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Abstract
Exploding wires are widely used in many experimental set-ups and pulsed
power systems such as Z-pinch, high-current switches, copper-vapour lasers
and high-brightness x-ray lithography. However, many aspects of the
process of wire explosion still remain unclear. If the current density is not
too high, the wire may break up in the solid state. The experiments have
shown that the wires break in tension due to longitudinal forces of unknown
nature. Previous theoretical and numerical investigations served to provide a
search for these forces and have identified the pinch effect and thermal
expansion as a source of strong longitudinal vibrations. But the mechanism
does not give a satisfactory explanation for the phenomenon in the wires
with clamped ends. In this investigation, we use a simplified
magneto-thermo-elastic model to study flexural vibrations induced by high
pulsed currents in wires with clamped ends on account of their role in the
disintegration process. Several aspects are studied, namely (i) the buckling
instability due to simultaneous action of the thermal expansion and the
magnetic force, and (ii) the flexural vibrations induced in initially bent
wires. It is shown that the induced flexural vibrations are strong enough to
lead to the breaking of the wire in a wide range of parameters.

1. Introduction

The phenomenon of wire fragmentation in the solid state
by high pulsed currents was studied experimentally by
Nasilovski [1], and Graneau [2–4]. They observed that a
sufficiently strong electric current would shatter a thin metal
wire under a broad range of conditions (various wire material
and geometry, different current types, etc). As a result of
the explosion the wires fragmented into 2–100 pieces with
apparent signs of longitudinal tensile stress. The experimental
results, as well as (sometimes controversial) early attempts to
explain the phenomenon, have been reviewed by Graneau [5],
Hong [6] and Molokov and Allen [7].

It is obvious that an electric current passing through a
metal wire induces stress waves. Their origins are in (i) the
thermal expansion owing to the volumetric joule heating, and
(ii) the Lorentz force.

Ternan [8] suggested that in Graneau’s experiments with
wires with free ends, standing stress waves may be induced as
a result of thermal expansion. Using a simple one-dimensional
model he showed that the resulting stresses were sufficient to
lead to a fracture.

This mechanism of fragmentation of wires with free ends
has been explored in more detail by Molokov and Allen

in [7]. They employed a magneto-thermo-elastic model of the
stress-wave propagation, and solved the problem numerically
on the assumption of the axisymmetric nature of vibrations.
Their conclusion was that the characteristic value of both
compressive and tensile longitudinal stresses obtained for the
aluminium wire with radius a = 0.6 mm carrying current
I = 5 kA and having free ends (the parameters relevant to the
experiment in [3]) would be about 33 MPa per unit length of the
wire. The stress has been shown to grow linearly with the wire
length and thus, for sufficiently long wires, the resultant stress
exceeds the ultimate strength of aluminium. This is 75 MPa at
100 ◦C going down to 17 MPa at 320 ◦C [9].

Although the mechanism does give large values of tensile
stresses, it cannot explain the fragmentation of wires with
clamped ends (as in the experiments [1, 4]) because within
the axisymmetric model in this case the stresses can be only
compressive [7]. It is clear, however, that in the wires with
clamped ends flexural vibrations may be induced. Apparent
signs of these modes have been observed in Graneau’s
experiments [4] on the wires with firmly clamped ends.

In this paper we carry out a special study of flexural
vibrations to account for their role in the fragmentation of wires
with clamped ends. In section 2 we present the formulation
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of the problem and discuss simplifications of the model. In
section 3 the linear stability of the system is considered.
In section 4 we carry out a qualitative analysis of expected
stresses. In section 5 a numerical algorithm and results are
presented.

2. Formulation

Consider a wire which is firmly clamped between two points
located along the z-axis. Let the distance between these points
be L. We restrict our attention to the case of plane motion,
and denote the deflection of the wire from the axis byX which
is a function of z and time t . The deflection of the wire in
the initial undeformed state is denoted by X0. Possible three-
dimensional modes, not considered here, may only increase
stresses, especially at the clamped ends.

Our theoretical consideration is based on a simplified
model valid for sufficiently long or sufficiently thin wires.
In this model the deflection X of the wire is assumed to be
much lower than the wire length, i.e. |X|/L � 1. Since large
deflections of the order of the wire length are not expected in
the wire explosion experiments, this restriction is not expected
to be very stringent. Another small parameter used in the
model is the ratio a/L � 1, where a is the wire radius. This
condition is usually well satisfied. Plastic deformations are not
considered here, although they may be important in the vicinity
of the melting point. Thus all deformations are assumed to be
elastic.

Then the deflection X obeys the following equation [10]:

ρS
∂2X

∂t2
+EJ

∂4X

∂z4
−EJ ∂

4X0

∂z4
−G∂

2X

∂z2
−Fx− ∂Cy

∂z
= 0 (1)

where ρ is the material density, S is the wire cross section
which may be a function of z, J is the effective moment of
inertia of the wire cross section (for a circular cross section
J = πa4/4, where a is the wire radius),E is Young’s modulus,
G is the force along the z-axis applied at the wire ends,Fx is the
distributed external force per unit length along the x direction
andCy is the distributed moment of force along the y direction
per unit length.

For the physical situation considered here, the forceG can
be represented as

G = ES{(l̃ − l̃0)/L− α[T (t)− T0]}. (2)

The second term is a compressive force due to the thermal
expansion, α being the linear expansion coefficient. The first,
nonlinear term is a retarding force due to the wire deformation
from the initial state, where

l̃ − l̃0 = 1

2

∫ L

0

(
∂X

∂z

)2

−
(
∂X0

∂z

)2

dz (3)

is the increment of the wire length due to the deflection. When
X = X0, l̃ = l̃0 and the retarding force equals zero, as required.

The boundary conditions are those for the clamped ends,
namely

X = ∂X

∂z
= 0 at z = 0 and z = L. (4)

The initial conditions are

X = X0, t = 0. (5)

2.1. The magnetic force

In long, thin wires under consideration a/L� 1, the uniform
current is directed perpendicular to the cross section. Thus
any possible forces of a magnetic nature act only in the cross
sectional plane. These forces create no moment and thus
Cy = 0 in our case.

The net distributed force F can be calculated directly from

F =
∫

j × B dS. (6)

The integral in (6) is taken over the wire cross section area.
The magnetic field is given by the Biot–Savart law

B = µ0

4π

∫
j × R

R3
dV ′ (7)

where dV ′ is the volume element on the wire, j is the current
density, and the vector R = r −r′ is directed to the field point
as usual.

To calculate the x component of the force, Fx , one can
split the integral (7) over the wire length z′ into two parts
B = Bin + Bex . The first part of the integral Bin is taken
over the range |z′ − z| <  , where a �  � ξL, ξL
being the characteristic length scale of the function X(z).
The second part Bex is taken over the rest of the wire length
 < |z′ − z| < L, whereby the volume integral reduces to the
integration over the wire length only. That is,

Bex = µ0

4π

∫
I × R

R3
dl′

where I is the total current. The first integral can be evaluated
in general with the assumption of a uniform current distribution
and in the approximation a � ξL, |X|/ξL � 1. The first
inequality has been implicitly introduced in fact when we set
the length  ; the second inequality just represents the fact
that the wire is slightly deflected from a straight line. The
first integration asymptotically gives the expression for the net
force as follows

{Fx}in = −µ0I
2

4π

∂2X

∂z2
{ln(2 /a)− 3/4}

+O((X/ξL)
2, /ξL, (a/ )

2). (8)

That is the force is proportional to the local wire curvature [11].
The second part cannot be integrated in a general case and one
needs to make certain assumptions about the wire form and
thus about the function X(z) itself. In the case of an infinitely
long wire with periodic lateral perturbations X = X̃ cos(kz),
k = 2π/ξL, one gets

{Fx}ex = −µ0I
2

4π

∂2X

∂z2
{−C + 1/2 − ln(k )}

+O(k , (X/ξL)
2, (a/ )2) (9)

where C = − ∫ ∞
0 e−t ln t dt � 0.577 is Euler’s constant and

we have substituted Xk2 = −∂2X/∂z2. Combining two parts
we obtain

Fx = −µ0I
2

4π

∂2X

∂z2
{ln(2/ka)− C − 1/4}. (10)

Note, that the expression (10) is identical to the formula
obtained in [12] in a particular case of small periodic
deflections |X| � a.
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It is clear that the assumption of an infinitely long wire
to calculate the force, Fx , is not very rigorous, since in
experiments the circuit is always closed. This implies that in
addition to the magnetic force by the wire current itself, there
may be a component generated by the currents flowing in the
external circuit. This effect can be taken into consideration
by substituting an appropriate circuit form, in other words the
function X(z) in the second integral.

Alternatively, this force can be obtained by means of the
virtual work principle. To estimate how strong the effect could
be, we will use a general expression for the inductance of
a closed circuit $ = (µ0/2π)Ls ln(Ls/as), where Ls is the
circuit characteristic length and as is the radius of the circuit
wire, see [13]. Then by varying the circuit length Ls one can
calculate the subsequent variation of the associated magnetic
energy Em = 1

2$I
2. Equalizing the net force acting on the

circuit FN with the variation of the energy we get

FNδLs = µ0

4π
I 2(ln(Ls/as) + 1)δLs. (11)

An average force acting on a unit length is f = FN/Ls .
Then, for the average force from (11) we get

f � µ0

4π
I 2(ln(Ls/as) + 1)/Ls. (12)

The first, logarithmic part of the net force represents
contributions from the end effects, see (8). The second part
gives the integrated force from the circuit as a whole. If
L� Ls , one can assume that the force is constant throughout
the wire length in the first approximation. Then, this ‘constant’
force acting on a wire of length L will bend it and create
longitudinal stress. The form of the bent wire and the
magnitude of the longitudinal stress σ‖ = G/S can be found
from equation (1), which in this case assumes a form

EJ
∂4X

∂z4
−G∂

2X

∂z2
= f (13)

with the boundary conditions (4). In the case X < a, one can
neglect the second term in (13). The particular solution of (13)
satisfying (4) has then the form

X = f z2(z− L)2
24EJ

. (14)

Neglecting the thermal expansion term in (2) and substituting
(14), for the longitudinal stress one gets

σ‖ = L6f 2

60 480EJ 2
. (15)

In another limit case, when X � a, the particular solution of
(13) satisfying (4) is

X = f (L− z)z
2G

. (16)

Then, substituting (16) into (2), for the longitudinal stress one
gets

σ‖ =
(
f 2EL2

24S2

)1/3

. (17)

Substituting f from (12) into (15) and (17) one can obtain

σ‖ = µ2
0I

4

60 480

ln(Ls/as)2

E(πa2)4

L6

L2
s

(18)

in the first case and

σ‖ =
(
µ2

0I
4 ln(Ls/as)2EL2

384π2L2
s S

2

)1/3

(19)

in the second case. For a copper wire with L = 30 cm,
a = 0.6 mm and the circuit with I = 5 kA, Ls = 20 m
and as = 1 cm, the characteristic maximal deflection is
X � 2a. Thus, the case is contained between two asymptotics
for these particular values of parameters. The stress amounts
to σ‖ � 8.4 MPa being calculated by means of (18) and
σ‖ � 6.9 MPa being calculated by means of (19). It is seen
that both formulae gave approximately the same answers.
Obviously, while X � 2a, the actual magnitude of the
longitudinal stress must be close to those asymptotic values.
This is only an estimation, and the effect needs special analysis
since the geometry of external circuits is usually unknown.
For example, using a symmetrical circuit with two loops from
both sides of the wire one can completely compensate for the
external magnetic force.

We leave this question for further detailed investigation
and neglect the contribution from the external circuit in our
analysis. Further we will use formula (10).

2.2. The temperature behaviour

The temperature behaviour with time is governed by the
passing current. It can be calculated according to the direct
joule heating of the wire material from

ρcv
∂T

∂t
= j 2/σ (20)

neglecting the process of thermal conductivity. This
assumption would hold for thermally isolated wires with
uniform current distribution. In expression (20), j is the
current density, ρ and σ are the density and the electrical
conductivity of the metal, cv is the specific heat. From the
above equation using the well known inverse dependence of
the conductivity on temperature, σ = σ0T0/T , one can obtain

T = T0 exp

(
γT

∫ t

0
f (t ′)2 dt ′

)

where γT = j 2
0 /σ0T0ρcv is the characteristic temperature rise

time, j0 is maximum current density. The functionf (t) defines
the current rise time profile.

3. Linear stability

To investigate possible instabilities in the system, we first carry
out a linear stability analysis assuming for a moment that all the
parameters, such as current and wire temperature, are constants
independent of time. Even though, in a real situation, they vary
quite fast with time and numerical methods must be involved
to solve the system, our simplified analysis will form a basis
for qualitative interpretation and understanding of the results.
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3.1. Stability of an initially straight wire

Consider an initially straight wire by letting X0 = 0. General
analysis of the system (1) shows that two basic types of
buckling instabilities may develop. They are due to thermal
expansion, expressed by the force G applied at the wire
ends [10], and the magneto-elastic buckling instability [14]
expressed by force Fx . In both cases, the instability has a
threshold character. When either the force G or the current
I exceed some critical value, new stable states appear. The
initially stable stateX = 0 then becomes unstable and buckling
occurs.

We are looking for non-trivial stationary solutions of the
linearized system (1), (4), (5). They are given by the equation

EJXIV −GX′′ − Fx = 0 (21)

with the boundary conditions

X = X′ = 0 at z = 0 and z = L. (22)

Here, the temperature, T , and the total current, I , are assumed
to be independent of time, and so are the functions G and Fx
given by (2) and (10), respectively. Further, G is linearized to
give G = −αES[T − T0].

To obtain a solution to (21) it is convenient to use a
complete set of orthogonal functions {Xi}, i � 1 defined by
the problem

X IV
i + λ2

iX ′′
i = 0

X ′
i (0) = X ′

i (L) = Xi (0) = Xi (L) = 0 (23)

with the orthogonality given by

∫ L

0
X ′′
i X ′′

k dz =



0 i �= k
λ4
i

2
L i = k

∫ L

0
X ′
iX ′
k dz =




0 i �= k
λ2
i

2
L i = k.

(24)

This set of functions is commonly used in the theory of stability
and buckling of elastic columns [15].

The eigenvalues of the boundary-value problem (23)
satisfy the dispersion equation

1 − cos(λiL) = λiL

2
sin(λiL) (25)

so, one can see that the set of functions consists of two subsets.
The first subset is defined by the eigenvalues given by

cos(λiL) = 1 sin(λiL) = 0. (26)

that is
λi = π(i + 1)/L i = 1, 3, 5 . . . .

In this case the associated eigenfunctions are given by

Xi = cos(λiz)− 1. (27)

The second subset is defined by

cos(λiL) = 4 − (λiL)2
4 + (λiL)2

sin(λiL) = 4λiL

4 + (λiL)2
. (28)

The associated eigenfunctions are given by

Xi = cos(λiz)− 1 + 2z− 2

λiL
sin(λiz). (29)

The first eigenvalue of this subset is equal to λ2 =
8.986 819/L. Further eigenvalues are approximately given by
λi � π(i + 1)/L, i = 4, 6, 8 . . ..

Now, with the help of (24) one can obtain from (21) a
criterion when the instability first appears

α(T − T0)ES − µ0

4π
I 2(ln(λ1a) + 0.14) > EJλ2

1. (30)

The first term on the left-hand side of (30) is responsible for
the thermal expansion effect, while the second term represents
magneto-elastic buckling. It should be noted that while we
are considering both effects simultaneously, for parameters
relevant to wire explosion experiments these terms have
different orders of magnitude.

The criterion obtained shows when the first eigenmode of
(1) and the system as a whole become unstable, λ1 = 2π/L
being the corresponding eigenvalue. In a similar manner,
substituting other eigenvalues λi for λ1, one can obtain
respective criteria for higher modes as well.

The set (23) being very useful in the linear stability
analysis of system (1) does not seem to be very relevant to
a study of the increments of the instability since

∫ L

0
XiXk dz �= 0 i �= k.

However, it would be interesting to obtain an estimate of
the increments of the instability. For this purpose, we will
substitute a solution to (1) in the form of X = Ai(t)Xi ,
i.e. assuming that only one mode is present. Then, for the
increment γi , (Ai(t) ∼ exp(γi t)), one gets

γ 2
i = E

ρ

λ2
i

2

L∫ L
0 X

2
i dz

{
2− λ2

i

J

S

}

2 = α(T − T0)− µ0I
2

4πES
{0.14 + ln(aλi)} (31)

or since
∫ L

0 X
2
i dz � L

γi �
√
E

ρ
λi

{
2− λ2

i

J

S

}1/2

. (32)

As is seen from (32), the increment has a maximum at
λi = λext defined by the equation

λ2
ext = S

J

α(T − T0)

2
− µ0I

2

8πEJ
{0.64 + ln(aλext )}. (33)

As we will see further, for the range of parameters used in the
wire explosion experiments, the contribution from the terms
due to magnetic force can be neglected during the initial stage
and within this approximation, using explicitly J = πa4/4
and S = πa2,

λext =
√

2α(T − T0)

a2
. (34)
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Table 1. Parameters for wire fragmentation experiments.

Material a (mm) L (m) I P1 P2 P3

A Aluminium 0.6 0.05 5 kA 1.19 × 103 6.11 114
B Aluminium 0.6 1 5 kA 1.19 × 103 13.6 0.28
C Aluminium 0.6 1 2 kA 1.19 × 103 2.18 0.28
D Aluminium 0.6 1 8 kA 1.19 × 103 34.8 0.28
E Copper 0.5 1 500 A 1.84 × 103 0.14 0.24

Since λi � π(i + 1)/L,

iext =
√

2α(T − T0)

a2

L

π
− 1. (35)

On the other hand, the maximal λlim at which instability may
exist is obtained from (32) to give

λlim � 2

√
α(T − T0)

a2
(36)

with the same accuracy. From (36), since λi � π(i + 1)/L,
one gets for the maximal mode number

ilim � 2

√
α(T − T0)

a2

L

π
− 1. (37)

Thus the dominant mode lies somewhere between the first and
the last unstable mode with the maximal increment

γext =
√
E

ρ

α(T − T0)

a
. (38)

From expression (35) one can see that higher modes are
likely to become dominant in the instability spectrum with
increases in the wire length. As a result, the wire shape can
take a rather intricate form. It seems that the instability of
higher modes has been observed experimentally by Graneau
[4]. For the experimental conditions he used, i.e. aluminium
wire, L = 1 m, a = 0.6 mm, from (34) one gets λext � 294
or the corresponding mode number iext = 93 at T = Tmelt .
The photographs of the wire shape after the current had been
switched off clearly showed the appearance of at least five
bulges on a small part of the wire.

We will refer further to the sets of parameters presented in
table 1 corresponding to different wire lengths and different
currents. One should note that two sets, [B] and [E], are
relevant for wires and currents used in experiments [1, 4],
respectively. For all the represented sets, criterion (30) is
fulfilled well enough. Indeed, we have put in table 1 the
corresponding values of the terms in (30), designating them
as P1, P2 and P3 from left to right. The estimations have
been done at T = Tmelt , Tmelt being the melting temperature;
Tmelt = 660 ◦C for aluminium and Tmelt = 1085 ◦C for copper.
The characteristic increment (38) at the same conditions, in
case [B] for instance, is γmax � 105 s−1, which is much
greater than the temperature increment γT � 7 × 102 s−1.
Thus, even though the estimation has been done in the linear
approximation, it is clear that the instability has sufficient time
to develop before the wire reaches the melting point.

In all the cases, as is seen, the major contribution is
from the thermal expansion effect, while the influence of
the magnetic force terms can be neglected during the initial

stage (this, of course, can be estimated directly from (1) as
well). Two terms, P1 and P2, for instance in case [B], become
equal only at T − T0 = 6.6 ◦C. The time it takes for the
temperature to be driven through this range is  t � 30 µs.
The characteristic time for the instability to develop for this
temperature difference is much longer, γ−1

max = 800 µs.

3.2. Stability of an initially bent wire

Consider a wire which has an initial form X0 = ∑
i A

0
iXi ,

where the functions {Xi} are the set (23) and A0
i are given

weight coefficients. One needs to stress that with the accuracy
to which the system (1) was derived, |X0| > a must always
be the case. Performing an analysis similar to that leading to
equation (30) and neglecting the magnetic force for the sake
of simplicity, for a mode k one gets

λ2
k(Ak − A0

k)EJ − AkES(α T ) = 0. (39)

From (39) one can see that there is always a stationary state
which differs from X0 at any nonzero value of the parameter
α T . Thus, those modes which have A0

k �= 0 are always
unstable. The result is not surprising, since from the physical
point of view it is obvious that a constantly heated wire will
change its form owing to expansion. On the other hand, those
modes which have A0

k = 0 become unstable at some value of
the parameter α T , so that buckling instability is still possible
on these modes.

4. Qualitative stress analysis

Once the instability occurs, all the potential energy within the
compressed wire can be quickly released. The characteristic
value of the longitudinal stress τzz which may be accumulated
during the preconditioning is within the interval between the
maximum value τmaxzz = α(Tmelt − T0)E ∼ 103 MPa and
the minimum value τminzz = E(J/S)λ2

0 � 0.3–30 MPa,
corresponding to the onset of the instability. The estimation
has been done for an aluminium wire of radius a = 0.6 mm
and the length spanning the range 1 m > L > 0.05 m.

One can see, that the maximum value itself is very high,
about ten times higher than the ultimate strength value. On the
other hand, the minimum value can be quite small, depending
on the wire length. The average transverse stress is given by

〈τxx〉 = G

S
X′ − EJ

S
X′′′.

For small deflections, |X|/ξL � 1, it is in general smaller then
the longitudinal value.

From the qualitative point of view it is evident that the
maximal stress energy can be accumulated if the temperature
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(a) (b)

(c) (d)

Figure 1. (a) The wire displacement X/L as a function of z/L, case [A]. (b) The spectrum of the wire vibrations at the melting point 〈A2
i 〉 as

a function of mode number i, case [A]. (c) The longitudinal stress τzz as a function of time, case [A]. (d) The transverse stress 〈τxx〉 as a
function of time at z/L = 0.9, case [A].

rises sufficiently quickly. The temperature rise time must be
shorter or comparable with the rise time of the instability. The
most dramatic result might be expected if the wire is heated
up to the temperature just slightly below the melting point.
Then the current is switched off thus allowing the instability to
develop without melting the material. On the other hand, if the
current is low and, as a consequence, the temperature rise time
is low too, then all the accumulated energy can be released at
the onset of the instability by the first mode which becomes
unstable first. This case corresponds to the lower limit of the
estimated stress value τminzz .

Thus, from the linear analysis, it is already obvious that
many scenarios of the instability are possible. Dynamically,
many modes can be excited simultaneously while the
temperature T increases from T0 up to the melting point Tmelt .
Even though the first mode becomes unstable first it might
happen that further modes play a dominant role creating rather

complex dynamical behaviours. Any particular pattern, of
course, depends on temporal characteristics such as the ratio
between the instability increment and the temperature rise time.

5. Numerical results

Now, there are two important issues to be investigated. The
first is the nature of the instability in the nonlinear stage. The
second issue is the magnitude of the longitudinal and transverse
stresses in this situation. These issues are investigated by
solving nonlinear equation (1) numerically.

5.1. Numerical algorithm

The numerical method of solving equation (1) with the
boundary conditions (4) is based on the complete set of
orthogonal functions (23).
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(a) (b)

(c) (d)

Figure 2. (a) The wire displacement X/L as a function of z/L, case [B]. (b) The spectrum of the wire vibrations at the melting point 〈A2
i 〉 as

a function of mode number i, case [B]. (c) The longitudinal stress τzz as a function of time, case [B]. (d) The transverse stress 〈τxx〉 as a
function of time at z/L = 0.9, case [B].

By expanding any solution to (1) into a series of the
functions {Xi}, i.e. X = ∑

i AiXi , the partial differential
equation turns into a system of ODEs with respect to time.
They are

∑
j

Bij
d2Aj

dt2
+ Ai

λ4
i

2
+ Ai

λ2
i

2
{βa(l̃ − l̃0 − α[T (t)− T0])

+βB(0.14 + ln(λia/L))} = 0 (40)

where the coefficients are βa = 4L2/a2, βB =
(µ0I

2L2)/(4πEJ). The symmetric matrix Bij is given by

Bij = ∫ 1
0 XiXj dz. The length increment is l̃ − l̃0 =

1
4

∑
j (A

2
j − A0

j

2
)λ2
j . The functions X, X0 and the variable

z have been normalized on L, and t has been normalized
by t0 = √

(ρS/EJ )L2. In the numerical simulations, the
infinite series have been truncated at the maximal unstable
mode defined by (37).

5.2. Flexural vibrations of initially straight wires

In the case of initially straight wires the initial conditions
are Ai(0) = 0. To excite the instability one needs
to set some initial noise level. To simulate noise
present an additional fluctuation force in equation (1),
δF = δF0δf (t)

∑
i exp(−ξ 2

i /ξ
2
1 )Xi , has been added, with

the amplitude δF0 = 4 × 10−4 N. The function δf (t) is
a random number generator producing numbers from the
uniform distribution in the interval [−1, 1] at each calculated
step over time. The amplitude δF0 has been chosen to give
rise to small deflections X ∼ 0.1a of an aluminium wire with
L = 1 m and a = 0.6 mm from a straight line. The form factor∑
i exp(−ξ 2

i /ξ
2
1 )Xi has been chosen such that the contribution

from the noise source into the first modeX1 has been dominant,
while the other modes are excited as well.

The current profile in the simulations has been taken in the
form I (t) = I0 sinh(t/t0)/ cosh(t/t0), where t0 is the current
rise time. In all runs, t0 = 30 µs. This time is about twice as
high as the skin time for aluminium wires with a = 0.6 mm,
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tskin = a2σµ0 � 17 µs. The initial temperature has been kept
at T0 = 300 K and calculations stopped once the temperature
had reached the melting point T = Tmelt . This moment is
designated by t = te.

Simulations have been performed for different conditions:
different wire lengths, different currents and different wire
materials. All the sets used are presented in table 1.

As the first example, let us consider a short aluminium
wire carrying 5 kA current, case [A]. For these parameters
from the linear analysis one would expect a few unstable
modes to develop, ilim = 6. The results obtained are
presented in figure 1. In the first two frames, the deflection
X as a function of z and the spectrum 〈A(t)2i 〉 both taken
at t = te have been plotted. In the last two frames,
the longitudinal τzz and transverse 〈τxx〉 stress components
have been plotted as functions of time. The spectrum has
been calculated by means of averaging over time around
t = te, i.e. 〈A(te)2i 〉 = ∫ te

te− A(t)
2
i dt , where  is chosen

to be greater than the period of nonlinear vibrations. Both
the spectrum (figure 1(b)) and the wire shape, in the
form of being close to a simple arc (figure 1(a)), show
that the first mode dominates during the nonlinear stage
of the instability. Temporal behaviour of the longitudinal
and transverse stress components demonstrates developed
nonlinear flexural vibrations (figures 1(c) and (d)). The
appearance of the instability is clearly seen at t � 900 µs
in both figures. The observed longitudinal stress has both
compressive and tensile components. The instability appears
after strong compression, the maximal compressive stress
being 429 MPa. The maximal tensile longitudinal stress
amounts to τzz � 244 MPa. This value is well above the
ultimate stress value for aluminium. The observed transverse
stress, as has been expected, is lower then the longitudinal
value, 〈τxx〉 � 55 MPa.

Let us consider now a longer wire, case [B]. This case is
relevant to the conditions of Graneau’s experiments [4]. One
might expect, in accordance with our qualitative analysis, more
active modes in the instability spectrum to develop with respect
to the previous case, ilim = 129. Indeed, from figure 2(a)
and (b) one can observe that the spectrum becomes very rich
with the major contribution from mode n = 27 at the melting
point. The tensile longitudinal and transverse stresses amount
to τzz = 122 MPa and 〈τxx〉 = 92 MPa in this case; see
figures 2(c) and (d). Both stresses are well above the ultimate
strength of aluminium. Thus, one might expect the first wire
break to appear just after buckling occurs, at t = 1000 µs.

Let us investigate now the effect of variations of current.
In case [C], which is a replica of case [B] but with lower current,
two modes n = 5 and n = 7 become dominant (figure 3(a)).
This fact indicates, if we compare two spectra in cases [B]
and [C], that the main channel of release of the accumulated
energy now goes through the modes with lower numbers. Thus,
one would anticipate a lower accumulated stress according
to our qualitative stress analysis. Indeed, we have observed
that both tensile longitudinal and transverse stresses reduce to
τzz = 70 MPa and 〈τxx〉 = 23 MPa (figures 3(b) and (c)).

On the other hand, an increase in the current leads
to a higher resultant tensile stress value. In case [D],
which is similar to set [B] but with a higher current, the
longitudinal tensile stress is τzz � 233 MPa at a maximum

(a)

(b)

(c)

Figure 3. (a) The spectrum of the wire vibrations at the melting
point 〈A2

i 〉 as a function of mode number i, case [C]. (b) The
longitudinal stress τzz as a function of time, case [C]. (c) The
transverse stress 〈τxx〉 as a function of time at z/L = 0.9, case [C].

(figure 4). It should be noted that because of faster heating
the preliminary compression before the instability develops

1550



Flexural vibrations in thin metal wires

Figure 4. The longitudinal stress τzz as a function of time, case [D].

(a)

(b)

Figure 5. (a) The spectrum of the wire vibrations at the melting
point 〈A2

i 〉 as a function of mode number i, case [E].
(b) The longitudinal stress τzz as a function of time, case [E].

is much stronger, namely 851 MPa, and the instability
occurs just before the melting point. It appears that at

higher currents the wire will be molten before the buckling
occurs.

Let us consider now Nasilovski’s experiment with a long
copper wire, case [E]. This experiment has been carried out
at quite a low current, I = 500 A, in comparison with all the
previously considered cases. As a result, one might expect
low stress values compared to previous cases. Also, the few
first modes must be dominant, which is just the case, see
figure 5(a). The observed values of stress indeed become
quite low. The longitudinal stress reaches τzz � 27 MPa at
a maximum (figure 5(b)), while the transverse stress is just
about 4 MPa, which means that the wire can be broken only if
it is heated up sufficiently.

5.3. Flexural vibrations of initially bent wires

In the above we considered a somewhat idealized situation,
when the undeformed wire had the shape of a straight rod. In
reality, the wire might initially have any form. For instance, in
the case of horizontal positioning of the wire it might be bent
by gravitational force. Once the initial dislocation becomes
greater than the radius, the character of the instability changes,
as has been discussed. Indeed, if X0 �= 0 the initial state
is unstable from the beginning. However, if the temperature
rise time is shorter than the period of flexural vibrations then
those modes which contribute into X0 = ∑

i A
0
iXi can be

excited directly. Moreover, buckling on the other modes is
still possible. To estimate the stresses developed, simulations
for case [B] have been performed but with initial conditions
given by X0 = A0

1X1 with the amplitude taken at A0
1 = 20a.

That is, the wire was initially shaped like the first mode of the
set (23).

The results of simulations are shown in figure 6. As before,
one can see nonlinear vibrations developing. The regular
character of the vibrations points out the fact that only one
single mode i = 1 is active in this case, which means that
buckling on the other mode does not occur. The amplitude of
tensile longitudinal stress for this particular case amounts to
τzz � 50 MPa. So, a sufficiently heated wire can be broken in
this case as well.

6. Conclusions

When an electric current passes through a thin metal wire with
clamped ends, flexural elastic stress waves are induced owing
to the joule heating and the electromagnetic force. The joule
heating leads to thermal expansion of the wire material, which
is the dominant mechanism of the excitation of vibrations.
Under realistic experimental conditions the electromagnetic
force is of minor importance.

Flexural vibrations in an initially straight wire may be
excited as a result of the buckling instability. The energy
accumulated in the wire during the initial stage in the form
of a compressive stress is suddenly released. As a result, high
tensile stress appears, which is sufficiently high to cause the
fracture of the wire within 1 ms for all the cases considered.
The number of modes of the instability that are excited depends
on the current magnitude and wire length. Depending on these
parameters it is possible to excite just a single mode, which
has a form of an arch, or actually any number of modes.

1551



A Lukyanov and S Molokov

Figure 6. Flexural vibrations of an initially bent wire, longitudinal
stress as a function of time; X0 = A0

1X1, A0
1 = 20a. The wire and

current parameters are relevant for case [B].

If a wire is slightly curved, which is a more realistic case
than that of the straight wire, the buckling instability is still
possible. The amplitude of modes that are initially present in
the curved wire grows. The other modes can still be excited
in a rapidly heated wire owing to buckling instability. The
magnitude of tensile stress induced in a curved wire is clearly
lower, but is still sufficient to induce a wire fracture on a
millisecond timescale.

Three-dimensional effects, which may be induced by
the external circuit, suspensions at the clamped ends,
imperfections of the wire cross section or a wire material,
will increase the magnitude of tensile stress. These effects
will lead to the coupling between flexural, longitudinal, and
torsional modes. This study is beyond the scope of the present
paper.

The experimental evidence, in general, is supportive of the
mechanism described above. However, no direct comparison

is possible, since previous experiments were of an exploratory
nature.
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