Sophus lie and harmony in mathematical physics, on the 150th anniversary of his birth
Article
First Online:
- 102 Downloads
- 5 Citations
Preview
Unable to display preview. Download preview PDF.
References
- 1.W. F. Ames,Nonlinear Partial Differential Equations in Engineering, Vols. I and II, New York: Academic Press (1965,1972).MATHGoogle Scholar
- 2.R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, Philadelphia: SIAM (1979).CrossRefMATHGoogle Scholar
- 3.Yu. Berest, Construction of fundamental solutions for Huygens equations as invariant solutions,Dokl. Akad. Nauk SSSR, 317(4), 786–789 (1991).MathSciNetGoogle Scholar
- 4.L. Bianchi,Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Pisa: Spoerri (1918).MATHGoogle Scholar
- 5.G. Birkhoff,Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960).MATHGoogle Scholar
- 6.G. W. Bluman and S. Kumei,Symmetries and Differential Equations, New York: Springer-Verlag (1989).CrossRefMATHGoogle Scholar
- 7.T. Hawkins, Jacobi and the birth of Lie’s theory of groups,Arch. History Exact Sciences 42(3), 187–278 (1991).CrossRefMATHMathSciNetGoogle Scholar
- 8.E. Hille,functional Analysis and Semigroups, New York: Amer. Math. Soc. (1948), preface.Google Scholar
- 9.N. H. Ibragimov,Transformation Groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985).Google Scholar
- 10.N. H. Ibragimov,Primer on the Group Analysis, Moscow: Znanie (1989).Google Scholar
- 11.N. H. Ibragimov,Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991).Google Scholar
- 12.N. H. Ibragimov, Group analysis of ordinary differential equations and new observations in mathematical physics,Uspekhi Mat. Nauk, To appear.Google Scholar
- 13.F. Klein, Theorie der Transformationsgruppen B. III,Per-voe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda, Kazan: Tipo-litografiya Imperatorskago Universiteta (1898), pp. 10–28.Google Scholar
- 14.P. S. Laplace,Mécanique céleste, T. I. livre 2, Chap. III (1799).Google Scholar
- 15.S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichun-gen,Arch. for Math. VI (1881).Google Scholar
- 16.S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestatten,Arch. Math. VIII, 187–453(1883).Google Scholar
- 17.S. Lie,Theorie der Transformationsgruppen, Bd. 1 (Bearbeitet unter Mitwirkung von F. Engel), Leipzig: B. G. Teubner(1888).Google Scholar
- 18.S. Lie, Die infinitesimalen Berührungstransformationen der Mechanik,Leipz. Ber. (1889).Google Scholar
- 19.S. Lie,Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und heraus-gegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891).Google Scholar
- 20.S. Lie, Zur allgemeinen Théorie der partiellen Differentialgleichungen beliebiger Ordnung,Leipz. Ber. I, 53–128(1895).Google Scholar
- 21.S. Lie,Gesammelte Abhandlungen, Bd. 1–6, Leipzig-Oslo.Google Scholar
- 22.M. Noether, Sophus Lie,Math. Annale 53, 1–11 (1900).CrossRefMATHGoogle Scholar
- 23.P. J. Olver,Applications of Lie Groups to Differential Equations, New York: Springer-Verlag (1986).CrossRefMATHGoogle Scholar
- 24.L. V. Ovsiannikov, Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962).Google Scholar
- 25.L. V. Ovsiannikov,Group Analysis of Differential Equations, Boston: Academic Press (1982).MATHGoogle Scholar
- 26.A. Z. Petrov,Einstein Spaces, Oxford: Pergamon Press (1969).MATHGoogle Scholar
- 27.E. M Polischuk,Sophus Lie, Leningrad: Nauka (1983).Google Scholar
- 28.V. V. Pukhnachev, Invariant solutions of Navier-Stokes equations describing free-boundary motions,Dokl. Akad. Nauk SSSR 202(2), 302–305 (1972).Google Scholar
- 29.W. Purkert, Zum Verhältnis von Sophus Lie und Friedrich Engel,Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifs-wald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29-34, (1984).Google Scholar
- 30.G. F. B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,Abh. K. Ges. Wiss. Göttingen8 (1860).Google Scholar
- 31.L.I. Sedov,Similarity and Dimensional Methods in Mechanics, 4th ed., New York: Academic Press (1959).Google Scholar
- 32.H. Stephani,Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press(1989).MATHGoogle Scholar
Copyright information
© Springer Science+Business Media, Inc. 1994