The Mathematical Intelligencer

, Volume 16, Issue 1, pp 20–28 | Cite as

Sophus lie and harmony in mathematical physics, on the 150th anniversary of his birth

  • Nail H. Ibragimov
  • Nail H. Ibragimov
    • 1
  1. 1.Institute of Mathematical ModelingMoscowRussia
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Ames,Nonlinear Partial Differential Equations in Engineering, Vols. I and II, New York: Academic Press (1965,1972).MATHGoogle Scholar
  2. 2.
    R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, Philadelphia: SIAM (1979).CrossRefMATHGoogle Scholar
  3. 3.
    Yu. Berest, Construction of fundamental solutions for Huygens equations as invariant solutions,Dokl. Akad. Nauk SSSR, 317(4), 786–789 (1991).MathSciNetGoogle Scholar
  4. 4.
    L. Bianchi,Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Pisa: Spoerri (1918).MATHGoogle Scholar
  5. 5.
    G. Birkhoff,Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960).MATHGoogle Scholar
  6. 6.
    G. W. Bluman and S. Kumei,Symmetries and Differential Equations, New York: Springer-Verlag (1989).CrossRefMATHGoogle Scholar
  7. 7.
    T. Hawkins, Jacobi and the birth of Lie’s theory of groups,Arch. History Exact Sciences 42(3), 187–278 (1991).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    E. Hille,functional Analysis and Semigroups, New York: Amer. Math. Soc. (1948), preface.Google Scholar
  9. 9.
    N. H. Ibragimov,Transformation Groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985).Google Scholar
  10. 10.
    N. H. Ibragimov,Primer on the Group Analysis, Moscow: Znanie (1989).Google Scholar
  11. 11.
    N. H. Ibragimov,Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991).Google Scholar
  12. 12.
    N. H. Ibragimov, Group analysis of ordinary differential equations and new observations in mathematical physics,Uspekhi Mat. Nauk, To appear.Google Scholar
  13. 13.
    F. Klein, Theorie der Transformationsgruppen B. III,Per-voe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda, Kazan: Tipo-litografiya Imperatorskago Universiteta (1898), pp. 10–28.Google Scholar
  14. 14.
    P. S. Laplace,Mécanique céleste, T. I. livre 2, Chap. III (1799).Google Scholar
  15. 15.
    S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichun-gen,Arch. for Math. VI (1881).Google Scholar
  16. 16.
    S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestatten,Arch. Math. VIII, 187–453(1883).Google Scholar
  17. 17.
    S. Lie,Theorie der Transformationsgruppen, Bd. 1 (Bearbeitet unter Mitwirkung von F. Engel), Leipzig: B. G. Teubner(1888).Google Scholar
  18. 18.
    S. Lie, Die infinitesimalen Berührungstransformationen der Mechanik,Leipz. Ber. (1889).Google Scholar
  19. 19.
    S. Lie,Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und heraus-gegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891).Google Scholar
  20. 20.
    S. Lie, Zur allgemeinen Théorie der partiellen Differentialgleichungen beliebiger Ordnung,Leipz. Ber. I, 53–128(1895).Google Scholar
  21. 21.
    S. Lie,Gesammelte Abhandlungen, Bd. 1–6, Leipzig-Oslo.Google Scholar
  22. 22.
    M. Noether, Sophus Lie,Math. Annale 53, 1–11 (1900).CrossRefMATHGoogle Scholar
  23. 23.
    P. J. Olver,Applications of Lie Groups to Differential Equations, New York: Springer-Verlag (1986).CrossRefMATHGoogle Scholar
  24. 24.
    L. V. Ovsiannikov, Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962).Google Scholar
  25. 25.
    L. V. Ovsiannikov,Group Analysis of Differential Equations, Boston: Academic Press (1982).MATHGoogle Scholar
  26. 26.
    A. Z. Petrov,Einstein Spaces, Oxford: Pergamon Press (1969).MATHGoogle Scholar
  27. 27.
    E. M Polischuk,Sophus Lie, Leningrad: Nauka (1983).Google Scholar
  28. 28.
    V. V. Pukhnachev, Invariant solutions of Navier-Stokes equations describing free-boundary motions,Dokl. Akad. Nauk SSSR 202(2), 302–305 (1972).Google Scholar
  29. 29.
    W. Purkert, Zum Verhältnis von Sophus Lie und Friedrich Engel,Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifs-wald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29-34, (1984).Google Scholar
  30. 30.
    G. F. B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,Abh. K. Ges. Wiss. Göttingen8 (1860).Google Scholar
  31. 31.
    L.I. Sedov,Similarity and Dimensional Methods in Mechanics, 4th ed., New York: Academic Press (1959).Google Scholar
  32. 32.
    H. Stephani,Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press(1989).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1994

Personalised recommendations