mechanistic pictorialism of Faraday 
and Maxwell. It cannot be denied that  the visualization of magnetic 
flux lines has been a genuine aid in electrical engineering. But there 
are advantages, both theoretical and practical, in the direct calculation 
of inter-particle forces in the pre-Maxwellian manner. It is interesting 
to see what can be done by a modernization of these older methods. 
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Consider two charged particles (Fig. 1) separated by distance r. If 
there is no relative motion between the particles, Coulomb's equation 
applies. In the rationalized mks system, 

Q1Q~ 
F, = a, 4~rer2. (1) 

This force is called the Coulomb force. 
If Q1 is moving at  constant velocity v with respect to Q,, the Ampere 

force resulting from this motion is 

_ 0 (2, 
= . ,  cos, ( 2 )  

where 0 is the angle between v and the unit vector a,. We have shown 
(5) that  Eq. 2 is the only equation tha t  is consistent with the Ampere 
experiments and with modern ideas of electronics. 

The AmpSre force is a substitute for the magnetic field. Equation 2 
handles all problems dealing with forces on conductors carrying direct 
current. Equations 1 and 2 cover the questions that  are ordinarily 
treated under electrostatics and magnetostatics. To complete the the- 
ory, however, we must introduce additional terms dealing with the 
acceleration of charge and with the time-variation of charge. 

Consider all possible forces that  can be exerted by charge Q1 on 
charge Q~ (Fig. 1). Evidently the possibilities may be classified as 

(a) constant Q1, no relative motion. 
(b) constant Q1, uniform relative velocity. 
(c) constant Q~, accelerated motion. 
(d) Q1 a function of time. 

Condition (a) gives the Coulomb force, (b) the Ampere force. The 
remainder of the paper will be concerned with (c) and (d). 

2. THE WEBER FORCE 

The next step consists in introducing a force caused by an accelerated 
charge. This force may be called the Weber force, since Wilhelm Weber 
(3) was the first to include an acceleration term in the equations of 
electrodynamics. Reference to Fig. 1 shows that  the force can depend 
on only five variables: the charges Q1 and Q2, the distance r, the accel- 
eration dv/dt, and the angle ~b between dv/dt and at. 

The requirement of linearity means that  the force must  be directly 
proportional to Q1Q2. The Weber force is directly proportional to accel- 
eration because induced voltage is directly proportional to dI/dt or to 
Q dv/dt. Dimensional analysis then proves that  the Weber force is 
inversely proportional to the first power of r and inversely proportional 
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to c 2. Wi thou t  loss of generality, we can e m p l o y t h e  constant  of Eq. 1 
and write for the Weber force, 

F2 = Q1Q, dv F ~b 
4~,c2---? ~"  ( )' (3) 

where F(~b) is an unknown vector function of the angle ~b. 
Consider an element  of conductor  ds~ carrying a varying current  

(Fig. 2). The current  is taken in the direction of the vector ds~, and 

I 
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where 

I1 = N I A I [ Q ,  IVl, 

d I1 /d t  = N1A1 [Q, [ dv, /dt ,  
(4) 

N1 = number  of free electrons per uni t  volume of conductor  (m-8), 
A, = cross-sectional area of conductor  (m2), 

[Q, I -- magni tude  of electronic charge (coulomb), 
v, = drift  velocity of electrons (m sec -1) with respect to the con- 

ductor.  

The  electrons in dsl consti tute a charge 

01 = - N1AII0.1 ~sl. 

From Eq. 3, the force per unit  charge on Q, is 

F , / Q ,  = N1AI [Q.. [ ds, dVl 
-- 4~r~c2 r - ~  . F  (~) 

and from Eq. 4, 
dSl dI1 - . 

F2/Q, = 4~-~c'r "~ "F (1/). (5) 
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Perhaps the simplest way of determining the unknown function 
F(~b) is to compare Eq. 5 with the corresponding expression based on 
Maxwell's equations. According to Maxwell's theory, 

[ °'l 
~ / O  = - v ~  + u - o i  ' 

where A is the vector potential and J is the current density. 
element of Fig. 2, 

J d v  = 11 dsl, 
SO 

I~ ds, 0A dsl dI~ 
A _ _  _ _  

41rr ' Ot a. 4rcr dt ' 

For the 
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FIG. 3. 

where aa is a unit vector in the direction of the electron acceleration. 
Since the element dsl is uncharged, the scalar potential is zero and 

1 OA dsx dI ,  
F'/Q* = - , c '  Ot - a . ~  a t "  (6) 

Comparison of Eqs. 5 and 6 shows that  

F ( ~ )  = - a . .  

Thus the final equation for the Weber force for two charged particles 
is, from Eq. 3, 

O~ dv 
F, /Q,  = - a, 4r,c2~ dr '  (7) 

where v is the relative velocity of charge 1 with respect to charge 2. 
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3. INDUCED EMF 

The difference in potential  between the ends of an element  
(Fig. 3), induced by the varying current  in dsl, is 

ds2 

d V2 = - F ~ / Q 2 " d s 2 ,  

where the emf is taken positive for a potential  rise in the direction of 
ds~. From Eq. 6, the induced emf in ds2 is 

d 2 V= --- d81" ds2 d I ,  (8) 
4 7r ec2r dt " 

Int roducing the mutua l  inductance M, we obtain 

or  

d2  M ~ - -  
ds1 .ds2 
4~-ec~r 

1 f f d s l . d s 2  
M = 4~.~c~ 3 3  r " (9) 

This is the equation of F. Neumann  (6). Equat ion 9 applies equally 
well to self inductance L when dsl and ds2 refer to elements in the same 
circuit. The  result was obtained wi thout  reference to magnetic  flux, 
and it  is sometimes more convenient  than the convent ional  method  of 
flux linkages. Grover (7) says of Eq. 9: 

This is the most general expression for finding the mutual inductance. It 
leads quite simply to a formal expression for the mutual inductance even 
though for most cases it is not possible to perform the integrations [ana- 
lytically] . . . .  For inclined filaments . . . the Neumann formula has the 
advantage, and the formula for the mutual inductance of two straight filaments 
placed in any desired position has also been obtained by its use. 

Thus  the Weber force, caused by the acceleration of a charged par- 
ticle, is given by Eq. 7. The  emf induced in an element ds, is given 
by Eq. 8. The  mutua l  inductance between closed circuits of any  form 
is expressed by Eq. 9, and the induced emf is 

_ d I 1  
V ~ =  - -  M d t  " (10) 

As an illustration, consider the mutua l  inductance between two co- 
axial circles (Fig. 4). Take  a charge Q2 at  a fixed point  P on the outer  
circle; and determine the force on this charge, caused by a varying 
current  in the inner circle. 

According to Eq. 6, 

dsl  dI1 
dF~/O,  = -- 47r,c2r, d---t' (6a) 
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w h e r e  dsl = a d f ,  r 's = a s + b s + z ~ - 2ab cos  f.  T h e  t a n g e n t i a l  c o m -  
p o n e n t  o f  fo r ce  a t  P ,  c a u s e d  b y  c u r r e n t  in t h e  c o m p l e t e  l o o p  of  r a d i u s  
~, i s  

a d A  f s~  cos  ~'d~" 
F~/Q2 = 47r~c 2 dt .o  r 

a d_f/1 ( "  cos  ~" d~" 

- 2~-ec s dt .!o ['(a s + b 2 + z 2) - 2ab cos  ~"]~ " 

L e t i "  = r - 2 ¢ ,  c o s ~  = - c o s 2 ¢  = - (1 - 2 s in 2 ¢ ) , d ~  = - 2 d 9 .  
T h e n  

_ a d l l f o ' 1 2  (1 - 2 s i n  2 ¢ , ) d  
F,/Q2 r~c 2 dt [ ( a  + b) 2 + z  s - 4 a b s i n  2 ~  

a d A f o " / 2  (1 - 2 s in  s ~ ) d , p  
= 7 r ~ c S [ - ( a  + b) 2 + zS] ½ d-t- ['1 - k s s in  2 ~o]~ ' 

w h e r e  
k 2 = 4ab/[- (a  + b) 2 T zQ.  (11) 

Z 

r, 

x 

- F "  

FIG. 4. 
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Integration leads to 

a d A  
Ft /Q:  = - ~r~c~k2[(a 4- b) ~ + z;-]~ dt [(2 - k O F  - 2E-I, (12) 

where F and E are complete elliptic integrals of the first and second 
kinds. Equation 12 gives the force per unit charge on a particle at P,  
produced by a varying current in the loop of radius a. 

The emf induced in a complete loop of radius b is 

V = dY(Ft/Q2) ds2 = 2 r b ( F J Q ~ )  

2ab d I  
= - ,c~k2[(a + b) 2 + z~-] t d--[ [(2 - k~)F - 2E-I, (13) 

so the mutual inductance of two concentric circles is 

M =  1 2~c--- ~ [(a  + b) ~ -5 z2]~['(2 -- k g F  -- 2 E l .  (14) 

This is exactly the equation obtained by Maxwell. It  could have been 
found, of course, directly from Eq. 9, though the above derivation gives 
a better physical picture of what  is taking place. 

4. THE LOOP ANTENNA 

The induced emf in a circular loop is considered in Section 3. The 
equations apply to relatively low frequencies so that  the time lag caused 
by the finite velocity of propagation may be neglected. We now take 
the case where retardation must be included but where the current is 
still essentially in phase around the loop. 

The unretarded Weber force per unit charge is 

ds,  d I ( t )  (6a) 
dF /Q2 = 4~r~c~r dt 

and the retarded Weber force is therefore 

dsi d I ( t  - r /c)  (6b) 
dF/Q~ = 47rec~ r dt 

Let I ( t )  = 4-2I*e ~' and F(t )  = 42F*e  ~', where I* and F* are rms values 
(generally complex numbers). Then 

d I ( t  -- r /c)  ~" 
= io~4~I*e~,e--7.  

dt 
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Thus Eq. 6b becomes 

= e i ,o t e  c 
d F / Q 2  47r~c2 r 

and the tangential  force per uni t  charge (Fig. 4) is 

i ~  ds1I*  cos f ~ '  
d F * * / Q 2  = - 47recUr, e ~ (6c) 

Consider two current  elements si tuated diametrically opposite each 
other on a circle of radius a (Fig. 4). Distances from these elements 
to point  P are r '  and r ' .  The tangential  force, produced at P by cur- 
rent  in the pair of elements, is 

ior' *~0r" [ -] d F t * / Q 2  = _ i , o a I * c o s ~ ' d f  e c e c (15) 
4 ~ C  ~ r t r rt , 

with 

If r >> a, 

r '2 = a s + r  ~ -  2 a r s i n O c o s ~ ' ,  

# ,2  = a 2 + r ~ + 2 a r  s in  O c o s  f .  

r ' ~  (1  a ~.) --- r - -  - s i n  0 c o s  , 
r 

r ' ' '~--r  ( 1 +  r-asin0cos~-) ,  

1 1 ( 1  + a sin 0 cos ~.) ' 
r p ~ r r 

--rttl - - 1 (  1 - - - r  ---asinOc°sf)r " 

d F t * / Q ~  = - -  

Substi tution in Eq. 15 gives 

[ ( ) io~aI*e  ~ c__os r d[  i sin o~a sin 0 cos ~" 
27rec2r c 

If o:a /c  << 1, 

( ~  ~) °° sin sin 0 cos ~ ~ sin 0 cos ~', 
£ 

co~ (~0co~ 0 __ -~ .  
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Thus, 

where 

dF,*/Q2 ~-- ioa'[I*l[27rec,r [ i~c + 1 ] s in  0 c o s ' :  d~', (16) 

ior 

[-I*] = I*e 

The tangential force per unit charge at P, caused by current in the 
complete loop of radius a, is 

F , * / Q ,  = - iwa'~I*-] sin O[ ~ + l ] fo't' cos2 ~ d 

o r  

~°(Ira~)[I*]sinO[c_~] 
F*/Q, = a~ 47recUr (17) 

where a~ is a unit vector in the tangential direction. This equation 
agrees with the usual formula derived from Maxwell's equations. It 
shows that  the force at P is directly proportional to the area of the loop 
and directly proportional to the sine of the angle from the loop axis. 
The first term of Eq. 17, which varies inversely as the first power of the 
distance, represents the ordinary radio wave. The second term varies 
inversely as the second power of r and thus becomes negligible at very 
large distances. 

5. THE MAXWELL FORCE 

The preceding sections have evaluated cases (a), (b), and (c) of 
Section 1. There remains the rather unusual case (d) of a charge that  
is not constant. For example, with a linear conductor in the stationary 
or quasi-stationary state, the conduction current entering an elementary 
length of conductor is equal to the current leaving it, in accordance with 
Kirchhoff's second law. But at sufficiently high frequency, this rela- 
tion no longer holds: the charge on the element depends on both time 
and position. Because (d) is closely related to Maxwell's displacement 
current, the corresponding force will be called the Maxwell force. 

Suppose that  Q1 of Fig. 1 varies sinusoidally with t ime: 

Q~ (t) = 4-2Q*e,,,. 

The corresponding retarded quanti ty is 

Ql(t - r/c) = 42Q*e,~(,-,m. 

According to Maxwell's theory, this varying charge produces a force 
on Q2: 

F * / Q ,  = a , - -  + Tr  ' (18) 
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where 
[Q*~ = ~[2Q*e - ' ~ ' ' ,  Y = ~ F * e  '°'t. 

This same result  is obtained from the new theory  if we assume for 
the  Maxwell force, 

1o[1 ] 
F/Q2 = - a ~ - -  O-r r Qx(t - r / c )  . 4rr e 

(19) 

Then  for the charged particles of Fig. 1, Eq. 19 gives 

o r  
F / Q 2  = - 4 7 t e l  r 2 cr j 

F * / Q ,  = a ,  ~ -~ + ~ . (18) 

For the special case of Ql(t)  = Q1 = const, Eq. 19 reduces to the  Cou- 
lomb force, 

Q, 
F/Q2 = ar 47rer2. (1) 

Thus  the  Maxwell  force includes the Coulomb force as a special case, 
and no separate  te rm for the  Coulomb force is needed. 

Jus t  as the Ampere  force replaces the magnet ic  field, so the  Maxwell 
force replaces the  displacement  current ,  though of course Eq. 19 was 
not  formulated by  Maxwell.  In fact, none of the previous theories 
seems to include such a force, which m a y  account  for the ra ther  un- 
sat isfactory na ture  of the theories of Weber,  Riemann,  Ritz (8), and 
Warbur ton  (9). 

As an example, take  an electric dipole (Fig. 5) with the  charges 
varying  sinusoidally with t ime:  

Q = ~]2Q*e,,,. 

For the upper  charge, according to Eq. 19, 

4~Q*[ 1 i~ ] e'o~'-~"o'. 
F / G = at, -Tg-i-~ , L -~ + 

But  if l << r, 

r' ----- r(1 -- ( l / 2 r )  cos 0), r "  ~ r(1 + ( 1 / 2 r ) c o s  0), 

1 ~ 1 (1 ( l / 2 r )  cos 0). 1 ~ 1 (1 + ( l / 2 r )  cos  0), r "  
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Then 

/car /col cos 0 

F*/Q2 I*e ; e  w I f  (1  + / c o s O ) + i ° ~ ( 1  + l ) }  
= io~47r~ r -2 r cr \ 2r cos 0 

X [ a r +  

where I is the current between the two spheres : 

421*el-t 
I =  4-2I*ei% Q =  ioo " 

l sin 0 ] 
a0 ] 

,Z 

,0( 
I 

lo, 
"Q i 

Similarly, for the lower charge, 

/*e ' e  2c [ 1 [  
F*/Q2 = U ~  I 1 - -  

Fro.  5. 

cosO + - -  1 -- cosO 

X - - a , + a o ~  . 
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The sum of the two forces has a radial component, 

Fr /Q2 = - -  

But 

SO 

ioar 

I*e c 1 1 [  (c01 ) 2l (o0l ) ]  
- -  - -- cos 0 cos cos 0 io.47r~ ~ 2isin ~cC°SO + r 2c 

+ i~r[2isin (~c/cos O) + !cosOcos  (~c  / cos 0 ) ] } .  

sin(O~/ )_wl  (o~l ) ,~= cosO =2cC°SO'  cos ~ c o s O  1, 

Fr*/Q2 = [ I * ] l c o s O [  r 2 i2Co~r ~ + i_~]cr " (20) 

Similarly, the component of force perpendicular to the radius is 

F°*/Q2 = [f*]l sin O[ r~ oor 8it]" (21) 

6. THEDIPOLE ANTENNA 

Consider the dipole antenna (Fig. 5), assuming that  the current in 
the vertical wire between +Q and - Q  is not a function of z. The 
dipole itself produces the force given by Eqs. 20 and 21. To this must 
be added the Weber force, Eq. 6, caused by the varying current in the 
wire. For I ( t  -- r/c) = ~f2I*e i~t-rl°), the retarded Weber force is 

o r  

~f2ioolI* 
_ _  e l f ( t - - r / c )  

F/Q2 = -- a, 4rr~c2 r 

( F * / Q , ) ~  = - a ,  
¢,oEI*]Z cos 0 i,oEI*-]z sin 0 + ae (22) 

4 7r ~c2r 4 7r ~c2r 

Equations 20 and 21 express the Maxwell force  

[ /*] l  cos 0[ 2 i 2 c +  io~] 
(F*/Q2)u = a~ 4~,c r 2 wr ~ ~r 

[ I * ] l s i n O [ 1  ic ] (23) 
+ a, 47r~c r' wr* " 

The Ampere force is a double-frequency force because of the second 
power of the velocity, Eq. 2. Thus the total force at  fundamental fre- 
quency is the sum of the Weber and the Maxwell forces, or 
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[I*]l cos O[1 ic ] 
P*/Q2 = a,  2 , ~ c  r' ,or8 

[I*]l sin O[1 ic + i~o ] (24) 
+ ao 4~-~c r 2 o~r 3 c r  " 

At very great distances, Eq. 24 reduces to 

io~[I*]l sin 0 (24a) 
F*/Q2 = ae 47r~c~ r , 

showing tha t  the force per unit charge at the receiver varies directly as 
the length of the anteflna, directly as the frequency, and inversely as 
the distance. Equations 24 and 24a agree with the classical results 
obtained from Maxwell's equations. 

7. SUMMARY 

The paper has developed an electrodynamics that  is in agreement 
with Galilean relativity and free from the aether and the magnetic- 
field concept. The fundamental  equation expresses the force on a 
charged particle, caused by another charged particle (Fig. 1). The 
particles may be stationary with respect to each other, or they may be 
in relative motion. The charges may be constant or they may vary 
with time. In any case, the force per unit charge at  point 2 is 

~ ( ~ ) ~  Q1 d v ( t -  r/c) F/Q2 = a, [1 - ] cos 2 0] - aa 4~r~c2 ~ dt 

1 a 

The first term represents the Ampere force, which is particularly 
important  with direct currents. The second term represents the Weber 
force, which gives induced emf's. The third term represents the Max- 
well force. It  includes the Coulomb force as a special case where Q - 
const., but it is especially useful where the frequency is high enough so 
that  O is a function of both time and position. 

Note that  Eq. 25 is inherently relativistic, without the need of 
Lorentz contraction or Einstein pseudo-relativity. The only velocity 
is the relative velocity v of charge 1 with respect to charge 2 ; the only 
acceleration is the rate of change of relative velocity. Equation 25 
may be used as the basis for all of electrodynamics. Thus questions 
dealing with aggregates of charge are handled by summation (or inte- 
gration) of F/Q2, and problems dealing with currents are treated by 
considering large numbers of electrons in motion. The only limitation 
of Eq. 25 seems to be that  it applies only to ordinary velocities. I t  is 
probable tha t  the functions of Eq. 25 will require slight modification if 
they are applied to electrons at  extreme velocities. 
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The new formulation of electrodynamics is built on the foundations 
laid by Weber and by Ritz. It differs from all previous theories, how- 
ever, particularly in the term for the Maxwell force. This formulation 
may be regarded as an alternative to Maxwell's equations. Maxwell 
based his work on the closed circuit, on the aether, and on the Faraday 
visualization of flux lines. The Maxwell equations give the correct 
answers to a great number of questions; but the application of these 
equations to open circuits is sometimes ambiguous and uncertain. 
Particularly in considering the magnetic field produced by electrons in 
motion, one may find the classical field concepts to be clumsy tools. 
The new formulation generally leads to exactly the same results as Max- 
well's equations, but in some cases it may give a more direct approach 
and one that is free from ambiguity. 
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