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By Carl Neumann1,2,3

The individual areas of physical science could aptly be subdivided into
two parts, according to the nature of the elementary forces which are assumed
to explain the relevant phenomena. On one side stands celestial mechanics,
elasticity, capillarity, in general those areas for which the direction and mag-
nitude of the force is fully determined by the relative position of the material
parts; on the other side are to be considered the investigations of friction,
electricity and magnetism, and perhaps also optics, in general those areas of
physics in which the known forces depend upon other conditions in addition
to their relative positions – their velocities and accelerations, for example.

Now, if the law (or principle) of vis viva4 rules completely over the natural
phenomena (and all previous experience speaks for this), as appears to apply
for the first subdivision as a direct consequence of the underlying ideas, for
the second subdivision it seems to be a matter of chance. For the elementary
forces of the first type subject themselves to the rule of that law, but those
of the second type do not.

“It seems”–says Fechner in his Psychophysik (1860),5 Vol. I, page
34–“that these (last) elementary forces work together in such a
way that the law6 remains applicable to all actions of nature. In
the case of the magnetic forces (and therefore electric currents
as well) this is self-evident, insofar as they actually can be rep-
resented as the effects of central forces, which are independent
of velocity and acceleration. Moreover, Prof.W.Weber has re-
sponded orally to my questioning, that in all cases to which his
investigation has led, even beyond the limit of the latter forces,

1[Neu68a].
2Translated by Laurence Hecht, larryhecht33@gmail.com, and U. Frauenfelder,

urs.frauenfelder@math.uni-augsburg.de. Edited by A. K. T. Assis, www.ifi.unicamp.

br/~assis
3The Notes by Carl Neumann are represented by [Note by CN:]; the Notes by Laurence

Hecht are represented by [Note by LH:]; while the Notes by A. K. T. Assis are represented
by [Note by AKTA:].

4[Note by AKTA:] The Latin expression viv viva (living force in English or lebendige

Kraft in German) was coined by G. W. Leibniz (1646-1716).
Originally the vis viva of a body of mass m moving with velocity v relative to an inertial

frame of reference was defined as mv2, that is, twice the modern kinetic energy. However,
during the XIXth century many authors like Weber and Helmholtz defined the vis viva as
mv2/2, that is, the modern kinetic energy.

5[Note by AKTA:] [Fec60, p. 34].
6[Note by AKTA:] Fechner is referring here to the law of the conservation of energy.

www.ifi.unicamp.br/~assis
www.ifi.unicamp.br/~assis
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the law is found to be valid, even if its full applicability to the
region of these forces still requires strict proof.”

But this is actually not a proof, but a discovery. Because that law repre-
sents a relation between the vis viva and the potential, and thus a relation
between two magnitudes, the latter of which is known as an elementary force
of the first type, but is completely unknown for the second type. Respecting
the latter forces, it is therefore not the proof of the law, but the discovery of
its content, and the determination of its magnitude, which would be regarded
as the potential of those forces.

Three years ago, stimulated by the just cited words of Fechner, I began
to interest myself in this question and thus directed my attention to those
elementary forces of the second kind which Weber assumed between two
electric particles, and I soon found that the potential of such a force could
be viewed with certain authority by the following expression:

W =
mm1

r
+G

mm1

r

(

dr

dt

)2

,

where m,m1 indicate the masses of the two particles, r their distance apart,
t the moment of time under consideration, and G a constant.7 Then it is
seen that the force assumed by Weber can be derived from this expression by
variation of the coordinates in exactly the same way in which an elementary
force of the first kind is obtained from its potential though a differentiation
of its coordinates.

And simultaneously it resulted that during the motion of both particles
a very simple relationship prevails between the vis viva and the two parts of
the expression W adopted as potential, namely:

(vis viva) +
mm1

r
−G

mm1

r

(

dr

dt

)2

= constant .

It can scarcely be doubted that this relationship represents the law to be
discovered for the force assumed by Weber.

I also had already back then, in accordance with the expression for W ,
formulated the potential for two elements of electric current, and found that
from the potential so obtained, both the repulsive and the inductive action
of the two elements on one another could be derived in a very simple way,
namely the former could be deduced by variation according to the distance,
the latter by variation according to direction of an element.

7[Note by AKTA:] By “electric masses” m and m1 we should understand here the
charges of the particles, [Arc86, p. 787].
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Amazing as it may seem at first sight, and in some contrast to the hitherto
prevailing view, variation must take the place of differentiation. However,
as I want to remark right away, this contrast is to some extent tempered,
when one observes that a similar treatment already applies in the area of
elementary forces of the first type, for example in investigation into elasticity.
Namely, let u, v, w be those functions of the coordinates through which the
internal displacement of a given elastic body are represented, and Φ the
potential which the particles of the body collectively exert on any one of
them, then the force acting on the latter is found through variation of Φ
according to u, v, w (as was developed in detail by me in an essay on elasticity,
Borchardt’s Journal, Vol. 57, page 304).8

Some time ago I was prompted to resume and continue my investigations
into the subject in question by a posthumous essay of Riemann’s, published
in Poggendorff’s Annalen (Vol. 131, page 237),9 in which the attempt (which,
however was not very successful, and perhaps, as a result of the too brief pre-
sentation should not be judged) is made to explain the repulsive action of two
current elements on each other by elementary forces of the first kind, under
the assumption that the potential of this force – similar to light – is propa-
gated through space with a certain constant velocity. To my surprise I found
that this assumption leads directly to my conjecture, namely by assuming
such a progressive propagation, the ordinary potential mm1

r
(corresponding

to the Newtonian gravitational force), transforms into a magnitude whose
effective constituent is completely identical with the previously mentioned
expression W .

Already in May of this year I made a short communication to the Göttingen
Scientific Society about the starting point and results of the investigation in
question (Nachrichten der Gesellschaft, June 16, 1868).10 If I now intend
to present these investigations, or at least a part of them, in detail and as
carefully as possible, this is not because I consider these investigations to be
completely thorough, but rather because of the extraordinary importance of
the subject at hand, and because I am of the opinion that my researches may
be necessary, or at least not without use, for a deeper penetration into this
subject.

8[Note by AKTA:] [Neu60, p. 304].
9[Note by AKTA:] [Rie67b] with English translation in [Rie67a] and [Rie77a].

10[Note by AKTA:] [Neu68b].
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1 Section 1. Overview

1.1 Basis of the Investigation

In the present investigation I will share the nomenclature of those authors
who understand vis viva (Lebendige Kraft) as the sum of the masses multi-
plied by one half the square of their velocity, and who further understand
the potential as that function of the coordinates whose negative differential
coefficient represents the force.11,12 By applying this nomenclature (which in
hindsight seems especially appropriate to the mechanical theory of heat) the
Principle of Vis Viva assumes the form

(vis viva) + (potential) = constant .

At the same time another general principle of mechanics, the Hamiltonian
Principle, finds its expression in the formula

δ

∫

[(vis viva)− (potential)]dt = 0 ,

where the integration is carried out over any chosen time interval, and where
δ designates the internal variation, that is a variation which does not affect
the limits but only the inside of that time interval.

If I now notice that we know the potential by the given forces, but also
that, inversely, by specifying the potential the forces are determined, and if
I accordingly allow myself to consider the potential as primary, as the actual
driver of impulse to motion, and the forces as secondary, as the form in
which the impulse manifests itself, this is not a real but at best a formal
innovation. On the other hand, what is essentially new (albeit related to
the conjecture already made by Riemann) is my assumption that the motive
impulse represented by the potential does not pass from one mass point to
the other instantaneously, but progressively, that it propagates in space with
a certain albeit extremely great velocity. This velocity is considered constant
and will be designated by c.13

11[Note by CN:] By this definition vis viva and potential are identical to the magnitudes
the English call actual and potential energy. Potential is also identical to the magnitude
Helmholtz calls Spannkraft.

12[Note by AKTA:] Helmholtz introduced the concept Spannkraft in 1847, [Hel47, p.
14]. It was translated as tension, [Hel66, p. 122]. According to Elkana, Helmholtz coined
the phrase “Spannkraft” for the clearly defined mechanical entity that we call “potential
energy”, [Elk70, p. 280]. Caneva translated it as “tensional force”, [Can19].

13[Note by LH:] Weber’s constant c is not the speed of light, being equal to
√
2 times

the speed of light.
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The idea just mentioned, and the assumption that Hamilton’s Principle
is applicable without restriction, form the basis of my investigation; they
form the source from which the laws of electric phenomena (discovered by
Ampère, Weber, and my father)14 come out on their own, without bringing
in any further assumption.

It is scarcely necessary to remark that the ordinary conception of an
instantaneous propagation of the potential is contained as a special case in
the conception put forth here of a progressive propagation, namely that this
conception goes over to the ordinary one as soon as one sets the constant
c = ∞.

1.2 Weber’s Law

First consider only two points m and m1, which move under their mutual
influence. Then, proceeding from the conception of a progressive propagation
of the potential, for each given instant of time t, two different potentials
appear, the emissive and the receptive.

The emissive potential is that which is sent out at the time t from each
of the two points, and which therefore reaches the other point a little later.
Let r represent the distance of the two points at time t, and ω̃ the emissive
potential corresponding to the same time, then according to Newton’s law
ω̃ = mm1

r
, or generally:15

ω̃ = mm1ϕ , (1)

where ϕ = ϕ(r) represents any given function of r.
The receptive potential on the other hand, is that which is received at

time t and which therefore was already sent out a little earlier from the other
point. The receptive potential belonging to the given time is accordingly
identical to the emissive potential of an earlier time. The distance at time

14[Note by AKTA:] Carl Neumann is referring to André-Marie Ampère (1775-1836),
Wilhelm Eduard Weber (1804-1891) and Franz Ernst Neumann (1798-1895). Ampère’s
main work on electrodynamics containing his force between current elements is from 1826,
[Amp23] and [Amp26] with a complete and commented English translation in [AC15]. We-
ber’s force between point charges was published in 1846, [Web46] with partial French trans-
lation in [Web87] and a complete English translation in [Web07]. Franz Neumann’s works
on induction can be found in [Neu46] and [Neu47], with French translation in [Neu48a];
[Neu48b] and [Neu49].

15[Note by AKTA:] Neumann numbered the equations in each Section of his paper
beginning with (1). This creates a possible misunderstanding related to which specific
equation he might be referring to in later portions of the work. In this English translation
we numbered sequentially the equations of the whole paper.
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t is again designated as r, and the receptive potential corresponding to that
time is ω, so there results after some calculation

ω = w +
dw

dt
, (2)

where

w = mm1

[

ϕ+

(

dψ

dt

)2]

,

(3)

w = mm1

[

χ+
dΦ

dt

]

.

Here ϕ is the function contained in the emissive potential; and at the same
time ψ, χ, Φ are certain other functions, also only depending upon r, which
allow derivation out of the given function ϕ through fairly simple operations.
So, for example

ψ =
1

c

∫

√

−r
dϕ

dr
dr . (4)

The function ϕ is, as emerges directly from its definition, independent of the
propagation velocity c; ϕ, χ however are affected by the factor 1

c
and Φ with

the factor 1
c2
.

Still to be noticed is that for the case of the
Newtonian emission law, namely for ϕ = 1

r
, the function

ψ assumes the value:ψ = 2
√
r

c
.







(5)

Of the two parts of the receptive potential, we denote w as the effective
potential and the other one dw

dt
the ineffective potential.

Since Hamilton’s principle is considered to be valid without limitation,
one has to be able to derive the dynamics of the points m and m1 from the
formula

δ

∫

(τ − ω)dt = 0 ,

where τ is the vis viva of the two points and ω the already mentioned receptive
potential.

Substituting for ω its value (2), the formula reduces to
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δ

∫

(τ − w)dt = 0 .

If one carries out the variation from this expression, the six differential equa-
tions needed to determine the dynamics follow. These equations explain how
the dynamics take place, i.e., they explain the force acting between the two
points. The result obtained in this way is the following:

I. A force, R, acts between the two points as they move, the force acting
along the straight line r connecting the points at each point in time.

II. If one considers this force as a repulsive one and if w is the (already men-
tioned) effective potential of the two points, then R equals the negative
variation coefficient of w with respect to r.16

An immediate consequence of this is

R = mm1

[

−
dϕ

dr
+ 2

dψ

dr

d2ψ

dt2

]

. (6)

In the special case mentioned in (5), namely ϕ = 1
r
and ψ = 2

√
r

c
, this formula

becomes

R = mm1

[

1

r2
+

4

c2
√
r

d2
√
r

dt2

]

. (7)

Formula (6) precisely coincides with the law on which I based ten years ago
my study dealing with the magnetic rotation of the plane of polarization of
light. And formula (7) is literally identical to Weber’s law.

A closer examination leads to the following additional results

III. If W is the effective potential of an arbitrary system of points and if
x, y, z are the coordinates of the point having the mass m, the compo-
nents of the force acting on m become equal to the negative variation
coefficient of W with respect to x, y, z.

IV. If P is the component of that force in an arbitrary given direction p,
then P equals the negative variation coefficient of W with respect to p.

The term variation coefficient used several times needs a short explanation.
Suppose that u, v, . . . w are undetermined functions of a base variable (for
example the time), or undetermined functions of any number of base variables

16[Note by AKTA:] In the original: dem negativen Variationscoefficienten von w nach

r.
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α1, α2, . . . αn, and G is a given expression from the variables α1, α2, . . . αn,
from the functions u, v, . . . w and from some derivatives of these functions
with respect to these variables. Then it is well-known that the internal
variation coming from a change of u, v, . . . w

δ

∫ (n)

Gdα1dα2 . . . dαn

always can be put into the form

δ

∫ (n)

Gdα1dα2 · · ·dαn =

∫ (n)
(

aδu+ bδv + · · ·+ cδw
)

dα1dα2 · · · dαn ,

in which the coefficients a, b, . . . c only depend on α1, α2, . . . αn, u, v, . . . w,
being independent of the variations δu, δv, . . . δw. These coefficients a, b, . . . c
I call variation coefficients with respect to u, v, . . . w.

1.3 The Laws of Electric Repulsion and Induction

Since the hypotheses employed led to Weber’s universal law of electrical
action, they obviously must also guide us to those special laws regarding the
repulsion and induction of electric currents, which were discovered earlier
and later unified under Weber’s law. Nevertheless I examined this topic
more closely and found,17 that for the deduction of the known special laws it
almost does not matter if one starts from the two-fluid or one-fluid theory
of electrical current. A difference in this respect only shows up in the laws
of induction and here as well in the (probably still not sufficiently examined)
cases dealing with induction of non-closed currents.

Let ds denote an element of an electric current. Moreover, +eds and
−eds are the quantities of positive and negative electric fluids contained in
it. Finally s′ = ∂s

∂t
and S ′ are the velocities of these quantities with respect

to one and the same direction s.
Putting S ′ = −s′, then both fluids move with the same speed in oppo-

site directions. This is in full correspondence with the two-fluid theory one
usually starts with.

However, if one puts S ′ = 0 the negative fluid is considered to be attached
to the ponderable matter or even to be identical with this matter. In this
case only one fluid is moving. This latter point of view I denoted before as
the unitary one.

17[Note by CN:] What I state concerning electric repulsion and induction as a result of
my studies will not be justified and carried further in the current article. I plan to do this
in a later note.
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If one follows simultaneously both concepts and keeps the function ϕ in
the emissive potential undetermined, one obtains the following results. Here
ds, eds, s′ = ∂s

∂t
have the already mentioned meaning and dσ, ηdσ, σ′ = ∂σ

∂t

have an analogous meaning with respect to a second current element.

I. Assume that W is the effective potential of the two current elements
and r their distance, then

W =
(2n)2dsdσ · es′ ησ′

2

∂ψ

∂s

∂ψ

∂σ
, (8)

where ψ represents the function mentioned in (4) and n is an integer,
which = 2 or = 1 depending on whether one assumes the two-fluid or
one-fluid theory.

As mentioned in (5) for the special case ϕ = 1
r
one has ψ = 2

√
r

c
. In this case

the value of the potential becomes

W =

(

2n

c

)2
dsdσ · es′ ησ′

2r

∂r

∂s

∂r

∂σ
. (9)

II. The repulsive force R by which the two current elements act on each
other equals the negative variation coefficient of the potential W with
respect to r.

From that follows the formula

R = (2n)2dsdσ · es′ ησ′ ∂ψ

∂r

∂2ψ

∂s∂σ
, (10)

which in the case ϕ = 1
r
, ψ = 2

√
r

c
becomes

R =

(

2n

c

)2
2dsdσ · es′ ησ′

√
r

∂2
√
r

∂s∂σ
. (11)

However, this last formula is identical to Ampère’s law, as follows easily.

III. If dσ and ds are two elements of closed currents, and E denotes the
electromotive force exerted by dσ on ds along the direction s, then E

equals the negative variation coefficient of W with respect to s.

This formula, which is valid in general, whether the induction is due to
a change of relative position or a change of the intensity of the current,
immediately leads to the formula
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E =
dW

dt
, (12)

if one understands by W the value of the potential W for s′ = 1. This
formula precisely represents the induction law as stated by my father.

IV. Up to this point there is a complete correspondence between the results
obtained from the two-fluid and one-fluid theories. However, I exam-
ined as well the case of induction between non-closed currents and
found that in this case there is quite a difference between the results
obtained from the two points of view.

1.4 The Principle of Vis Viva

Our assumption is that Hamilton’s principle is valid without restriction. An
immediate consequence of this assumption is that the principle of vis viva
always holds as well. However, it might change its usual form.

If only two points m and m1 are given and w is the effective potential of
the two points, then according to (3) we have

w = mm1

[

ϕ +

(

dψ

dt

)2]

, (13)

or equivalently

w = u+ v , (14)

where u and v are given by

u = mm1ϕ ,

(15)

v = mm1

(

dψ

dt

)2

.

From the meaning of ϕ and ψ (compare (1) and (4)) it follows that u is
independent of the propagation velocity c, whereas v is affected by the factor
1
c2
. On the other hand one immediately sees from (15), that v vanishes, as

soon as the two points are at rest, and that in this case the potential w
becomes u. For this reason I call u the static and v the motive potential.18

18[Note by AKTA:] Das motorische Potential in the original.
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It is worth noticing that the static potential coincides with the emissive
potential, which follows not only from the formulas, but also directly from
the definition of these potentials.

We consider now the dynamics of an arbitrary system of points and let
W be its effective potential. We decompose W (as was done for w) into two
terms

W = U + V . (16)

The term U independent from c represents the static potential, while the
term V affected by the factor 1

c2
represents the motive potential. Using these

notions we will show the validity of the following theorem for the vis viva:
During the movement of an arbitrary system of points the vis viva, in-

creased by the static and decreased by the motive potential, always has the
same value. Mathematically one has

T + U − V = constant , (17)

where T is the vis viva of the system. In the case of instantaneous prop-
agation, i.e., for c = ∞, the expression V affected by the factor 1

c2
van-

ishes. In this case the formula (17) simplifies to the well-known formula
T + U = constant.

As regards the expressions T, U, V , we remark that the first one only
depends on the velocities of the points, the second one only on their relative
position and the third one simultaneously on both the velocities and the
relative position.

2 The Variation Coefficients

2.1 Preliminary Remark

If f and ϕ are functions of the three variables α, β, γ the following equations
hold

f
∂3ϕ

∂α∂β∂γ
=

∂

∂α

(

f
∂2ϕ

∂β∂γ

)

−
∂f

∂α

∂2ϕ

∂β∂γ
,

∂f

∂α

∂2ϕ

∂β∂γ
=

∂

∂β

(

∂f

∂α

∂ϕ

∂γ

)

−
∂2f

∂α∂β

∂ϕ

∂γ
,

∂2f

∂α∂β

∂ϕ

∂γ
=

∂

∂γ

(

∂2f

∂α∂β
ϕ

)

−
∂3f

∂α∂β∂γ
ϕ .
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If these equations are multiplied by (−1)0, (−1)1, (−1)2, respectively, and
than added together one gets

∂3ϕ

∂α∂β∂γ
=

∂

∂α

(

(−1)0f
∂2ϕ

∂β∂γ

)

+
∂

∂β

(

(−1)1
∂f

∂α

∂ϕ

∂γ

)

+
∂

∂γ

(

(−1)2
∂2f

∂α∂β
ϕ

)

+ (−1)3
∂3f

∂α∂β∂γ
ϕ . (18)

Analogously, if f and ϕ are functions of arbitrarily many (for instance p)
variables α, β, . . . π, one obtains a formula of the following form

f
∂pϕ

∂α∂β . . . ∂π
=

∂A

∂α
+
∂B

∂β
+ · · ·+

∂P

∂π
+ (−1)p

∂pf

∂α∂β . . . ∂π
ϕ . (19)

Let there be in total n variables α1, α2, . . . αn on which f, ϕ depend, and
let α, β, . . . π represent any number of these n variables each one with arbi-
trary many repetitions, then the formula (19) is still valid. If one multiplies
that formula by dα1dα2 . . . dαn and integrates over an arbitrary domain, it
follows that

∫ (n)

f
∂pϕ

∂α∂β . . . ∂π
dα1dα2 . . . dαn

= Σ+ (−1)p
∫ (n) ∂pf

∂α∂β . . . ∂π
ϕdα1dα2 . . . dαn , (20)

where Σ is a sum of (n − 1)-fold integrals on the boundary of the domain
of integration. Moreover, it follows from the meaning of A, B, . . . P that
these integrals vanish when the function ϕ and its derivatives vanish at that
boundary.

2.2 Definition of the Variation Coefficients

Assume that u is an undetermined function in the variables α1, α2, . . . αn.
As before α, β, . . . π is an arbitrary selection of these variables each with
arbitrary many repetitions. We abbreviate

∂pu

∂α∂β . . . ∂π
= u′ . (21)

Moreover,
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G = G(α1, α2, . . . αn, u, u
′) (22)

is a given expression from those variables as well as from u and u′. We have
to examine the variation of the integral

∫ (n)

Gdα1dα2 . . . dαn (23)

over an arbitrary given domain for a modification of u, under the simplifying
assumption that the function u and all its derivatives are fixed at the bound-
ary. In the future we refer to this as internal variation of this integral. For
that we immediately obtain

δ

∫ (n)

Gdα1dα2 . . . dαn =

∫ (n)

δG · dα1dα2 . . . dαn

=

∫ (n) (∂G

∂u
δu+

∂G

∂u′
δu′

)

dα1dα2 . . . dαn.(24)

By (21) we have

∂G

∂u′
δu′ =

∂G

∂u′
∂pδu

∂α∂β . . . ∂π
, (25)

hence according to (20)

∫ (n) ∂G

∂u′
δu′dα1dα2 . . . dαn

= Σ+ (−1)p
∫ (n) ∂p

∂α∂β . . . ∂π

∂G

∂u′
· δudα1dα2 . . . dαn . (26)

The previously mentioned case where Σ vanishes takes place here. In fact the
function δu vanishes with all its derivatives at the boundary of the integration
domain, since the variation is an inner one. Consequently, by substituting
(26) into (24) one has

δ

∫ (n)

Gdα1dα2 · · · dαn =

∫ (n)

aδudα1dα2 · · · dαn , (27)

where a is given by

a =
∂G

∂u
+ (−1)p

∂p

∂α∂β . . . ∂π

∂G

∂u′
, (28)
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i.e.,

a =
∂G

∂u
+ (−1)p

∂p

∂α∂β . . . ∂π

∂G

∂ ∂pu
∂α∂β...∂π

. (29)

We abbreviate this quantity by

a =
∂G

∂u
+ εu′Du′

∂G

∂u′
, (30)

where Du′ indicates the differentiation with respect to all variables used to
build the derivative u′. The symbol εu′ denotes a number, which is either +1
or −1 depending if u′ is a derivative of even or odd order.

Analogously a more general task can be carried out. Assume that u
is an undetermined function of the variables α1, α2, . . . αn and u′, u′′, . . .

are arbitrarily many derivatives of this function of arbitrarily high degree.
Moreover,

G = G(α1, α2, . . . αn, u, u
′, u′′ . . .) (31)

is a given expression of those variables, functions and derivatives. Then for
the internal variation of the integral

∫ (n)

Gdα1dα2 . . . αn (32)

one obtains the following value:

δ

∫ (n)

Gdα1dα2 . . . dαn =

∫ (n)

aδudα1dα2 . . . dαn , (33)

where using the notion introduced in (30) one can express a by

a =
∂G

∂u
+ εu′Du′

∂G

∂u′
+ εu′′Du′′

∂G

∂u′′
+ · · · . (34)

With the same ease an even more general task can be treated. Assume
that u, v, . . . w are arbitrarily many undetermined functions of the variables
α1, α2, . . . αn. Moreover, let G be a given expression composed from the
variables α, the functions u, v, . . . w and arbitrary many derivatives of these
functions with respect to α. The task at hand is to determine the internal
variation of the integral

∫ (n)

Gdα1dα2 . . . dαn (35)
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by simultaneous perturbation of u, v, . . . w. It is easy to see that the result
in this case is

δ

∫ (n)

Gdα1dα2 . . . dαn =

∫ (n)
(

aδu+ bδv + . . .+ cδw
)

dα1dα2 . . . dαn , (36)

where a, b, . . . c are given by

a =
∂G

∂u
+ εu′Du′

∂G

∂u′
+ εu′′Du′′

∂G

∂u′′
+ · · · ,

b =
∂G

∂v
+ εv′Dv′

∂G

∂v′
+ εv′′Dv′′

∂G

∂v′′
+ · · · ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (37)

c =
∂G

∂w
+ εw′Dw′

∂G

∂w′
+ εw′′Dw′′

∂G

∂w′′
+ · · · .

Here it is understood that

u′, u′′, . . . ,

v′, v′′, . . . ,

. . . . . . . . .

w′, w′′, . . .

are the derivatives of u, v, . . . w, on which G depends.
It seems appropriate to call the quantities a, b, . . . c used to represent

the variation of the integral of G the variation coefficients of G with respect
to u, v, . . . w (cf. page 10). We denote them in an analogous way to the
differential coefficients with the only difference that we use ∆ instead of ∂.19

With this convention we have

a =
∆G

∆u
,

b =
∆G

∆v
,

. . . . . . (38)

c =
∆G

∆w
.

19[Note by CN:] According to my knowledge the term differential coefficient is seldom
used, always in the same meaning as derivative or differential quotient. Analogously like
the term differential coefficient, we refer here to variation coefficient. (In the original
article from 1868 instead of ∆ a reversed ρ was used).
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The lowercase letter δ is reserved to denote the variation itself.
As follows from (37) the variation coefficients ofGwith respect to u, v, . . . w

transform to the differential coefficients ∂G
∂u
, ∂G
∂v
, . . . ∂G

∂w
as soon as the ex-

pression G only contains the functions u, v, . . . w themselves, but not their
derivatives.

2.3 A Theorem on Variation Coefficients

For the following discussion we need to derive a theorem which in many
cases simplifies computations involving variation coefficients. I noted this
result before in “Untersuchungen über Elasticität” which appeared in Crelle’s
Journal, Vol. 57, p. 299.20

Apart from the variables α1, α2, . . . αn and the m undetermined func-
tions u, v, . . . w we might have an additionalM new undetermined functions
U, V, . . . W , which also only depend on α1, α2, . . . αn, but are connected to
the previous functions u, v, . . . w by certain prescribed relations

U = ϕ(α1, α2, . . . αn, u, v, . . . w) ,

V = ψ(α1, α2, . . . αn, u, v, . . . w) ,

. . . . . . . . . . . . . . . . . . . . . (39)

W = χ(α1, α2, . . . αn, u, v, . . . w) .

M might be bigger or smaller than m or the two integers might be equal.
We assume that G is a given expression of the variables α1, α2, . . . αn, of

the functions U, V, . . . W and of the derivatives of arbitrary high degree of
these functions. We want to determine the internal variation of the integral

∫ (n)

Gdα1dα2 . . . dαn (40)

subject to a perturbation of u, v, . . . w. This task can be solved in two ways.
First way. As soon as u, v, . . . w are varied by arbitrary given quantities

δu, δv, . . . δw, the functions U, V, . . . W contained in G are varied by quan-
tities δU, δV, . . . δW which in view of the relations (39) can be expressed
as

20[Note by AKTA:] [Neu60, p. 299].
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δU =
∂U

∂u
δu+

∂U

∂v
δv . . .+

∂U

∂w
δw ,

δV =
∂V

∂u
δu+

∂V

∂v
δv . . .+

∂V

∂w
δw ,

. . . . . . . . . . . . . . . . . . . . . . . . (41)

δW =
∂W

∂u
δu+

∂W

∂v
δv . . .+

∂W

∂w
δw .

As a consequence of these perturbations δU, δV, . . . δW the integral (40) will
be subject to a variation described by

δ

∫ (n)

Gdα1dα2 . . . dαn =

∫ (n)
(

AδU +BδV . . .+ CδW
)

dα1dα2 · · ·dαn,(42)

where A, B, . . . C are the variation coefficients of G with respect to U , V ,
. . . W .

Second way. One can eliminate the functions U, V, . . .W contained in G
and their derivatives by replacing them by the functions u, v, . . . w and their
derivatives using the relations (39). Doing this, the change in the integral (39)
which arises on the basis of the given changes δu, δv . . . δw, is represented
by the formula

δ

∫ (n)

Gdα1dα2 . . . dαn =

∫ (n)
(

aδu+ bδv . . .+ cδw
)

dα1dα2 · · · dαn , (43)

where a, b, . . . c are the variation coefficients of G with respect to u, v, . . . w.
Comparison of the results. The results obtained in (42) and (43) have

to agree for arbitrary values of δu, δv, . . . δw under the hypothesis that by
δU, δV, . . . δW one understands the expressions found in (41). For example
the coefficient of δu in (43) has to be the same as in (42). Therefore

a = A
∂U

∂u
+B

∂V

∂u
· · ·+ C

∂W

∂u
.

Analogous formulas one gets by equating the coefficients of δv, . . . δw.
Using the notion just introduced for the variation coefficients, then these

formulas become
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∆G

∆u
=

∆G

∆U

∂U

∂u
+

∆G

∆V

∂V

∂u
· · ·+

∆G

∆W

∂W

∂u
,

∆G

∆v
=

∆G

∆U

∂U

∂v
+

∆G

∆V

∂V

∂v
· · ·+

∆G

∆W

∂W

∂v
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . (44)

∆G

∆w
=

∆G

∆U

∂U

∂w
+

∆G

∆V

∂V

∂w
· · ·+

∆G

∆W

∂W

∂w
.

These formulas are the theorem we wanted to prove . It can be seen as a
generalization of a known theorem in calculus. In case the expression G only
depends on U, V, . . .W , but not on their derivatives, then after the elimina-
tion by the relations (39) it depends as well only just on u, v, . . . w, but not
on the derivatives of these functions. In such a case the variation coefficients
appearing in (44) become the corresponding differential coefficients and the
formulas themselves turn into well-known formulas of calculus.

To make the general theorem contained in (44) clear, we remark that if
there is just one function u, v, . . . w and just one function U, V, . . .W as
well, then the assertion becomes the following.

If G depends on an undetermined function U and its derivative, and if the
function U in turn depends on a different undetermined function u, then the
variation coefficient of G with respect to u is obtained by building the varia-
tion coefficient of G with respect to U and multiplying it by the differential
coefficient of U with respect to u. The formula

∆G

∆u
=

∆G

∆U

∂U

∂u
(45)

holds. Here u and U are functions in arbitrary many variables α1, α2, . . . αn
and the derivatives of these functions are derivatives with respect to α1, α2

. . . αn where the differentiation with respect to each of these variables can be
repeated as many times as one likes.

3 The Emissive and Receptive Potential

We21,22 consider two pointsm andm1 moving under their mutual interaction.
We denote their distance for a given moment of time t by r, and for a previous
moment of time t−∆t by r −∆r. Putting

21[Note by CN:] More details about this (probably a bit too short) Section can be found
in these Annalen, Vol. 1, pp 317–324.

22[Note by AKTA:] [Neu69] with English translation in [Neu20].
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r = f(t) , (46)

the function f is to be understood as unknown, like the dynamics of the
points. Anyway one has to put as well

r −∆r = f(t−∆t) , (47)

or equivalently

r −∆r = f(t)−
∆t

1
f ′(t) +

∆t2

1 · 2
f ′′(t)− . . . . (48)

From (46) we have the equations

dr

dt
= f ′(t) ,

d2r

dt2
= f ′′(t) , . . .

so that the formula above becomes

r −∆r = r −
∆t

1

dr

dt
+

∆t2

1 · 2

d2r

dt2
− . . . . (49)

Using the notions introduced before (see page 7) we denote by ω̃ the
emissive potential of the two points at time t. We have

ω̃ = mm1ϕ(r) , (50)

where ϕ(r) is any given function which in the case of Newton’s law would be
1
r
.
On the other hand we denote the receptive potential of the two points

at time t by ω. To fix the ideas we think of m as the absorber and m1 as
the emitter. Then ω is the potential which m receives at time t and which
therefore at a previous time t−∆t was emitted bym1. In this case ω coincides
with the emissive potential at this previous time and has therefore the value

ω = mm1ϕ(r −∆r) . (51)

Using (49) this value becomes

ω = mm1ϕ

(

r −
∆t

1

dr

dt
+

∆t2

1 · 2

d2r

dt2
− . . .

)

. (52)

The expression ∆t here represents that time, which the potential needs to
pass through the path r. Since we denoted the propagation velocity of the
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potential by c (page 6), i.e., we understand by c the distance through which
the potential propagates in time 1, we have ∆t : r = 1 : c, implying

∆t =
r

c
. (53)

In the following we assume that the velocity c is huge and therefore the
fraction r

c
is tiny, so that we can ignore its third power. Substituting the

value (53) into (52) we obtain

ω = mm1ϕ

(

r −
r

c

dr

dt
+

r2

2c2
d2r

dt2

)

, (54)

which leads to the expansion

ω = mm1

[

ϕ−
r

c

dr

dt
ϕ′ +

r2

2c2
d2r

dt2
ϕ′ +

r2

2c2

(

dr

dt

)2

ϕ′′

]

, (55)

or after rearrangement

ω = mm1

[

ϕ+
r2ϕ′′

2c2

(

dr

dt

)2

+
r2ϕ′

2c2
d2r

dt2
−
rϕ′

c

dr

dt

]

. (56)

Here we abbreviated ϕ(r) = ϕ, dϕ(r)
dr

= ϕ′, d2ϕ(r)
dr2

= ϕ′′. If Φ is an arbitrary
function of r, we have the following general formulas

Φ
d2r

dt2
=

d

dt

(

Φ
dr

dt

)

−
dΦ

dr

(

dr

dt

)2

,

Φ
dr

dt
=

d

dt

(
∫

Φdr

)

.

Applying these formulas to the last two terms in the expression (56) for ω
one gets

ω = mm1

[

ϕ+
r2ϕ′′

2c2

(

dr

dt

)2

−
(r2ϕ′)′

2c2

(

dr

dt

)2]

+ mm1
d

dt

[

r2ϕ′

2c2
dr

dt
−

∫

rϕ′dr

c

]

, (57)

where we put (r2ϕ′)′ for d(r2ϕ′)
dr

which equals r2ϕ′′ + 2rϕ′. Substituting this
value and noting further that

∫

rϕ′dr = rϕ−
∫

ϕdr, then the expression for
ω takes the following form
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ω = mm1

[

ϕ−
rϕ′

c2

(

dr

dt

)2]

+mm1
d

dt

[

(
∫

ϕdr)− rϕ

c
+
r2ϕ′

2c2
dr

dt

]

. (58)

We thought so far m1 as emitter and m as absorber of the potential. As
one easily sees, the same consideration involving the same formulas can be
carried out in the opposite case where m is the emitter and m1 the absorber
of the potential.

It follows from this that the potential value ω found in (58) not only is the
one which reaches m in the moment t emitted from m1, but simultaneously
the one which reaches in that instant m1 emitted from m.

We obtained the following result:
If two points m and m1 are moving under their common interaction, r

denoting the distance at time t and moreover ω the receptive potential of the
two points corresponding to the same time, then

ω = w +
dw

dt
, (59)

where w and w represent the following expressions :

w = mm1

[

ϕ−
r

c2
dϕ

dr

(

dr

dt

)2]

,

(60)

w = mm1

[

(
∫

ϕdr)− rϕ

c
+

r2

2c2
dϕ

dr

dr

dt

]

.

Here ϕ abbreviates ϕ(r) and moreover c is a huge constant speed by which
the potential propagates through space.

We further remark that the value of the expression w can be represented
more easily by

w = mm1

[

ϕ +

(

dψ

dt

)2]

, (61)

where ψ is the function

ψ =

∫

√

−r
dϕ

dr
·
dr

c
. (62)

According to (59) the receptive potential consists of the two terms w and dw
dt
.

We refer to the first term, namely w, as the effective potential, and the other
one, namely dw

dt
, as the ineffective potential.
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The notions introduced here seem quite necessary in order to avoid that
the following discussion becomes cumbersome. How the notions are chosen
should become clearer during the exposition.

For the case of Newton’s law, namely ϕ = 1
r
, one obtains ψ = 2

√
r

c
. In

this case the formulas (59), (60), and (61) become

ω = w +
dw

dt
, (63)

w = mm1

[

1

r
+

4

c2

(

d
√
r

dt

)2]

=
mm1

r

[

1 +
1

c2

(

dr

dt

)2]

, (64)

w = mm1

[

log r

c
−

1

2c2
dr

dt

]

. (65)

4 Weber’s Law

4.1 Derivation of the Law

The task at hand is to determine the dynamics of two points m and m1

under the hypothesis that the potential emitted by one point reaches the
other point at a later time.

For a time t the coordinates of the points are denoted by x, y, z, x1, y1, z1
and their distance to each other by r. Moreover, for that moment, ω is the
receptive potential derived in (59) up to (61):

ω = w +
dw

dt
, (66)

and τ is their vis viva

τ =
m

2

[(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2]

+
m1

2

[(

dx1

dt

)2

+

(

dy1

dt

)2

+

(

dz1

dt

)2]

. (67)

As mentioned on page 7, we consider Hamilton’s principle applicable without
restriction. Therefore the dynamics of the points m and m1 is characterized
by the formula

δ

∫

(τ − ω)dt = 0 . (68)
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According to page 6, the integration is carried out over an arbitrary interval
of time. By δ we understand the internal variation, i.e., the variation which is
only concerned with the interior of the time interval, but not its boundaries.

Through the substitution of (66) the formula (68) takes the form

δ

∫

τdt = δ

∫
(

w +
dw

dt

)

dt = δ

(

w′′ −w′ +

∫

wdt

)

, (69)

or, since δ is an internal variation and therefore δw′′ = δw′ = 0, one obtains

δ

∫

τdt = δ

∫

wdt . (70)

Taking into account that the undetermined functions contained in τ and w
are represented by x, y, z and x1, y1, z1, we obtain the following six equations
using our previous notation introduced on page 17:

∆τ

∆x
=

∆w

∆x
,

∆τ

∆x1
=

∆w

∆x1
,

∆τ

∆y
=

∆w

∆y
,

∆τ

∆y1
=

∆w

∆y1
, (71)

∆τ

∆z
=

∆w

∆z
,

∆τ

∆z1
=

∆w

∆z1
.

If one computes the variation coefficients on the left hand side using the
value of τ given in (67), then the six equations become

m
d2x

dt2
= −

∆w

∆x
, m1

d2x1

dt2
= −

∆w

∆x1
,

m
d2y

dt2
= −

∆w

∆y
, m1

d2y1

dt2
= −

∆w

∆y1
, (72)

m
d2z

dt2
= −

∆w

∆z
, m1

d2z1

dt2
= −

∆w

∆z1
.

These equations show, that the negative variation coefficients of the right-
hand side represent the components of that forces, which act on the points
during their movement. To explicitly determine these variation coefficients
we observe that by (61) the effective potential w has the value

w = mm1

[

ϕ+

(

dψ

dt

)2]

= mm1

[

ϕ+

(

dψ

dr

dr

dt

)2]

. (73)
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In particular, it depends on r and dr
dt
, where r itself depends on the undeter-

mined functions x, y, z, x1, y1, z1 through the equation

r2 = (x− x1)
2 + (y − y1)

2 + (z − z1)
2 . (74)

Therefore the variation coefficients can be computed by the theorem stated
on page 20, namely using the formulas

∆w

∆x
=

∆w

∆r

∂r

∂x
,

∆w

∆x1
=

∆w

∆r

∂r

∂x1
,

∆w

∆y
=

∆w

∆r

∂r

∂y
,

∆w

∆y1
=

∆w

∆r

∂r

∂y1
, (75)

∆w

∆z
=

∆w

∆r

∂r

∂z
,

∆w

∆z1
=

∆w

∆r

∂r

∂z1
.

Substituting these expressions into (72) and using the values for ∂r
∂x
, ∂r
∂y
,

. . ., which follow from (74), one obtains the equations

m
d2x

dt2
= −

∆w

∆r

x− x1

r
, m1

d2x1

dt2
= −

∆w

∆r

x1 − x

r
,

m
d2y

dt2
= −

∆w

∆r

y − y1

r
, m1

d2y1

dt2
= −

∆w

∆r

y1 − y

r
, (76)

m
d2z

dt2
= −

∆w

∆r

z − z1

r
, m1

d2z1

dt2
= −

∆w

∆r

z1 − z

r
.

It remains to compute the variation coefficient ∆w
∆r

. Abbreviating dr
dt

by r′

and d2r
dt2

by r′′, it follows from (73) that

w = mm1

[

ϕ +

(

dψ

dr
r′
)2]

. (77)

Therefore

∂w

∂r
= mm1

[

dϕ

dr
+ 2

dψ

dr

d2ψ

dr2
(r′)2

]

,

∂w

∂r′
= mm1 · 2

(

dψ

dr

)2

r′ ,

or equivalently
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∂w

∂r
= mm1

[

dϕ

dr
+ 2

dψ

dt

ddψ
dr

dt

]

, (78)

∂w

∂r′
= mm1 · 2

dψ

dr

dψ

dt
. (79)

Differentiating the last formula we obtain

d ∂w
∂r′

dt
= mm1

[

2
dψ

dr

d2ψ

dt2
+ 2

dψ

dt

ddψ
dr

dt

]

. (80)

Since w only depends on r and r′ by (77), one has

∆w

∆r
=
∂w

∂r
−
d ∂w
∂r′

dt
. (81)

Therefore by (78) and (80)

∆w

∆r
= mm1

[

dϕ

dr
− 2

dψ

dr

d2ψ

dt2

]

. (82)

From (76) and (82) the following theorems follow:
Between two points m and m1 a force R is acting during their movement,

which at each moment coincides with the connecting line r.
If one considers this force R as a repulsive one and if w is the effective

potential of the two points with respect to each other, then R equals at each
moment the negative variation coefficient of w with respect to r, so that it
has the value

R = −
∆w

∆r
. (83)

In case the emission law of the potential is arbitrary, i.e., the emissive
potential equals mm1ϕ(r), where ϕ is an arbitrary function, using the abbre-
viation

ϕ(r) = ϕ ,

(84)

1

c

∫

√

−r
dϕ

dr
dr = ψ(r) = ψ ,

the values of the effective potential w and the force R become
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w = mm1

[

ϕ+

(

dψ

dt

)2]

,

(85)

R = −
∆w

∆r
= mm1

[

−
dϕ

dr
+ 2

dψ

dr

d2ψ

dt2

]

.

In the special case of Newton’s emission law one has

ϕ =
1

r
,

(86)

ψ =
2
√
r

c
,

and therefore

w = mm1

[

1

r
+

4

c2

(

d
√
r

dt

)2]

,

R = −
∆w

∆r
= mm1

[

1

r2
+

4

c2
√
r

d2
√
r

dt2

]

, (87)

i.e.,

R =
mm1

r2

[

1−
1

c2

(

dr

dt

)2

+
2r

c2
d2r

dt2

]

.

Here c always represents the constant but huge speed through which the po-
tential propagates in space.23

23[Note by CN:] The value of R in (85) can also be deduced from the formula

w = mm1

[

ϕ+

(

dψ

dt

)2]

by the following reasoning. According to the theorem on variation coefficients on page 20
we have

∆w

∆r
=

∆w

∆ϕ

∂ϕ

∂r
+

∆w

∆ψ

∂ψ

∂r
= mm1

∂ϕ

∂r
−mm1 · 2

d2ψ

dt2
∂ψ

∂r
,

hence

R = mm1

[

−
∂ϕ

∂r
+ 2

∂ψ

∂r

d2ψ

dt2

]

.
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The general formula (85) coincides completely with the law I supposed in
my PhD thesis “Explicare tentatur quomodo fiat, ut lucis planum polarisa-
tionis per vires electricas vel magneticas declinetur. Halis Saxonum 1858,”24

which discussed the mutual interaction of an electric and an aether particle.
In fact formula (85) can be written as follows

R = mm1

[

−
dϕ

dr
+ 2

dψ

dr

d2ψ

dr2

(

dr

dt

)2

+ 2

(

dψ

dr

)2
d2r

dt2

]

. (88)

Putting

−
dϕ

dr
= F , 2

(

dψ

dr

)2

= Φ , (89)

it becomes

R = mm1

[

F +
1

2

dΦ

dr

(

dr

dt

)2

+ Φ
d2r

dt2

]

. (90)

However, this is the law supposed in that thesis on page 3.25,26

24[Note by AKTA:] [Neu58].
25[Note by CN:] According to (84), the formulas (89) can as well be written as

−
dϕ

dr
= F , −

2r

c2
dϕ

dr
= Φ . (91)

Therefore one has between F and Φ the relation

2F

c2
=

Φ

r
. (92)

In the mentioned thesis I kept the relation between F and Φ undetermined, so that there is
not the slightest contradiction between that thesis and the theory developed in this paper.
The mentioned optical phenomenon I have treated later in more depth in my note “Ueber
die Magnetische Drehung der Polarisationsebene des Lichtes. Halle. 1863.” Unfortunately
I assumed there in order to make the exposition simpler a certain relation between F and
G, namely

2F

c2
= −

dΦ

dr
. (93)

For the special case ϕ = 1

r
, i.e., F = 1

r
2 , this is identical to the relation (92) and leads as

well to the value Φ = 2

c
2
r
. But in general it contradicts (92). I remark that the assumption

of the relation (93) in the above-mentioned paper was not motivated by internal reasons,
but just to give the exterior form more simplicity. In fact the function F does not play a
role at all in my investigation of the rotation of the plane of polarization. It drops out of
the computations quite at the beginning. Therefore the results in that investigation are
the same whatever relation between F and Φ we assume.

26[Note by AKTA:] [Neu63].
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The most important point however is the fact that (87) coincides literally
with the well-known law of Weber.

4.2 Addenda

We denote by R the force which acts on m during the movement of the two
points m and m1. Its components we abbreviate by X , Y and Z. According
to (72) we have the equations

X = −
∆w

∆x
,

Y = −
∆w

∆y
, (94)

Z = −
∆w

∆z
.

We think that there is a line through m whose direction is determined by
the direction cosine α, β, γ. We denote the component of the force R in this
direction by P . Then

P = Xα+ Y β + Zγ = −

[

∆w

∆x
α +

∆w

∆y
β +

∆w

∆z
γ

]

. (95)

We think for a moment that the motion of the point m or x, y, z is con-
strained to that line. We thus put

x = a + pα , y = b+ pβ , z = c+ pγ ,

where a, b, c is a fixed point of the line and p is the distance between this
point and the point x, y, z. We then have

α =
∂x

∂p
, β =

∂y

∂p
, γ =

∂z

∂p
.

Consequently the formula (95) becomes

P = −

[

∆w

∆x

∂x

∂p
+

∆w

∆y

∂y

∂p
+

∆w

∆z

∂z

∂p

]

. (96)

As regards the dependence between w and p, we first remark that w depends
on x, y, z, dx

dt
, dy
dt
, dz
dt
, while on the other hand x, y, z depend on p. The

expression in square brackets in (96) is then nothing else than the variation
coefficient of w with respect to p as follows from the theorem on page 10. It
follows that
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P = −
∆w

∆p
, (97)

which is analogous to the formulas (94) and contains these as special cases.
In case we have arbitrary many points m, m1, m2, m3, · · · , and denote

by w1, w2, w3, . . . the effective potentials for each pair of points (m,m1),
(m,m2), (m,m3), · · · , then we obtain from (97) that the expression

−

(

∆w1

∆p
+

∆w2

∆p
+

∆w3

∆p
+ · · ·

)

(98)

represents that force through which the point m is driven along the direction
p by all other points together. This expression can be written more compactly
by using the effective potential of the whole system of points, W , in the form

−
∆W

∆p
. (99)

Hence the theorem follows:
If W is the effective potential of an arbitrary system of points, the force

by which any of these points is driven along a given direction, is always equal
the negative variation coefficient of W in that direction.

5 The Principle of Vis Viva

5.1 Consideration of Two Points

We start with a rather easy case, namely the one where only two points m
and m1 exist. Moreover, we assume that m is moveable, while m1 is fixed.

Let x, y, z and x1, y1, z1 be the coordinates of the two points, r their
distance and furthermore ω the receptive potential of the two points. Finally
τ is their vis viva.

According to page 23 the receptive potential consists of two parts

ω = w +
dw

dt
. (100)

We refer to the first term as the effective and the last term as the ineffective
potential. Moreover, according to page 23 the effective potential w has the
value

w = mm1

[

ϕ(r) +

(

dψ(r)

dt

)2]

, (101)
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where ϕ(r) and ψ(r) are given functions of r. In the case of Newton’s emission

law they are represented by 1
r
and 2

√
r

c
, where c is the propagation velocity

which was mentioned several times. We denote the two parts of w by u and
v, namely

w = u+ v , (102)

u = mm1ϕ(r) = mm1ϕ ,

v = mm1

(

dψ(r)

dt

)2

= mm1

(

dψ

dt

)2

.

In the state of rest, i.e., when r is constant, v vanishes and w becomes u.
We refer to the first part u of the effective potential w as the static potential
and to the second part v as the motive potential.

Since m1 is fixed, the vis viva τ is given by

τ =
m

2

[(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2]

. (103)

We denote the derivatives with respect to the time by primes. Since x1, y1, z1
are constant, we can also write formulas (102) and (103) as

w = u+ v , (104)

u = mm1ϕ ,

v = mm1

(

∂ψ

∂x
x′ +

∂ψ

∂y
y′ +

∂ψ

∂z
z′
)2

,

τ =
m

2

(

(x′)2 + (y′)2 + (z′)2
)

. (105)

According to Hamilton’s principle for the dynamics of the points the
formula

δ

∫

(τ − ω)dt = 0 (106)

holds, i.e., according to (100):

δ

∫

τdt = δ

∫
(

w +
dw

dt

)

dt = δw′′ − δw′ + δ

∫

wdt , (107)

or since the boundaries of integrals are considered as fixed with respect to
position and velocity:
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δ

∫

τdt = δ

∫

wdt . (108)

Since x1, y1, z1 are constant and only x, y, z variable, we obtain three equa-
tions after carrying out the variation δ. These are

−mx′′ =
∂w

∂x
−

d

dt

∂w

∂x′
,

−my′′ =
∂w

∂y
−

d

dt

∂w

∂y′
, (109)

−mz′′ =
∂w

∂z
−

d

dt

∂w

∂z′
,

where the primes indicate differentiation with respect to time. Multiply-
ing the equations of (109) by −x′, −y′, −z′ and adding them together, one
obtains in view of (106):

dτ

dt
= −

(

x′
∂w

∂x
+ y′

∂w

∂y
+ z′

∂w

∂z

)

+

(

x′
d

dt

∂w

∂x′
+ y′

d

dt

∂w

∂y′
+ z′

d

dt

∂w

∂z′

)

,(110)

or in abbreviated form

dτ

dt
= −

(

x′
∂w

∂x
+ · · ·

)

+

(

x′
d

dt

∂w

∂x′
+ · · ·

)

. (111)

Differentiating the effective potential w (104) with respect to time and
noting that this w not only depends on x, y, z, but as well on x′, y′, z′, one
gets the formula:

dw

dt
=

(

x′
∂w

∂x
+ · · ·

)

+

(

x′′
∂w

∂x′
+ · · ·

)

, (112)

or equivalently

dw

dt
=

(

x′
∂w

∂x
+ · · ·

)

+
d

dt

(

x′
∂w

∂x′
+ · · ·

)

−

(

x′
d

dt

∂w

∂x′
+ · · ·

)

.(113)

Adding (111) and (113) it follows that:

d(τ + w)

dt
=

d

dt

(

x′
∂w

∂x′
+ y′

∂w

∂y′
+ z′

∂w

∂z′

)

. (114)
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By (104) we have w = u + v, moreover v is independent of x′, y′, z′ and on
the other hand v is a homogeneous expression of degree two in x′, y′, z′, so
that:

x′
∂w

∂x′
+ y′

∂w

∂y′
+ z′

∂w

∂z′
= x′

∂v

∂x′
+ y′

∂v

∂y′
+ z′

∂v

∂z′
= 2v .

Therefore equation (114) becomes

d(τ + w)

dt
=
d(2v)

dt
. (115)

This implies

τ + w − 2v = constant, (116)

or using w = u+ v:

τ + u− v = constant. (117)

This means that if one adds the static and subtracts the motive potential from
the vis viva one gets a constant of motion.

5.2 Examination of an Arbitrary System of Points

The same discussion can be applied to a system of arbitrary many points,
say n, not only in the case where the system is freely movable, but also in the
case where there are some constraints. However, if there are constraints, we
assume that they can be expressed by equations involving only the coordinates
of the points, but not their velocities. These equations we denote by

B1 = 0 , B2 = 0 , B3 = 0 , · · · . (118)

We denote the vis viva of the system by T and the receptive potential by Ω.
In this case T is a sum of n terms each having the form

τ =
m

2

[(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2]

=
m

2

(

(x′)2 + (y′)2 + (z′)2
)

. (119)

On the other hand Ω is a sum of n(n−1)
2

terms, each belonging to two points
of the form

ω = w +
dw

dt
= u+ v +

dw

dt
. (120)
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In this case Ω itself has an analogous form, namely:

Ω =W +
dW

dt
= U + V +

dW

dt
, (121)

where W represents the effective and dW
dt

the ineffective potential of the sys-
tem. As regards the two parts of W , we refer to U as the static and to V as
the motive potential of the system.

The effective potential W = U + V of the system consists of n(n−1)
2

terms
of the form w = u + v. If m and m1 are any two points of the system,
r their distance and, moreover, x, y, z and x1, y1, z1 their coordinates, the
term w = u+v belonging to these two points has the value [cf. formula (102)]

w = u+ v ,

u = mm1ϕ(r) = mm1ϕ , (122)

v = mm1

(

dψ(r)

dt

)2

= mm1

(

dψ

dt

)2

,

or written in more detail

w = u+ v ,

u = mm1ϕ , (123)

v = mm1

(

∂ψ(r)

∂x
(x′ − x′1) +

∂ψ

∂y
(y′ − y′1) +

∂ψ

∂z
(z′ − z′1)

)2

.

The following formula holds for an unconstrained dynamical system

δ

∫

Tdt = δ

∫

Ωdt .

However, if the system is constrained by the conditions (118), the above
formula has to be replaced by

δ

∫

Tdt = δ

∫

(Ω + λ1B1 + λ2B2 + · · · )dt , (124)

where λ1, λ2, · · · are unknown functions of time. Putting Ω = W + dW
dt

this
formula becomes:

δ

∫

Tdt = δ

∫

(W + λ1B1 + λ2B2 + · · · )dt . (125)
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If one carries out the variation δ one obtains 3n differential equations, namely
the same number of equations as one has of variables x, y, z. The equations
which belong to the point m with coordinates x, y, z read:

−mx′′ =
∂W

∂x
−

d

dt

∂W

∂x′
+ λ1

∂B1

∂x
+ λ2

∂B2

∂x
+ · · · ,

−my′′ =
∂W

∂y
−

d

dt

∂W

∂y′
+ λ1

∂B1

∂y
+ λ2

∂B2

∂y
+ · · · , (126)

−mz′′ =
∂W

∂z
−

d

dt

∂W

∂z′
+ λ1

∂B1

∂z
+ λ2

∂B2

∂z
+ · · · .

After multiplication by −x′,−y′,−z′ and addition, one obtains in view of
(119) the equation

dτ

dt
= −

(

x′
∂W

∂x
+ y′

∂W

∂y
+ z′

∂W

∂z

)

+

(

x′
d

dt

∂W

∂x′
+ y′

d

dt

∂W

∂y′
+ z′

d

dt

∂W

∂z′

)

− λ1

(

x′
∂B1

∂x
+ · · ·

)

− λ2

(

x′
∂B2

∂x
+ · · ·

)

− · · · . (127)

There are as many of these equations as there are points. Adding all these
equations together, one obtains in view of (118) the formula:

∂T

∂t
= −

∑

(

x′
∂W

∂x
+ · · ·

)

+
∑

(

x′
d

dt

∂W

∂x′
+ · · ·

)

. (128)

The effective potential W depends on the coordinates and the velocities. If
one differentiates it with respect to time one gets

dW

dt
=

∑

(

x′
∂W

∂x
+ · · ·

)

+
∑

(

x′′
∂W

∂x′
+ · · ·

)

,

or equivalently

dW

dt
=

∑

(

x′
∂W

∂x
+ · · ·

)

+
d

dt

∑

(

x′
∂W

∂x′
+ · · ·

)

−
∑

(

x′
d

dt

∂W

∂x′
+ · · ·

)

. (129)

Adding (128) and (129) one obtains
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d(T +W )

dt
=

d

dt

∑

(

x′
∂W

∂x′
+ y′

∂W

∂y′
+ z′

∂W

∂z′

)

. (130)

With the help of (123) one sees that U is independent of the 3n magnitudes
x′, y′, z′ and, on the other hand, V is a homogeneous expression of degree
two in these 3n magnitudes. With W = U + V it follows that:

∑

(

x′
∂W

∂x′
+ y′

∂W

∂y′
+ z′

∂W

∂z′

)

= 2V .

Equation (130) therefore becomes

d(T +W )

dt
=
d(2V )

dt
. (131)

This implies

T +W − 2V = constant, (132)

or, since W = U + V :

T + U − V = constant. (133)

This formula reduces in the case of an instantaneous propagation of the po-
tential, i.e., c = ∞, to the well-known formula T +U = constant (cf. page 6).
The general formula (133) contains the following theorem:

The vis viva increased by the static and decreased by the motive potential
is a constant of motion for an arbitrary system of points. This holds not only
in the unconstrained case, but also in the case where the coordinates of the
points are constrained by some conditions.

This theorem was derived under the assumption that in the system of
points only internal forces are acting. In the case where a system consisting
of points m1, m2, · · · mn is subject not only to its internal forces, but also
to external forces, one can always find fixed points M1, M2, · · · Mp which are
the centers of these latter forces. The system consisting of all these n + p

points is then subject only to internal forces and therefore the theorem above
applies to it. The fact that among the n + p points some are fixed is not a
problem for the utilization of the theorem.

5.3 Afterword

If one assumes (as almost always happens since Newton) that spatially sep-
arate objects act directly on one another, it should be just as permissible to
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assume a direct mutual action between two objects which are temporally sep-
arated from one another; provided naturally that such an assumption leads
to equally happy consequences as the first. Accordingly Professor Weber,
to whom I am indebted for his gracious communication, remarks that the
hypothesis put forth by me (for the case ϕ = 1

r
) can be formulated in this

way:

“The potential values stemming from a particle of matter are in-
versely proportional to the distances, and are valid for later mo-
ments of time in proportion to the distance. The reason why
they are valid for later moments of time, may lie in a propaga-
tion, of which it is only possible to speak under the assumption of
a higher mechanics (as for example, the propagation of waves in
air can only be treated with knowledge of fluid mechanics), from
which it would follow that the propagation can be disturbed and
interrupted at every point of the medium.”

If the question raised here, whether the presumed effect between tempo-
rally separated objects should be regarded as primary (not further explicable)
or as something secondary (derivable from simpler processes), would have to
be decided right away, I would safely give preference to the first concep-
tion. But even in this case, the mode of expression I have chosen should be
legitimate at least as a figurative and not inappropriate one.

Tübingen, in May 1868.

——————————————-

6 Supplementary Remarks of Carl Neumann

in the Year 1880

The last words of this article considered by itself make it already quite clear
that the criticism of Clausius in the year 1869 (in Poggendorff’s Annalen,
Vol. 135, page 606)27 against it is not applicable. Concerning this point one
should also compare it to my note in Math. Ann., Vol. 1, page 317–324.28

A brief look at the first few pages of this article (pages 400-402)29 show
that in the year 1868, when I wrote it, I was not aware of two important
considerations of Weber and Riemann.

27[Note by AKTA:] [Cla68] with English translation in [Cla69].
28[Note by AKTA:] [Neu69] with English translation in [Neu20].
29[Note by AKTA:] Pp. 400-402 of the 1880 reprint of Neumann’s 1868 paper, [Neu68a].
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An argument by Weber (which appeared as a short note in Poggendorff’s
Annalen, Vol. 73, page 229 in the year 1848)30 shows in an elementary way,
that the principle of vis viva continues to be valid for Weber’s fundamental
law. — I regret, that at the time of writing I did not know this note. In
my later publications (like for example in the Abhandlungen der Kgl. Sächs.
Ges. d. Wiss., Vol. 11, 1874, page 115)31 I made an effort to bring to light
the argument by Weber.

On the other hand the considerations by Riemann (compare the work
of Hattendorff about weight, electricity and magnetism, Hannover, Rümpler,
1876, pag. 316–336)32 already contain the idea to introduce an electrodynamic
potential and to deduce from it the electric forces by variation. This idea is
crucial in this article and is developed in great detail. There is no need to
apologize that I did not know the considerations by Riemann when I wrote
the article in the year 1868. Although part of it were already contained in a
lecture by Riemann in the year 1861 as Hattendorff mentions, they appeared
in print only in 1876 (in the work by Hattendorff referred to above).

Other people might decide if under these circumstances one should just
call Riemann the author of these ideas, or if it is not more appropriate to
give credit as well to the person who, independently of Riemann, had this
same idea and published it first (and in greater detail). On the other hand
Clausius in a recent note used the idea of introducing an electrodynamic
potential and deriving the forces from it by variation, without mentioning
my work. I think that those who do not know the literature well could easily
get quite a wrong impression from this.

Leipzig, in November 1880.

30[Note by AKTA:] [Web48] with English translation in [Web52], [Web66] and [Web19].
31[Note by AKTA:] [Neu74].
32[Note by AKTA:] [Rie76] with partial English translation in [Rie77b]. See also [Rie67b]

with English translation in [Rie67a] and [Rie77a].
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aufgestellte Gesetz. Abhandlungen der mathematisch-physischen
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