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Summary 

NEWTON solved what was called afterwards for a short time "the direct 
KEPLER problem" ("le probl~me direct"): given a curve (e.g. an ellipse) and the 
center of attraction (e.g. the focus), what is the law of this attraction if KEPLER'S 
second law holds? 

The "probl6me inverse" (today: the "problbme direct") was attacked system- 
atically only later, first by JACOB HERMANN, then solved completely by JOHANN 
BERNOULLI in 1710 and following BERNOULLI by PIERRE VARIGNON. HOW did 
BERNOULLI solve the problem? What method did he use for this purpose and 
which of his accomplishments do we still follow today? 

In the second part various questions connected to the first part are dealt 
with from the point of view, Conflict and Cooperation, suggested by J. VAN 
MAANEN to the participants of the Groningen conference. 

To Clifford A. Truesdell, 
"Notre Maitre /t tous!" 

Galileo's principle 

In the Terza Giornata of the Discorsi ~ GALILEO discusses first the motion at 
a constant speed, the "motus aequabilis", as he calls it, starting much in the 
classical, Euclidean way from four axioms. He presents and discusses systemati- 
cally the kinematics, as we would say today. 

But for treating the fall of a body he must proceed differently. He knows 
that it is a "naturally accelerated motion", a "motus naturaliter acceleratus". 
What does this mean ? It means that the increase of the velocity is proportional 
to the time of fall 

Av -~ At. 

1 GALILEO GALILEI, Discorsi e Dimostrazioni Matematiche intorno a due nuove 
scienze, Elsevier Leyden, 1638. 
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This definition is proposed by Salviati, GALILEO'S spokesman in the dialogues, 
but only after a lengthy discussion, which brings them close to some of the very 
questions solved half a century later by infinitesimal analysis. The three partici- 
pants in the dialogue accept eventually this definition, repeated by Sagredo in 
Latin: 

"We call the motion equally or uniformly accelerated, which, when one 
starts from rest, adds to its speed equal increments in equal times". 

How GALILEO arrived at this "definition" - -  he is really selecting the acceler- 
ation that describes the fall of a body - -  whether empirically or, as the text 
seems to indicate, by reflection - -  an alternative that seems more natural to 
Simplicio is rejected by him as it leads to contradictions - -  is not important for 
our present purpose. What is important here, is that GALILEO lets Salviati reply 
immediately: "Once this definition is agreed, the author demands only one 
principle which he supposes to be true", namely: "I accept that the degrees of 
speed which a body acquires if it descends various inclined planes are the same 
only if the heights of these planes are identical". 

C 

13 

Fig. 1. Discorsi p. 166. 

In other words, on whichever plane CA, CD, or CB, etc. the body descends, 
when it arrives on the plane AB, its speed will in all cases be the same. Of 
course, this holds for any horizontal plane parallel to AB. 

The important, indeed fundamental point to note here, is that GALILEO 
realizes that he needs here a new, as we would say, a dynamical principle 
beyond EUCLID'S geometrical ones, beyond his own which are kinematical, and 
also different from ARCHIMEDES' dynamical principle of the lever. All proposi- 
tions that will be derived later on in the Discorsi will be derived from this 
principle alone. 

On the other hand GALILEO is not quite satisfied with the principle: it seems 
that he wished to derive the principle itself from another, deeper and more basic 
one. In any case, as he says after a brief discussion, during which he indicates 
an elegant experimental confirmation with the pendulum, "For the time being 
we accept this as a postulate; its absolute truth will be then established for us 
when we see that other conclusions, erected upon this hypothesis, will answer to 
it and agree point by point with experience". 

What  does this principle say from today's point of view? It certainly does 
not speak of a force, as any scientist, trained today, would expect. Rather we 
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may call it a "rudimentary energy principle", foreshadowing the notion of 
potential energy. Indeed, we know that for the kind of force which GALILEO 
tacitly presupposes, the kinetic energy of a body depends only on its height and 
is therefore the same, wherever the body lies on a horizontal plane. The same 
holds for the speed, since it is proportional to the square root of the kinetic 
energy. 

Later scientists have laid other, stronger, more powerful foundations for 
mechanics, but we can already see here the ingredients necessary for such an 
undertaking: new notions, a fundamental hypothesis, formulated in a way 
adequate for deriving other results and, of course, confirmation of these results 
directly, and indirectly by experiments, that is by observations and measure- 
ments. To what extent GALILEO arrived at his theories by observation and 
experiment, I shall not discuss here. 

Huygens 

We can observe the progress which science made in the time between 
GALILEO and HUY6ENS by comparing the Discorsi (1638) with HUYaENS'S Horo- 
logium Oscillatorium 2 (1673). There in Part II the results are derived from 
a system of three hypotheses, in which we can easily recognise the precursors of 
NEWTON'S three Axioms. GALILEO'S hypothesis is now proved as proposition VI, 
just as GALILEO had expected such a possibility. It is likely, but we cannot be 
sure that JOHANN BERNOULLI had learned the theorem here rather than in the 
Discorsi. 

Having noted this progress made by HU'mENS beyond GALILEO, I find it 
historically interesting to observe, that, when Htr~ENS attacks in Part IV the 
more difficult problem of the physical pendulum, i.e. the oscillation of an 
extended, rigid body, his system of hypotheses used in part two is inadequate, 
and he too must now have recourse to a rudimentary energy principle! 

Newton 

NEWTON has derived KEPLER'S famous three laws from his system of three 
"Axioms or Laws of Motion": how did he do this, and what exactly did he 
achieve? 

In the second section of the first book of the Principia 3 NEWTON, from his 
first two axioms and the additional assumptions that a force attracts a body 
towards a center, proves his Theorema I: the motion of this body obeys 
KEPLER'S second law of planetary motion. Namely, the area covered by the line 

2 CHRISTIAAN HUYGENS, Horologium Oscillatorium, Muguet Paris, 1673. 
3 ISAAC NEWTON, Philosophiae Naturalis Principia Mathematica, London 1687; cf 

especially Liber de Motu I Sects. 1I, III, VII. 
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connecting the body to the center is proportional to the time of the motion; it is 
equal during equal times. 

Immediately after Theorema I NEWTON states and proves its inverse in his 
Theorema II: if a body moves in a plane on any curve such that a line from the 
body to a certain point covers areas that are proportional to the time of the 
motion, then this body is attracted to this point by a central force. Further- 
more, since we know from our daily experience, that there are forces between 
all bodies, we may conclude from KEPLER'S second law of planetary motion that 
all planets are attracted to the sun by a central force. 

It is this, i.e. the inverse theorem, which NEWTON uses for deriving the results 
stated in the remainder of Sect. II and in Sect. III. Besides a few general 
theorems these are the following. 

1. Proposition VII: if a body moves on a circle and if the center of force lies on 
the same circle, then this force of attraction is inversely proportional to the 
fifth power of the distance from the center to the body. 

2. Proposition IX: if a body moves on a logarithmic spiral and the center of 
force is at the center of the spiral, then the force of attraction is inversely 
proportional to the third power of the distance from the center to the 
body. 

3. Proposition X: if a body moves on an ellipse and the center of the force is at 
the center of the ellipse, then the force of attraction is directly proportional 
to the distance from the center to the body. 

Finally the most important 

Proposition XI, section III: if a body moves on an ellipse and the center of 
force is at one of the foci, then the force is inversely proportional to the 
square of the distance from the center to the body. 

Applying this latter theorem (Proposition XI) to the elliptical orbit of a planet, 
NEWTON infers later, in the third book of the Principia, the form of his law of 
universal gravity. Because of "the dignity of this Problem" he will not simply 
treat the cases of the hyperbola and the parabola by a reduction to the same 
case but prove each case separately in Proposition XII and Proposition XIII 
respectively. 

The reader trained by modern textbooks may ask: is that really all NEWTON 
does? Does he not derive the whole mechanics of central forces? There is, of 
course, an enormous number of results in the Principia after Sects. II and III, 
especially in Sects. VII and VIII. If we mean by this question the exploration of 
various given laws of a central force F = F(r), it is indeed essentially all, except 
for the general theorems which I have mentioned and the various corollaries. 
But even so, this is a great achievement which should not be underrated. In fact 
it can hardly be overrated. Today we know that only three problems involving 
central forces are elementary: precisely those which NEWTON dealt with in 
Propositions IX to XIII. Given the question he asked, he could hardly solve 
any other, except that he also found the answer to the problem stated in 
Proposition VII! But the greatest accomplishment in all this is how he set up 
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and ordered his whole chain of reasoning, from the Axioms and the additional 
special assumptions to the theorems and their proofs. 

Before asking why he proceeded from the orbit to the law of force and not 
the other way around as we do today, a word may be said about the order in 
which the four cases are stated and solved. Does this order merely reflect the 
order in which NEWTON solved them? This is conceivable, but it is equally 
possible or even probable that NEWTON presented them artfully in increasing 
order of importance and in increasing order of the insight which he had gained. 
However that may be, the other question, why did NEWTON proceed starting 
from the orbit is the more important one, and there are essentially two reasons 
for that. The first is simply that history, as it presented itself to him, had 
proceeded this way. KEPLER'S second law, proposed in 1609, was in NEWTON'S 
days well established and had become common knowledge, while the idea of 
a central force of attraction was a new one, which few before NEWTON had even 
considered. Thus, starting from a system of "Laws of Motion", i.e. his axioms 
and from the hypothesis of a central force, NEWTON could now prove the form 
of this law: 

F ~- 1/I" 2. 

TO the second reason I shall return later. 
We must now ask, did NEWTON also solve the inverse problem ("le probl~me 

inverse"), i.e., did he find in each of the four cases all solutions? Concerning the 
first two cases, Proposition VII and IX, the answer is obviously in the negative 
since there are clearly other solutions as well; for instance in both cases there 
can be a circular orbit around the center. For  Proposition X, on the o ther  
hand, the answer is clearly affirmative; NEWTON states it explicitely in the first of 
the two subsequent corollaries, and in the second one, he proves that the period 
of the motion is the same for all orbits. 

How is it with the all-important Proposition XI? JACOB HERMANN, JOHANN 
BERNOULLI and PIERRE VARICNON thought that in this case NBWrON had not 
answered the question. When I lectured for the first time publicly on the 
Principia, I expressed the opinion that he had not, but then I received a letter 
from a former teacher writing that in fact NEWTON had done so. I followed his 
opinion in the printed version of the lecture, only to receive a sharp objection 
from an American historian, who insisted emphatically that NEWTON had not 
given such a proof. The reader can find both opinions defended in the Studia 
Leibnit iana of the Leibniz-Bernoulli Symposium in Basel 1987. The affirmative 
one is defended by the late E. J. AITON, r the opposite one by the late P. 
COSTABEL. s In both articles the reader can find much valuable information. 

4 ERIC J. ALTON, The Contributions of I. Newton, Joh. Bernoulli and J. Hermann to 
the Inverse Problem of Central Forces both in Studia Leibnitiana Sonderheft 17, F. 
Steiner Stuttgart, 1989. 

5 PIERRE COSTABEL, Courbure et Dynamique. Jean I Bernoulli correcteur de 
Huygens et de Newton. 
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I feel inclined today to believe that NEWTON gave a proof, even if it is 
indirect and rather well hidden. But I do not think that the proof itself is 
a matter of great historical importance. The importance of the achievement of 
HERMANN and BERNOULLI lies somewhere else as will be seen presently. 

Jacob Hermann 

JACOB HERMANN, the pupil of JACOB BERNOULLI and author of the 
Phoronomia,  was the first to attack the inverse problem systematically, and he 
published his solution in 1710. 6 

Although an important  accomplishment, his paper is less transparently 
written than that of JOHANN BERNOULLI 7 for which, however, it provided the 
stimulus. And with respect to one essential point at least only BERNOULLI'S 
solution is complete. For  this reason, and since this Symposium is dedicated to 
JOHANN BERNOULLI, I shall concentrate here entirely on BERNOULLI'S work. 

It may well be that in HERMANN'S paper, NEWTON'S equation was written for 
the first time in differential form. 

Johann Bernoulli 

In 1710 BERNOULLI, yOU will recall, had not only the mechanics of 
DESCARTES and of HUY~ENS at his command, he had also penetrated deeply into 
the Principia, - -  perhaps more deeply than anyone on the Continent at that 
time. Thus, we may ask, how did he attack this problem, and where do we still 
follow him today, as for instance in our teaching? For  answering these ques- 
tions it seems best to look at the procedure most often used today. Doing so we 
must, however, recall that NEWTON'S equation 

m6ikx  k = Fi (1) 

was written in this form, - -  i.e. in a Cartesian, space-fixed frame, in which we 
write it today, - -  only 40 years later. 

Starting from eq. (1) most authors derive KEPLER'S first law in essentially 
four steps, s 

1. One multiplies eq. (1) by 2 reducing the force equation to the power 
equation 

d T  d V  
. . . .  (2) 
dt dt 

6 JACOB HERMANN, Extrait d'une lettre de M. Hermann /t M. Bernoulli dat6e de 
Padoiie le 12 Juillet 1710. Job. B. Op. 85. 

7 JOHANN BERNOULLI, Extrait de la R6ponse de M. Bernoulli /t M. Herman, dat6e 
de Basle le 7. Octobre 1710. Both in M6moires de l'Ac. Royale des Sciences, Boudot 
Paris 1710 (1712). 

s ARNOLD SOMMERFELD, Mechanik, Geest und Portig Leipzig, 1947, Cf  p. 38. ft. 
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and by integrating it, into the energy equation 

T + V = E (3) 

or, using polar coordinates and observing that the coordinate ~0 is cyclic 

m "2 (r + r 2 b e) + v(r) = E (4) 

2. Using now the areal theorem, i.e. conservation of angular momentum 

mrZdO/dt = L (5) 

one replaces the second kinetic term with r by the kinetic potential L/r. 
3. Using once more the areal theorem in the form 

d L d 
dt - mr 2 dO' 

one replaces the time as the independent variable by the angle. Thus one 
obtains the equation of the orbit 

2rn\r4  + ~ +  V(r) = E  (6) 

where ' denotes the differentiation with respect to 0. 
4. Thus far every step was valid for any central force F = F(r). For deter- 

mining the form of the orbit, and indeed of all orbits, one must now assume 
one special law of force, or one special potential, namely 1/r. In this case 

r = 1 / u ,  r '  - -  - u ' / u  

transforms the integral after quadratic completion into the standard form of an 
elementary integral. Its solutions are all conic sections: an ellipse, parabola or 
a hyperbola. 

How does BERNOULLI proceed? He does not know NEWTON'S axiom in 
modern form and so, instead, for the first step he uses NEWTON'S Theorem XIII, 
Section VIII, as a Lemma, but simplifies its proof greatly by returning to 
GALILEO and HUY~ENS. Considering two orbits passing through the same point 
and comparing the fall of the body along each of them, he applies GALILEO'S 
principle to the infinitesimal triangle formed by the differentials on each orbit 
and the infinitesimal arc. 

The principle says now that the speed at the end of both infinitesimal orbits 
is the same, and continuing, or, as we would say, integrating, he finds that the 
speed of the body is on each orbit the same on all circles around the center of 
attraction. This holds especially for the vertical fall. For this case it is easy to 
see, that if qS(r) is the force, the quantity ~b(r)dr now appears in the equation. 
The vertical fall had been investigated by NEWTON in Section VII of the first 
book of the Principia, and BERNOULLI quotes him. 

He then takes the other three steps in essentially the same way as we do 
today. The small differences concern merely the writing. Thus, for instance, 
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/ ~ - - - - N  k 

C TY o 

Fig. 2. M6m. Paris, p. 524. 

throughout  he uses Cartesian coordinates; instead of r d~9 he writes x d y  - y dx ,  

etc.;  he does not have a special symbol for the angle and for angular velocity, 
both introduced only later by EULER, but indicates an angle by the length of the 
arc of an arbitrarily chosen circle, divided by its radius, and he chooses the 
constants of integration somewhat differently from our modern procedure. 

The formula obtained after the third step is 

d z  = aac  dx :  ( a b x  4 - x S q5 d x  - a a c c x x )  1/2 

while we would write for the same 

dO = L dr: (2Er 4 - 2V(r)r 4 - Lr4) 1/2. 

The main point to note here is that this expression is valid for all  central forces. 
For  certain forms of the law of force the equation can be integrated with the 
help of a known function be it an elementary, an elliptic or a transcendental 
one; for others the integral can at least be qualitatively discussed. 

BZRNOULLI does not pursue these possibilities; it cannot even be said that he 
had clearly grasped the potential, but the great progress due to HERMANN and 
BZRNOULLI is now clear. NEWTON like HUYGENS earlier and JACOB BERNOULLI 
later had always started from the geometry of the problem, a curve, a surface or 
a streamlin e, etc .  In contrast, here the dynamic concepts, the energy, the force, 
the angular momentum provide the starting point. And this starting point leads 
to much more powerful and general methods. In short, Mechanics had now 
come into its own. Geometry was still needed, but the required knowledge of it 
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diminished with time, while Mechanics became more and more an independent 
discipline. For  this reason the papers by HERMAYS, BERNOULLI and VARmNON 
mark a turning point. 

BERNOULLI had reduced the problem of computing the orbit of a body which 
moves in the field of a central force to an integration. An equally big step was 
taken only later by the following generation, by his son DANIEL, by CLAIRAUT, 
EULER and D'ALEMBERT, namely the formulation of many-body problems. This, 
as we know today, is literally impossible if we try to start from the orbits. But 
starting from the forces it costs nothing to write down at least the dynamical 
equations, and often enough we can easily find some integrals such as the 
energy integral and apply approximation methods. 

We can sum up the achievement of HERMANN and BERNOULLI by saying 
that they had opened up the door, if only a little bit, to analytical celestial 
mechanics. 

Euler 

I may be permitted to continue from JOHANN BERNOULLI'S achievement to 
the work of the greatest of his disciples, EULER. If BERNOULLI was the first who 
penetrated deeply into the Principia, EULER was the first for whom Newtonian 
Mechanics was the motor  which incited and drove him to his great discoveries. 

Earlier, in the Mechaniea 9 he had derived again, in his Propositions 80 and 
81, after HERMANN, BERNOULLI, and VARIGNON, KEPLER'S ellipse from NEWTON'S 
law of force. However, we are surprised to see that his presentation is, for once, 
less transparent than that of his teacher. 

The great turning point, the second one in this account, came in 1750. In 
that year he wrote his paper E 177, Dbcouverte d'un nouveau principe de 
M&anique)  ~ Here we find, for the first time, NEWTON'S second law formulated 
in the form we know and use it today, namely in a space fixed Cartesian 
coordinate system. The importance of this step was explained and underlined by 
TRUESDELL and recently by G. MALTESE. 11 At that time EULER believed, erron- 
eously though, he had found the common basis for the entire mechanics. The 

9 LEONHARD EULER, E 15 Mechanica Tomus I, St. Petersburg 1736, Op. Omnia 
Ser. II Vol. 1. 

lo LEONHARD EULER, t 177 D6couverte d'un nouveau principe de m6canique, 1750 
(1752) Op. Omnia Ser. II Vol. 5. 

E 301 De motu corporis ad duo centra . . ,  attracti, 1764 (1764) Op. Omnia Set. II 
Vol 6. 

E 328 De motu corporis ad duo eentra . . ,  attracti, 1765 (1767) Op. Omnia Ser II 
Vol. 6. 

E 337 Probl6me. Un corps 6tant attir6 en raison . . . .  1760 (1767) Op. Omnia Ser. II 
Vol. 6. I am grateful to D. O. MATHI)NA who drew my attention to these papers of 
EULER. 

~l GIULIO MALTESE, La Storia de "F = ma", Olsehki Firenze, 1992. 
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immediate fruit was the definite foundation of Hydrodynamics  through the 
equations which bear his name. Of  Hydrodynamics  we shall hear more in the 
second part  of this talk. The great role played by celestial mechanics in EULER'S 
thinking and in his work is well known, but the series of three papers which he 
devoted to the problem of a point moving according to NEWTON'S law around 
two, fixed, centers of attraction may be mentioned here especially. ~~ BERNOULLI 
is not mentioned by name, yet the papers testify to his influence on the former 
disciple even more than a decade after his death. It  is noteworthy that these 
three papers have exerted a scientific influence on mechanics even today. 

Conflict and Cooperation 

I should like to add to this presentation of a historic development a few 
remarks concerning the official subject of this symposium. This gives me an 
opportunity to correct mistakes which I made myself some time ago by accept- 
ing what established authorities on JOHANN BERNOULLI had stated. One mistake 
had caused no more than the missing of an important  point, but the other one 
can only be called a slander, and it is a serious one indeed. It  also gives me an 
opportuni ty to say a few words about  BERNOULLI'S Hydraulica as Dr. VAN 
MAANEN had wished me to do. 

JOHANN BERNOULLI'S attitude towards JACOB HERMANN was not one of con- 
flict, though, certainly one of competition; his attitude towards his friend PIERRE 
VARI6NON was one of collaboration. BERNOULLI was steeped in many  conflicts 
indeed, and always very much emotionally so. Thus it might be useful to 
consider first two scientific topics where he reacted emotionally to scientific 
ideas and to ask whence these strong emotions? 

We just saw one important  achievement in BERNOULLI'S receptivity to, and 
his contribution to the development of, Newtonian Mechanics. But there were 
ideas in NEWTON'S Mechanics with which he was in deep conflict and quite 
emotionally so. The most  important  ones were NEWTON'S "action at a distance" 
and the vacuum. Concerning both ideas we can see his motives in his mkmoire 
for winning a prize in the year 1734. The Acad6mie Royale des Sciences had 
asked the question: "Quelle est la cause physique de l'inclinaison des Plans des 
Orbites par  rappor t  au plan de l 'Equateur de la revolution du Soleil autour de 
son axe, et d'ofl vient que les inclinaisons de ces Orbites sont diff6rentes entre 
elles?" 

First we can see in BERNOULLI'S m6moire ~1 clearly that he was no 
"Cartesian" with respect to gravitation. He says, w "Le syst6me des 
T o u r b i l l o n s . . . ,  ne laisse pas d'6tre expos6 aussi /t de grandes objections: on 
sgait que la gravitation des Planetes vers le Soleil, a t t r ibu6e/t  l'effet de la force 
centrifuge de la mati6re du Tourbillon, ne devroit pas se faire directement au 

12 JOHANN BERNOULLI, Essai d'une nouvelle Physique celeste, Recueil des pi6ces... 
Tome III, G. Martin et al. Paris, 1735. Joh. B. Op. CXLVI. 
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centre du Soleil, mais perpendiculairement vers l'axe du Tourbillon, de m~me 
que les corps graves sur la terre devroient avoir une tendance perpendiculaire 
fi l'axe, & ne point tendre au centre de la terre". 

So much for my first mistake. I have explained elsewhere why BERNOULLI 
still uses DESeARTES'S vortex, and why, doing so, he went in the right direction. 
He turned the question into the more appropriate one: what determines the 
present shape of the solar system? Thus, his paper, together with the paper of 
his son, with whom he shared the prize, belongs to the prehistory of astro- 
physics. 

But he fights NEWTON'S action at a distance: why? After having insisted that 
NEWTON'S attitude is moderate compared to the one of his followers, he writes, 
w IV,: "Or le choc se fait par pression; c'est donc une action dont il rtsulte un 
effet. Qui veut concevoir une action sans effet, il veut concevoir une chimtre. 
. . .  ainsi je ne vois pas comment deux corps 61oign6s & en repos peuvent 
s'attirer mutuellement, c2t.d., se mcttre en mouvement d'eux m~mes . . . .  Vouloir 
recourir ~t la volont6 immtdiate de Dieu, . . .  seroit bannir les causes secondes 
de la Nature; il vaudroit autant dire que . . .  tout ce qui arrive dans l'univers, 
s'execute immediatement . . .  par la volont6 divine". 

Thus BERNOULLI, the "savant du sitcle des lumihres" speaks. DESCARTES and 
HUYGENS, through introducing mechanisms for which they had discovered taws, 
had freed science from the "qualit6s obscures", and one should avoid anything 
that might induce us to slip down again into obscurantism. He could not know 
that NEWTON was of the same opinion, and both, provided one frees oneself, as 
indeed EINSTEIN did, from too narrow an understanding of the notion of 
mechanism were proved right. It is a different story with the vacuum. First 
I must say that the vacuum was at that time often an emotional subject, as 
several contributions to a symposion in Wolfenbiittel, two years ago, showed, 
and it would be worthwhile to find out why. 

Earlier here in Groningen BERNOULLI had directed a philosophical thesis by 
his student SEATO TRIP. 13 The main point of the thesis is that "body" and 
"space" are different only modo but not in re and that therefore the notion of 
a vacuum is a mistaken one. Leaving this slightly scholastic argumentation 
aside, we may say that BERNOULLI had apparently not understood that 
NEWTON'S vacuum was more than just an empty Euclidean space. In the 
m~moire he says, w XIII,: "Qui dit corps, ne dit autre chose que ce qui est 
6tendu, mobile & imp6n4trable; voil/t tout ce que l'd6e du corps doit renfermer; 
. . . .  " But according to NEWTON space-time carries the vis insita or vis inertiae, 
as he called it. Later EULER understood this point clearly. He added to BER- 
NOULLI'S three properties a fourth one, inertia, and he showed that this force 
singles out from all transformations those which we today call "Galileo trans- 
formations". That  is why BERNOULLI, for performing what I called the first step, 
had to fall back on the energy principle of GALILEO and HUYGENS. 

13 SCATO TRIP, Disputatio Phil. de Vacuo, C. Barlinck-hof Groningen, 1705. 
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You will now see how this failure to understand NEWTON on this point 
indeed also impeded him in another  question, in spite of the undoubted pro- 
gress which he had achieved. 

Johann and Daniel Bernoulli 

Of the many  conflicts and quarrels in which JOHANN BERNOULLI was party 
I will restrict myself to the most  ugly one: the rivalry with his own son. 

DANIEL BERNOULLI had written in St. Petersburg a first version of the 
Hydrodynamica, which he then revised in Basel. It  should have appeared in 
1734, but because of the usual difficulties it did so only in 1738.14 At about  the 
same time, the father published his Hydraulica indicating 1732 as the year of 
writing. 15 At that time the work certainly did not exist in the form in which it 
was printed, and therefore JOHANN has often been accused of fraud. His general 
boasting seemed to make the accusation plausible. Some went even so far as to 
accuse him of having plagiarized his son, and naively I myself repeated this 
accusation, an error for which I still feel sorry. Leaving aside for a moment  the 
predating of the Hydraulica, I will deal first with the accusation of having 
plagiarized. 

In fact, EULER'S statement, printed in BERNOULLI'S Opera, should have 
warned the historians. EULER says " . . .  your theory of water in motion 
following the true and genuine method, which you, most excellent Sir, did apply 
as the first and only one for treating problems of this kind adequately . . . .  " 
What  does EULER mean by "the true and genuine method"? To answer the 
question, we must look at both  books. 

In the Hydrodynamica 12 of the 13 chapters are based on the energy 
principle ("balance of energy"); the last one is based on the momentum principle 
("balance of momentum").  But we need only open the introduction of the 
Hydraulica and we see that JOHANN uses NEWTON'S equation! 

DANIEL'S book is the more carefully written by far and also the more 
understandable of the two; I doubt  that  there are many  more carefully written 
books in the whole history of physics. But JOHANN'S, while containing, at least 
one serious mistake, was at the time the more advanced: it introduced NEWTON'S 
concept of force into Hydrodynamics. This is what EULER meant  by "the true 
and genuine method",  which he was later to explore himself with such success. 
To quote TRUESDELL:"... he had calculated the force acting on an infinitesimal 
e l e m e n t , . . .  ,,.16 True, as G. MIKHAILOV observed, JOHAnn'S, here too, has not 

14 DANIEL BERNOULLI, Hydrodynamica, J. R. Dulsecker Strasboarg, 1738. 
is JOHANN BERNOULLI, Hydraulica CP IX, 1737 (1744); X, 1738 (1747) - -  Joh. B. 

Op. CLXXXVI. 
16 CLIFFORD AMBROSE TRUESDELL, Editor's introduction to Euleri, Op. Omnia II 

12, Part IV. p. XXIII ft. 
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fully grasped the notion of force, but TRUESDELL is right when he says, that the 
roots of EULER'S hydrodynamics lie in JOHANN'S rather than in DANIEL'S work. 
Thus to speak of plagiarizing is absurd. I. SZABO has defended JOHANN in even 
stronger terms than TRUESDELL, and he showed that this accusation is, in fact, 
only of quite recent origin. 17 Ironically it originated in Basel from one whose 
very hero, and the favourite among all members of the family to boot, was 
JOHANN BERNOULLI. 

The predating is a different story. To compete with a son shows always 
questionable wisdom and taste, and BERNOULLI chose a heavy-handed and 
miserable way to do so. But, however we judge his action, it is unlikely that he 
invented the date 1732 out of the blue; at any rate the burden to disprove him 
rests with us. 

In fact, we know that during the period prior to 1734, when he wrote his 
great m6moire, he again studied hydrodynamical theories for explaining why 
the planets do not move in the same plane. His frequent references to his book 
"La Manoeuvre des Vaisseaux" testifies to this. I am glad that Mme. J. PEIFFER 
showed how important the ideas developed in the book were for him, and that 
the prize offered by the Acad6mie incited him to work on them again. Thus 
I suggest that the date 1732, although unacceptable according to our norms, 
refers to results obtained by these studies and stored, probably, in a drawer. 

I wish to conclude by stating an impression, the subjective character of 
which I am quite aware. We are presently preparing the plans for the edition of 
the various BERNOULLI correspondences. Together with Dr. NAGEL, who knows 
the letters better, I have now looked through all those of JOHANN I. 

With respect to his character and personality, two impressions stand out. 
One is, I need not insist, his love for disputes and fights. But one must note 
that almost all of his fights were directed against peers or even persons of 
superior standingl After all, in his fight for LEIBNIZ against NEWTON and the 
English he was the one of the three, who was in the least exalted position, and 
therefore needed the greatest courage: the quatrain of VOLTAIRE, who was 
a great admirer of NEWTON, testifies to this. 

The other strong impression I receive is his great dedication to his students. 
He spent much time on them and showed them freely and generously indeed 
what they needed to learn. He always recognized unhesitatingly and without 
reservation EULER'S superiority. Indeed, that he should be the teacher of one of 
the greatest scientists and teachers ever, was the most fitting tribute which 
history possibly could pay to him. 
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116 D. SPEISER 

D. O. MATHONA for his extremely careful reading of the manuscripts as well as for his 
many suggestions. 

CLIFFORD TRUESDELL honoured me with the invitation to submit this paper to his 
and CHARLOTTE'S Archive; his seminal article which opened this more than successful 
journal was a sign post for many of us! 

CH-4144 Arlesheim 

Scuola Normale Superiore, Pisa 

and 

Institut de Physique Thhorique 
de I'UCL, Louvain-la-Neuve 

(Received December 18, 1995) 


