
On the Homocentric Spheres of Eudoxus
Author(s): Ido Yavetz
Source: Archive for History of Exact Sciences, Vol. 52, No. 3 (February 1998), pp. 221-278
Published by: Springer
Stable URL: http://www.jstor.org/stable/41134047 .

Accessed: 26/09/2014 22:57

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Springer is collaborating with JSTOR to digitize, preserve and extend access to Archive for History of Exact
Sciences.

http://www.jstor.org 

This content downloaded from 128.196.132.173 on Fri, 26 Sep 2014 22:57:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=springer
http://www.jstor.org/stable/41134047?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Arch. Hist. Exact Sci. 52 (1998) 221-278. © Springer- Verlag 1998 

On the Homocentric Spheres ofEudoxus 
Ido Yavetz 

Communicated by N. Swerdlow 

"In tale dubbio io seguirò l'usato metodo, di non decidere intorno a ciò che più non è 
possibile sapere;" G.V. Schiaparelli,1877. 

a. Introduction 

In 1877, Schiaparelli published a classic essay on the homocentric spheres of Eu- 
doxus. In the years that followed, it became the standard, definitive historical reconstruc- 
tion of Eudoxian planetary theory. The purpose of this paper is to show that the two texts 
on which Schiaparelli based his reconstruction do not lead in an unequivocal way to 
this interpretation, and that they actually accommodate alternative and equally plausible 
interpretations that possess a clear astronomical superiority compared to Schiaparelli's. 
One should not mistake all of this for a call to reject Schiaparelli's interpretation in favor 
of the new one. In particular, the alternative interpretation does not recommend itself as a 
historically more plausible basis for reconstructing Eudoxus's and Callippus's planetary 
theories merely because of its astronomical advantages. It does, however, suggest that 
the exclusivity traditionally awarded to Schiaparelli's reconstruction can no longer be 
maintained, and that the little historical evidence we do possess does not enable us to 
make a justifiable choice between the available alternatives. 

b. Schiaparelli's Reconstruction of the Eudoxian System 

Our current knowledge of Eudoxus's homocentric spheres relies primarily upon 
two sources. His own writings have not survived.1 The earliest known reference to 
Eudoxus's astronomical work is a short passage in Aristotle's Metaphysics. Coming 
from a contemporary ofEudoxus, and one who is generally regarded as our most reliable 
source on ancient Greek thought, the importance of this reference is clear. Here is how 
Aristotle described Eudoxus's arrangement: 

1 For a survey of the sources, ancient and modern, on the homocentric system devised by 
Eudoxus, see E. Maula, "Eudoxus Encircled," Ajatus, 33 (1971): 201-253, esp, pp. 206-21 1. 
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222 I. Yavetz 

Eudoxus assumed that the sun and moon are moved by three spheres in each case; 
the first of these is that of the fixed stars, the second moves about the circle which 
passes through the middle of the signs of the zodiac, while the third moves about 
a circle latitudinally inclined to the zodiac circle; and, of the oblique circles, that 
in which the moon moves has a greater latitudinal inclination than that in which 
the sun moves. The planets are moved by four spheres in each case; the first and 
second of these are the same as for the sun and moon, the first being the sphere 
of the fixed stars which carries all the spheres with it, and the second, next in 
order to it, being the sphere about the circle through the middle of the signs of 
the zodiac which is common to all the planets; the third is, in all cases, a sphere 
with its poles on the circle through the middle of the signs; the fourth moves 
about a circle inclined to the middle circle (the equator) of the third sphere; the 
poles of the third sphere are different for all the planets except Aphrodite and 
Hermes, but for these two the poles are the same2 

Concentrating first on the theory of the five planets, it is not difficult to understand the role 
of the first two spheres in Aristotle's description. Obviously, the first - henceforth "stellar 
sphere" - accounts for the diurnal motion common to all the heavenly components. The 
second - henceforth "ecliptic sphere" - creates a component of motion confined to the 
plane of the ecliptic for the five planets as well as for the sun and moon. As for the 
third and fourth spheres, Aristotle's text is less helpful. All he relates about them is that 
the poles of the third rest on diametrically opposed points of the ecliptic, and that the 
poles of the fourth are fixed inside the third at an unspecified inclination to the third 
sphere's poles. Schiaparelli's classical reconstruction of the Eudoxian scheme is not 
derived directly from Aristotle's Fourth Century BC passage, but from the commentary 
of Simplicius, written about 900 years later.3 Simplicius was more specific about the 
particular function of the third and fourth spheres: 

And, as Eudemus related in the second book of his astronomical history, and 
Sosigenes also who herein drew upon Eudemus, Eudoxus of Cnidos was the first 
of the Greeks to concern himself with hypotheses of this sort, Plato having, as 
Sosigenes says, set it as a problem to all earnest students of this subject to find 
what are the uniform and ordered movements by the assumption of which the 
phenomena in relation to the movements of the planets can be saved. . . . The 
third sphere, which has its poles on the great circle of the second sphere passing 
through the middle of the signs of the zodiac, and which turns from south to 
north and from north to south, will carry round with it the fourth sphere which 
also has the planet attached to it, and will moreover be the cause of the planet's 
movement in latitude. But not the third sphere only; for, so far as it was on the 

2 Aristotle, Metaphysics, 1073b 17 - 1074a 15, in Sir Thomas L. Heath, Greek Astronomy, 
(London: J.M. Dent & Sons LTD., 1932), pp. 65-66. 

3 Simplicius based his account mainly on the Second Century AD writer Sosigenes, whose 
own work is not based directly on Eudoxus, but on Eudemus, Aristotle's student who flourished 
during the Fourth Century BC. The works of both Sosigenes and Eudemus have been lost (see 
Maula, note 1, p. 210). 
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On the Homocentric Spheres of Eudoxus 223 

third sphere (by itself), the planet would actually have arrived at the poles of 
the zodiac circle, and would have come near to the poles of the universe; but, as 
things are, the fourth sphere, which turns about the poles of the inclined circle 
carrying the planet and rotates in the opposite sense to the third, i.e. from east to 
west, but in the same period, will prevent any considerable divergence (on the 
part of the planet) from the zodiac circle, and will cause the planet to describe 
about this same zodiac circle the curve called by Eudoxus the hippopede(horse- 
fetter), so that the breadth of the curve will be the (maximum) amount of the 
apparent deviation of the planet in latitude, a view for which Eudoxus has been 
attacked.4 

The geometrical arrangement of spheres 2, 3, and 4 that Simplicius described has 
been interpreted by Schiaparelli as illustrated in Fig. 1 below. The two inner spheres 
rotate at equal speeds in opposite directions, so that the planet's motion is the super- 
position of the two rotations. The trace projected by the moving planet on the sur- 
face of the ecliptic sphere (and on the stellar sphere, as long as the ecliptic sphere 
remains stationary) is the hippopede, literally meaning horse-fetter, shown in Fig. 2. 
Its long axis of symmetry coincides with the ecliptic - the vertical great circles in 
Figs. 1 and 2. The hippopede's projection on the horizontal equatorial plane of the 
ecliptic sphere (perpendicular to the plane of the paper) is a circle. Consequently, the 
hippopede is also the intersection of the ecliptic sphere with a cylinder whose base 
diameter is equal to the difference between the radius of the ecliptic sphere and the 
radius of either of the bounding latitude circles at the top and bottom of the hippopede. 
The central angle of these latitudes measured from the equatorial plane is equal to 
the inclination between the axes of spheres 3 and 4, which is also equal to the angle at 

Figure 1 

4 Simplicius, In Aristotelis de Cáelo Commentario, edited by I.L. Heiberg, (1894), pp. 488: 
18-24; 496: 23^497:6, trans, by Heath, Greek Astronomy, pp. 67-68. 
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224 I. Yavetz 

Figure 2 

Figure 3 

which the hippopede intersects itself. The inclination between the axes of spheres 3 and 
4 (set to 35°in Fig. 2) is therefore the single variable parameter that fully determines 
the shape of the hippopede - the larger the angle, the longer and wider the hippopede. 
Combination of the hippopedal motion generated by the rotations of spheres 3 and 4 with 
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a simultaneous rotation of the ecliptic sphere, projects on the stellar sphere (not shown 
in Fig. 1) the motion of the planet relative to the fixed stars. The trace of this motion 
circuits the stellar sphere while wobbling slightly above and below the projection of the 
ecliptic, which marks the center of the zodiacal belt. Most importantly, if the speeds of 
spheres 3 and 4 are properly chosen, the general circuital motion of the planet around 
the ecliptic is interrupted at fixed intervals by retrograde motion. An example of this is 
shown in Fig. 3, where spheres 3 and 4 that create the hippopede of Fig. 2 are made to 
revolve exactly three times as fast as the ecliptic sphere. 

The superposition of the diurnal rotation of the stellar sphere over this motion gen- 
erates the full motion of a planet relative to the horizon of the earthbound observer. Each 
of the planets in this scheme has its own set of four spheres, the inner two of which 
create a hippopede. The differences between the resulting planetary paths stem from the 
different size of the hippopede that pertains to each of them and from the ratio between 
the rotation period of spheres 3 and 4 and the rotation period of the ecliptic sphere of 
each planet. Thus did Schiaparelli turn the hippopede into the retrogression generator, 
and the core of the Eudoxian planetary theory. 

c. An Aristotelian Alternative, and a Restriction by Simplicius 

There exists, however, another way of interpreting the texts of Aristotle and Simpli- 
cius. This alternative will be arrived at here by first reading Aristotle's text as a blueprint 
for the construction of a general geometrical model, which will then be further con- 
strained by reference to Simplicius's text. Aristotle explicitly specified the following 
details about the four spheres of the Eudoxian scheme: 
1 . The first sphere is the sphere of the fixed stars, and its motion is imparted to all three 

remaining spheres. Note that Aristotle's text does not say that this sphere rotates with 
the period of the stars' diurnal motion. We ascribe to it the diurnal period because 
this makes the system work properly. 

2. The second sphere rotates in the plane of the ecliptic. Here, too, Aristotle refrained 
from specifying its speed, and we ascribe to it the mean ecliptic period for each 
particular planet to make the system work properly. This point will become particu- 
larly relevant later, upon examination of Simplicius's problematic discussion of the 
speeds of the second and third spheres in the theory of the moon. 

3. The poles of the third sphere are fixed to diametrically opposed points on the ecliptic. 
4. The poles of the fourth sphere are inclined by an unspecified angle relative to the 

poles of the third sphere. 
5. As with the first two spheres, Aristotle wrote nothing about the speeds of rotation of 

the two inner spheres. Here, as in Schiaparelli's interpretation, the assignment of 
specific speeds is guided by the assumption that the system's primary purpose was to 
account for planetary retrograde motion in terms of uniform homocentric rotations.5 

5 Bernard Goldstein has recently observed that in the accounts of astronomical knowledge 
from the 4th, 3rd, and 2nd centuries BC, there is no term corresponding to the words "retro- 
grade motion." (B.R. Goldstein, "Saving the Phenomena: The Background to Ptolemy's Planetary 
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226 I. Yavetz 

6. Finally, nowhere in Aristotle's text is there any indication that the planet must be 
affixed to the equator of the fourth sphere, nor is any such requirement necessitated 
by the basic program of reducing the motion of the heavens to uniform homocentric 
rotations. Indeed, the majority of stars on the stellar sphere are placed away from its 
equator. 

Keeping these points in mind, the arrangement depicted in Fig. 4 below is just as con- 
sistent with Aristotle's text as Schiaparelli's. Note that this arrangement possesses two 
variable inclination parameters as opposed to the single one that characterizes Schiapar- 
elli's interpretation, namely, the inclination between the axes of spheres 3 and 4, and the 
inclination, or latitude, of the planet relative to the pole of sphere 4. 

Figure 4 

Theory" Journal for the History of Astronomy, 28 (1997): 1-12, esp. pp. 3-4). However, as a 
working hypothesis, the assumption that Eudoxus and Callippus designed their systems primarily 
to account for retrograde motion provides a natural explanation for the association of four or 
five spheres with each individual planet, and Goldstein suggested no plausible alternative reason 
for their existence. One could conjecture that since already Plato knew that both Mercury and 
Venus move sometimes faster and sometimes slower than the sun, the purpose of the Eudoxian 
arrangement was to give each planet a variable speed. This, however, can be crudely done with just 
three spheres per planet, and makes Callippus's use of five spheres for each of Mars, Venus, and 
Mercury quite mystifying. Furthermore, aside from Aristotle's short, general account, practically 
nothing has remained of the original treatises on the subject of planetary motion from the time 
of Eudoxus, Callippus, and their immediate successors. This weakens the impact of Goldstein's 
philological argument from silence, although it does not warrant the rejection of the possibility 
that indeed, retrograde planetary motion was not recognized by Eudoxus and his contemporaries, 
and that the Eudoxian homocentric system was meant to address entirely different concerns. If 
anything, this further emphasizes the need for a general suspension of judgement along side with 
the development of several possible historical reconstructions. 
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This arrangement may be anachronistically described as a spherical version of the co- 
planar deferent and epicycle arrangement that became the staple of Ptolemy's planetary 
theory. When the two inner spheres spin at equal speeds (relative to the ecliptic sphere) 
in opposite directions, the planet traces a closed loop (qualitatively illustrated in Fig. 5). 
Unlike the plane version, however, the spherical counterpart is sensitive to switching 
the sizes of the deferent and the epicycle as shown in Figs. 6 and 7. In other words, 
the non-commutative nature of the two inclinations actually increases the flexibility of 
this arrangement. In addition to the two inclinations, this arrangement can make good 
use of a third degree of freedom because the initial inclination of the axis of sphere 3 
relative to the ecliptic sphere's axis need not be confined to the plane of the ecliptic. 
This defines a phase angle (Fig. 8), which orients the loop's long axis of symmetry 
along a great circle other than the ecliptic, while keeping the loop's center of symmetry 
at the point on the ecliptic where the pole of sphere 3 is attached (Fig. 9).6 This loop 
replaces the hippopede of Schiaparelli's interpretation as the retrogression generator. As 
Fig. 10 shows, the combination of motion along this loop with ecliptic rotation generates 
planetary traces around the ecliptic that are markedly different from those generated by 
the hippopede. 

/  ^'  ' 

Figure 5 

6 Similarly, the initial position of the planet need not be confined to the bottom of the latitude 
circle drawn around the pole of sphere 4. There are actually two degrees of freedom here, but they 
are degenerate to the extent that both rotate the resulting loop's axis of symmetry relative to the 
projection of the ecliptic. Because sphere 4 rotates twice as fast relative to sphere 3 as the latter 
rotates relative to the ecliptic sphere (sphere 2), the phase angle of the fourth sphere must be twice 
the phase angle of the third sphere to effect the same rotation of the loop's axis of symmetry relative 
to the ecliptic. The starting position of the planet on the loop will not, in general, be the same in 
both cases, but for the purpose of investigating the trace of retrogression this is inconsequential. 
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228 I. Yavety 

Figure 6 

Figure 7 

The loop in Fig. 6 is created when the axis of sphere 4 is inclined by 19° relative to the axis 
of sphere 3, and the planet is on latitude 16° measured from the pole of sphere 4. In Fig. 7 the 

two axes are inclined by 16°, while the planet rests on latitude 19° of sphere 4 
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Figure 8 

Figure 9 

The phase angle determined by the starting position of the planet is also available 
in Schiaparelli's arrangement with the same effect, namely, it orients the hippopede's 
long axis of symmetry along a great circle that is inclined to the ecliptic, and intersects 
it at the poles of the third sphere. However, in marked distinction to the alternative 
retrogression generator, whose center of symmetry coincides with the pole of sphere 3, 
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230 I. Yavety 

Figure 10 
The loop in Fig. 9 is generated by the same inclinations that create the loop in Fig. 6, 
but lies along a great circle that intersects the ecliptic at a phase angle of 5°. Figure 10 shows the 
trace projected onto the stellar sphere by motion along the loop of Fig. 9 with a period three times 

shorter than the rotational period of the ecliptic sphere 

the hippopede's center of symmetry lies on the equator of sphere 3, 90° of latitude away 
from either pole. In Schiaparelli's arrangement, therefore, starting the planet from the 
intersection of the equators of spheres 3 and 4 (Fig. 1), but with a phase angle other 
than 90°results in moving the hippopede's center of symmetry away from the ecliptic. 
Consequently, the entire planetary trace would be displaced to one side of the ecliptic, 
instead of creating an equivalent of the ecliptically balanced trace generated by the 
skewed loop of the alternative arrangement (Fig. 10). Small phase angles would shift the 
entire path of the planet above or below the ecliptic without appreciable change in the 
form of the retrograde phases, while large phase angles would completely remove the 
planet's course from the zodiacal belt, which is clearly unacceptable. Note, therefore, 
that another tacit assumption is made in Schiaparelli's interpretation, namely, that the 

pole of the fourth sphere is inclined relative to the pole of the third along a great circle 
that intersects the projection of the ecliptic on sphere 3 at an angle of 90°. Any other 
orientation for the direction of inclination will move the center of the hippopede away 
from the ecliptic and will result in improper motion. 

We have seen, then, that Aristotle's account of the Eudoxian system admits an al- 
ternative interpretation that satisfies its explicit specifications as fully as Schiaparelli's 
interpretation. The alternative interpretation possesses significantly increased flexibil- 
ity, generates planetary motion that is markedly different from the motion created by 
Schiaparelli's interpretation, and thus far makes no use of a retrogression generator that 
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can be described as a hippopede - a word that Aristotle does not mention. It also takes 
no account at all of Simplicius's commentary on Aristotle's text, to which we turn next. 

The first point of interest in Simplicius's account is the observation on the planet's 
motion without a fourth sphere. Heath's translation has Simplicius saying that with three 
spheres only, the planet would arrive at the poles of the Zodiac. Simplicius's actual words, 
however, could as plausibly be translated as saying that the planet would move toward 
the poles of the Zodiac.7 It is not clear from the text whether it indicates that the planet 
would always arrive at the poles of the Zodiac, or be displaced in their direction without 
necessarily arriving at them always.8 The second possibility, which includes the first as 
an extreme case, is clarified in terms of the alternative interpretation as follows. It is, in 
fact, possible to create retrograde motion without a fourth sphere, by placing the planet 
on the third sphere at the point where the pole of the fourth sphere is attached. As the 
rotating third sphere is carried by the revolving ecliptic sphere, the combined motion will 
project a spiral path on the stellar sphere, providing that the third sphere rotates with a 
sufficiently shorter period than the ecliptic sphere. This means many retrogressions in the 
course of a single ecliptic revolution. If we wish to reduce the number of retrogressions 
per ecliptic period (an acute need in the cases of Mars and Venus) we need to increase 
the rotational period of the third sphere; but then we must compensate for the speed lost 
by the increased period of revolution. To do that we move the planet further away from 
the pole of the third sphere, or toward the poles of the ecliptic, to enlarge the circle it 
describes. The fastest motion that the planet can reach for a given period of revolution 
is always obtained by placing the planet on the equator of the third sphere. But since the 
third sphere's pole rests on the ecliptic, the equator of the third sphere necessarily passes 
through the poles of the ecliptic, and this would bring the planet right to the poles of 
the ecliptic. In short, the gist of Simplicius's observation is that without a fourth sphere 
the arrangement would create unacceptable departures from the Zodiacal belt toward 
the Zodiacal poles, while actual planetary motion never displays such departures. The 
passage is explained in a similar manner in the context of Schiaparelli's interpretation 
where the planet is always placed on the equator of the fourth sphere. Presumably, that 
is where it would be placed on the third sphere were the fourth sphere to be eliminated, 
with the outcome of carrying the planet all the way to the poles of the ecliptic. In 
both interpretations the fourth sphere constrains the latitudinal motion of the planet, 
preventing it from such unacceptable deviations. So far, then, neither interpretation can 
be plausibly ruled out on the basis of Simplicius's text. 

A second point of interest involves Simplicius's explicit discussion of the rotational 
motion of the third and fourth spheres. Unlike Aristotle, who merely said that the two 
spheres rotate in inclined planes, Simplicius specified that they do so at equal speeds, 

7 Simplicius, InAristotelis de Cáelo Commentario, edited by I.L. Heiberg, ( 1 894), pp. 496:23- 
497:6. Schiaparelli translated this passage as saying that with the third sphere alone the planet 
would advance toward the pole of the Zodiac ("Le Sfere Omocentriche di Eudosso, di Callippo e 
di Aristotele," in Scritti Sulla Storia della Astronomia Antica, 3 vols., [Bologna: Nicola Zanchelli, 
Editore], voi. 2, p. 100). 6 I thank Anthony Grafton and Reviel Netz for their help concerning the meaning and possible 
translations of Simplicius's passage. 
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but in opposite directions. Unfortunately, rather than clarifying Aristotle's passage, Sim- 
plicius mainly succeeded in being ambiguous, regarding both the direction and speed 
of rotation. Regarding first the direction, only when two rotations take place about par- 
allel axes can they meaningfully be described as coincident or opposed, but the axes 
of the third and fourth spheres are generally inclined with respect to each other in the 
Eudoxian system. The standard way of getting round this difficulty has been to assume 
that Simplicius tried to imply that as long as the coincident rotational components are 
larger than the opposed ones, the rotations are to be considered in the same directions, 
and once the opposed components become dominant, the rotations are to be considered 
opposed. As a result, it has come to be accepted that the inclination angle between the 
axes of spheres 3 and 4 cannot exceed 90°, despite the fact that neither Simplicius nor 
Aristotle made this stipulation explicitly. The point is actually of no great consequence, 
because such angles occur only in the theory of Venus, whose full retrograde loop can- 
not be observed directly against an immediate background of fixed stars because of its 
proximity to the sun.9 However, as a matter of principle there is another, more natural 
way of resolving Simplicius's ambiguous observation without the additional restriction 
on inclination angles. Rotations always take place about a pole that may be marked as 
"north" for the purpose of discussion, and their directions are best described relative to 
this pole, either westward, or eastward. Simplicius might have been trying to say that 
relative to their respective north poles the rotations of spheres 3 and 4 would always 
be opposed. Note that with this definition, if the two north poles are pointed 180°from 
each other, the spheres will appear to rotate in the same direction to an outside ob- 
server, but relative to their own poles they always remain opposed - one clockwise, the 
other counterclockwise. This interpretation of the passage is free of the ambiguities of 
the traditional way of understanding Simplicius's observation, and has the additional 
advantage of not imposing on the theory an additional restriction that is not indicated 
anywhere in the texts of Aristotle and Simplicius.10 

Of greater consequence is Simplicius's statement that the spheres revolve with equal 
periods. Here again, the text leaves room for more than one interpretation. In Schiapar- 
elli's interpretation, Simplicius's reference to equal periods in opposite directions does 
not describe the apparent motion of the two inner spheres, but provides a two-stage 
procedure by which to set the system in motion. First, spin the inner sphere. Then spin 
the outer one in the opposite direction but with the same period as the inner sphere and 
combine the two motions according to the rule that all rotations are communicated in- 

9 Venus itself, as opposed to its immediate stellar background, can be observed during nearly 
all of its retrograde phase. Therefore, given a good chronometer, a precise global mapping of the 
fixed stars on the stellar sphere, and a sufficiently accurate data base of stellar risings and settings, 
it is possible to reconstruct the form of Venus's retrograde path indirectly. However, as we shall 
see later on, it appears unlikely that in Eudoxus's time the Greeks possessed either a sufficiently 
accurate global star map or a sufficiently accurate table of risings and settings. 

1U Alternatively, one may see this in terms of procedural instructions that require none of the 
modern terminology for describing rotations: first the two poles must be aligned, then the spheres 
must be spun in opposite directions. Having done that, the poles of the oppositely spinning spheres 
may be inclined to any desired angle. This procedure is exactly equivalent to the interpretation 
given in the text above. 
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ward. This will produce the motion that generates Schiaparelli's hippopede, but it must 
be noted that Simplicius's text does not allude to any such procedure. Instead, it simply 
describes a system of two homocentric spheres, rotating at equal periods in opposite 
directions. This does not support Schiaparelli's reconstruction, where the inner sphere 
appears to stand still when its pole is aligned with the pole of the fourth sphere, or 
merely to wobble back and forth while its inclined pole orbits about the pole of the third 
sphere. For the two spheres to appear to rotate with equal periods in opposite directions 
as Simplicius's text indicates, one needs first to spin the inner sphere, and then to spin the 
outer one in the opposite direction at twice the period initially given to the inner sphere. 
As the two motions combine under the rule that all rotations are communicated inward, 
the speed of the inner sphere is reduced by one half, and the two spheres will appear to 
rotate in opposite directions with the same period, as Simplicius's text requires. With no 
further help from Simplicius, it is quite natural to take the text at face value as alluding to 
the actual appearance of two concentric spheres, rotating with equal periods in opposite 
directions. Such a motion will not generate the hippopede of Schiaparelli's reconstruc- 
tion, but the loops of the alternative interpretation of Aristotle's account. Simplicius did 
not provide additional information with which one can make a sound choice between 
these two possibilities. Thus, the two alternatives that fit Aristotle's account because 
of its generality, also accommodate Simplicius's account by reason of its ambiguous 
nature. 

Finally, Simplicius explicitly wrote that the combined motion of the third and fourth 
spheres produces what Eudoxus called the "hippopede." Nowhere did Simplicius identify 
this figure with the intersection of a sphere and a cylinder, or a sphere with two cones 
joined at the apex. Proclus, however, used the term to describe one of the so called "spiric 
sections" in his commentary on Euclid: 

Of the spiric sections one is interlaced like a horse's hobble, [innov Ttéôrj ] 
another is broad in the middle and thins out at the sides, and another is elongated 
and has a narrow middle portion but broadens out at the two ends.1 1 

A little later, Proclus commented on the origin of these curves: 

... we have at once a notion of the most elementary kinds of surfaces, the plane 
and the spherical, though it is only through science and scientific reasoning that 
we discover the variety of surfaces that arise by mixture. What is remarkable 
about them is that from the circle there can often be generated a mixed surface. 
This is what we say happens in the case of the spiric surfaces, for they are thought 
of as generated by the revolution of a circle standing upright and turning about a 
fixed point that is not the center of the circle. Thus three kinds of spiric surface 
are generated, for the center lies either on the circumference, or inside, or outside 
the circle. If the center is on the circumference, the continuous spiric surface is 
generated; if within the circle, the interlaced spiric surface, and if outside, the 

11 Proclus, A Commentary on the First Book of Euclid's Elements, Translated by Glenn R. 
Morrow, (Princeton: Princeton University Press, 1992), p. 91 (112.5-112.8). See also, Heath, 
Euclid's Elements, Book I, (New York: Dover Publications, Inc., 1956), pp. 162- 163. 
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open spiric surface. And the spiric sections are three in number corresponding 
to these different kinds of surface.12 

On the strength of these passages, Heath declared: 

There is no doubt that Schiaparelli has restored, in his 'spherical lemniscate', 
the hippopede of Eudoxus, the fact being confirmed by the application of the 
same term hippopede (horse-fetter) by Proclus to a plane curve of similar shape 
formed by a plane section of an anchor-ring or tore internally and parallel to its 
axis.13 

We know that Eudoxus, like Archytas his teacher, studied the intersections of spheres, 
cylinders, and cones, and there is no reason to doubt the possibility that Eudoxus rec- 
ognized Schiaparelli's spherical lemniscate. At the same time, Heath may have been 
too hasty in giving this lemniscate such an exclusive hold on what Eudoxus might have 
called "hippopede." Note that what Proclus called a hippopede is different from Schia- 
parelli's spherical hippopede. The spiric section Proclus called by this name is a plane 
figure. It cannot be created by the plane projection of Schiaparelli's hippopede, and it 
cannot be transformed into Schiaparelli's hippopede by projecting it from a plane onto 
a sphere. Proclus's hippopede, then, refers to a family of curves that is distinct from the 
family of curves referred to by Simplicius as the hippopede of Eudoxus. The inevitable 
conclusion from this must be that by way of a rather loose, impressionistic analogy to an 
equestrian leg-cuff, the word "hippopede" describes a large variety of self-intersecting 
curves, that may lie on plane, spherical, and perhaps other surfaces. As such, the curve 
shown in Fig. 1 1 below is a perfectly legitimate hippopede. This hippopede, and others 
like it, are created by the alternative interpretation in the special case when the inclina- 
tion between the axes of spheres 3 and 4 is equal to the latitudinal position of the planet 
measured from the pole of sphere 4. 14 They differ from the hippopedes of Schiaparelli's 
reconstruction in that they cannot be created by the intersection of a sphere with a cylin- 
der. The two families of hippopedes are also distinguished by the tangent at the point 
of self contact, which exactly coincides with the long axis of symmetry in the case of 
the alternative hippopedes, while in the case of Schiaparelli's hippopedes this never oc- 
curs. A further distinction resides in the motion of the point that traces these hippopedes 
as the generating spheres revolve: it crosses over to the other side of the hippopede's 

12 ¡bid., pp. 96-97(1 19.9-1 19.17). 13 Heath, Aristarchus of Samos, p. 207. 
14 This will be recognized as the spherical case of the Tusi couple. As F.J. Ragep noted, there 

seems to be no reason to doubt that al-Tusi was both supported and inspired by Aristotle's text 
in the general venture of considering homocentric alternatives to certain Ptolemaic arrangements, 
but it does not necessarily follow from this that al-Tusi constructed his own model as a specific 
interpretation of Aristotle's passage (F.J. Ragep, Nassir al-Din al-Tusi 's Memoir on Astronomy 
(al-Tadhkirafi cilm al-hay 'a), 2 vols., (New York: Springer- Verlag, 1 993), p. 33). Indeed, al-Tusi's 
failure to notice that in the spherical case the Tusi couple traces a self-intersecting loop and not 
merely linear oscillatory motion along a great arc suggests that he conceived of the spherical 
version as an extension of the co-planar case where the resulting motion is an oscillation along a 
straight line without any latitudinal deviations. 
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Figure 1 1 

 * '  

Figure 12 

Figure 1 1 shows the curve created by the alternative interpretation, with sphere 4 inclined by 1 7.5° 
to sphere 3, with the planet on latitude 1 7.5° measured from the pole of sphere 4, and with a phase 
angle of 5°. Figure 12 shows the trace of the resulting planetary motion with an ecliptic period 

three times longer than the synodic period 
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long axis of symmetry at the point of self-intersection in Schiaparelli's case (Fig. 13a); 
in the alternative case, it swings back from the intersection point, and crosses the axis of 
symmetry only at the two extreme turning points of the loop (Fig. 13b). That both types 
of hippopedes are equally likely to have been considered by Eudoxus appears to be as 
plausible a conclusion as any to draw from the testimony of Simplicius.15 

To recapitulate, we have seen that with the word hippopede, we may use Simplicius's 
testimony to restrict the alternative interpretation of Aristotle's text to the specific case 
where the two inclinations are always equal. We have also seen that this does not suffice 
to reject the alternative interpretation in favor of Schiaparelli's. Indeed, Simplicius's 
text cannot be read as a geometrical blueprint containing a set of instructions for the 
construction of Schiaparelli's arrangement to the exclusion of any alternative. Quite to 
the contrary, Simplicius's text is rather ambiguous at several crucial points, and it is only 
a reverse-interpretation guided by a preconceived notion of hippopede as the intersection 
of a sphere and a cylinder that leads to our understanding of this text in the exclusive terms 
of Schiaparelli's reconstruction. It then takes another 900 year backward implication to 
impose this restricted interpretation on Aristotle's testimony. The last step is justifiable 
only on the assumption that Simplicius's description of the Eudoxian system is more 
authoritative than Aristotle's. It is true that Simplicius supplied more information than 

0 V V iii A A 

0 A 
a b 

Fig. 13. The motion of the tracing point in Schiaparelli's reconstruction (a) and in the alternative 
reconstruction (b) 

15 O. Neugebauer reportedly pointed out that the figure of 8 traced by the spherical Tusi couple 
cannot be considered a hippopede because the tangent at the point of self-intersection is 0° (F.J. 
Ragep, Nassir al-Din al-Tusi's Memoir on Astronomy (al-Tadhkira fi dim al-hay'a), 2 vols., 
(New York: Springer- Verlag, 1993), p. 455 (note)). This, however, presupposes the exclusivity of 
Schiaparelli's reconstruction without independent justification on the basis of the historical record. 
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Aristotle, but as we shall see in the next section, it does not follow from this that his 
information is necessarily more dependable than Aristotle's. 

d. How Central is the Role of the Hippopede 
in Eudoxus's Homocentric Astronomy? 

It is remarkable that the hippopede, which in the hands of Simplicius and Schiapar- 
elli has become the hallmark of Eudoxus's planetary theory, was not mentioned at all by 
Aristotle. This could have several explanations, all of them both plausible and tentative 
owing to the general lack of source material that typifies the historical analysis of early 
Greek thought. Aristotle's own contribution to the Eudoxian theory was in adding con- 
necting spheres between the four-fold sets of spheres for consecutive planets, so as to 
turn the entire scheme into a single, mechanically continuous system. For his purpose 
it sufficed to note that the motion of each planet involved separate rotational compo- 
nents that had to be counteracted by the intervening spheres before the next planetary 
motion could begin.16 We may add to this the suggestion that while Aristotle ranked 
mathematics highly as a subject for cultivation, mathematical detail does not feature 
prominently in his work. Therefore, we should not marvel to find that he avoided the 
details of Eudoxus's inherently mathematical construction. This depiction of Aristo- 
tle as not actively pursuing the details of mathematical astronomy and merely taking 
over without modification (albeit with some expressed doubts) the improved Eudoxian 
model of Callippus is quite common, and need not be further developed here. 17 It may be 

16 It has often been noted that Aristotle used superfluous spheres in his construction by using 
a diurnal outer sphere for each individual planet, despite the fact that this motion is automatically 
transferred from the previous planet whose distinctive rotational components have been canceled 
by three counteracting spheres. To the best of my knowledge, however, it has not been noted that 
from a purely geometrical standpoint, Aristotle actually used two superfluous spheres for each 
planet. He could use two spheres to cancel out the rotations of the hippopede-forming spheres 3 
and 4. The next counteracting sphere, with axis aligned with the axis of the ecliptic sphere, should 
then be made to rotate such that the sum of its rotation and that of the previous planet's ecliptic 
sphere would amount to the ecliptic period of the next planet. Only two extra spheres are then 
needed to produce the hippopede (or alternative) of the next planet. In short, Saturn would have 
four spheres, then Jupiter would follow with three counteracting spheres plus two more spheres, 
as opposed to Aristotle's three plus four. Following this for the rest of the planets, the sun, and the 
moon would yield a total of 31 spheres as opposed to Aristotle's 43. Speculations on the reasons 
for the presence of unnecessary spheres in Aristotle's scheme are outside the scope of the present 
discussion. 

17 See e.g. Michael J. Crowe, Theories of the World from Antiquity to the Copernican Revolu- 
tion, (New York: Dover Publications, Inc., 1 990), pp. 26-27. J.L.E. Dreyer, A History of Astronomy 
from Thaïes to Kepler, 2nd edition, (Dover Publications, Inc., 1953; originally published in 1906), 
pp. 112-114. Thomas S. Kuhn, The Copernican Revolution, (Cambridge, Mass.: Harvard Uni- 
versity Press, 1957), p. 80. David C. Lindberg, The Beginnings of Western Science, (Chicago: 
The University of Chicago Press, 1992), pp. 95-96. G.E.R. Lloyd, Early Greek Science: Thaïes 
to Aristotle, (New York: W.W. Norton & Company, 1970), pp. 92-94. J.D North, The Fontana 
History of Astronomy and Cosmology, (London: The Fontana Press, 1994), pp. 82-84. S. Toulmin 
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submitted, therefore, that Aristotle showed only marginal interest in the detailed descrip- 
tion of planetary motion and that he studied planetary astronomy primarily to evaluate 
its place in larger cosmological and theological contexts. 

These contexts, however, require none of the details Aristotle supplied regarding 
the planes of revolution of the various spheres, and should have led to a non-specific 
description that could accommodate the homocentric schemes of Al-Bitruji, Amico, and 
Fracastoro in addition to Schiaparelli's reconstruction and the alternatives suggested in 
the previous sections.18 Each of these homocentric schemes could provide the basis for 
the theological exercise of counting the number of overseeing deities, and each could be 
unified into a grand mechanical scheme by means of interconnecting counter-spheres. 
Al-Bitruji's scheme, however, has rotations relative to the ecliptic sphere about poles that 
are far removed from the ecliptic, which explicitly violates Aristotle's description. The 
planetary schemes of both Amico and Fracastoro require more than four spheres with 
mutual inclinations that differ from those described by Aristotle, and this too violates his 
account of the Eudoxian and Callippic systems. It appears, then, that Aristotle's descrip- 
tion of the Eudoxian scheme outlines a restricted class of homocentric arrangements 
with a degree of geometrical specificity that exceeds the requirements of his theological 
and cosmological motivations. His neglect to mention the hippopede, then, cannot be 
written off as stemming from a general lack of interest in the specifics of the Eudoxian 
scheme. So the question arises again, why did Aristotle fail to mention the hippopede? 
After all, if Simplicius's overt emphasis on the hippopede is justified, then Aristotle's 
account appears like a description of Kepler's system without mentioning ellipses. 

For all we know, Aristotle may be guilty of such an oversight, but there also exists 
another possibility. It is generally acknowledged that Eudoxus's scheme represents the 
first sophisticated Greek attempt to reduce planetary motion to circular components. It 
is also generally admitted that this attempt is further constrained by the desire to achieve 
the reduction while maintaining perfect spherical symmetry and uniformity of motion 
in the heavens.19 Both Aristotle's and Simplicius's descriptions of Eudoxus's system 
clearly preserve these two fundamental requirements, but Simplicius's account is more 
restrictive than Aristotle's - perhaps too much so. It may be the case that Aristotle did not 
mention the hippopede because it represented only a limited class of Eudoxian systems, 
and because for his cosmological discussion Aristotle considered it important to outline 
their shared principles rather than their particular differences. He therefore wrote an 

and J. Goodfield, The Fabric of the Heavens: The Development of Astronomy and Dynamics, (New 
York: Harper & Row, Publishers, 1965), pp. 106-107. 

18 Al-Bitruji, On the Principles of Astronomy, Translated and Analyzed by Bernard R. Gold- 
stein, (New Haven: Yale University Press, 1971). Noel Swerdlow, "Aristotelian Planetary As- 
tronomy in the Renaissance: Giovanni Battista Amico's Homocentric Spheres," Journal for the 
History of Astronomy, 3 (1972): 36-48. Mario di Bono, "Copernicus, Amico, Fracastoro and 
Tusi's Device: Observations on the Use and Transmission of a Model," Journal for the History of 
Astronomy, 26 (1995): 133-154. 

iy This was not always the understanding of Aristotle s passage. In 1795, for example, Adam 
Smith understood the third sphere in the Eudoxian system to oscillate back and forth like the 
wheel pendulum in a clock (Adam Smith, Essays on Philosophical Subjects, Edited by W.P.D. 
Wightman and J.C. Bryce, (Oxford: Clarendon Press, 1980), p. 58). 

This content downloaded from 128.196.132.173 on Fri, 26 Sep 2014 22:57:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


On the Homocentric Spheres of Eudoxus 239 

account that accommodated the structure of Schiaparelli's reconstruction as well as the 
alternative described above because both of them had been considered by Eudoxus. The 
generality of this account reflects not a basic lack of interest in astronomical geometry, 
but a considered attempt to emphasize basic common features, which did not include 
the hippopede. But if that were the case, we must ask ourselves why Simplicius did 
give the hippopede such a prominent place in the Eudoxian scheme. A possible answer 
to this question lies in the assessment of Simplicius's reliability, which will be further 
examined here. 

We have already seen that Simplicius's seemingly more specific account actually 
suffers from several ambiguities of which Aristotle's testimony is free. To these must be 
added Simplicius's problematic account of the Eudoxian lunar theory, which accounts 
for the motion of the moon by the combined rotations of three homocentric spheres. 
According to Simplicius, the first sphere rotates about the celestial pole every 24 hours, 
the second rotates about the ecliptic axis once every month, and the third sphere, which is 
inclined to the second, carries the moon and rotates once every 18.5 years. Unfortunately, 
this would make the moon stay to one side of the ecliptic for about nine years before it 
crosses to the other side where it remains for an equal length of time, while in fact the 
moon crosses the ecliptic twice a month. Martin in the 19th century, and Dicks in the 20th, 
have taken Simplicius at face value as representing the state of Eudoxus's knowledge 
of the moon's motion.20 The error, however, is easily corrected by simply switching 
the rotation periods of the second and third spheres without changing the orientation of 
their respective poles. The majority of historians tend to consider Simplicius's account 
as an incorrect representation of the Eudoxian theory, and this is also the point of view 
adopted here.21 

Turning now to Aristotle's account, we find it there stated that for the five planets as 
for the sun and the moon, the first two spheres are the same: the first spins in the plane 
of the celestial equator, the second spins in the plane of the ecliptic. Keeping in mind the 
observations of the previous paragraph, we note that while the second sphere rotates with 
the period of mean ecliptic revolution in the case of the five planets, it should not do so in 
the case of the moon if proper agreement with observations is desired. Some historians 
therefore suggested that Simplicius's error goes all the way back to Aristotle,22 but as 
we shall presently see, this can be justified only by reading Simplicius into Aristotle - a 
rather dubious procedure in this case. It has already been pointed out that nowhere did 
Aristotle say anything about the speeds of these spheres, so that as far as it goes, his 

20 D.R. Dicks, Early Greek Astronomy to Aristotle, (London: Thames and Hudson, 1970), 
pp. 180-181, 256 (note 338). 21 It is unlikely that Eudoxus could precisely position the ecliptic - being the trace of the sun's 
path on the background of the fixed starts - and trace the moon's path relative to it. The moon, 
however, executes significant and easily observable latitudinal oscillations relative to the zodiacal 
belt within the course of a single lunation, resulting in an eclipse pattern that is inconsistent with 
Simplicius's depiction. No reference to the ecliptic is required for making this observation, and it 
does not seem very likely that Eudoxus was actually that ignorant of knowledge that was within 
easy reach in his day. 

Heath, Aristarchus of Samos, p. 197. Dicks (Ibid.), who took the error to be Eudoxus's, also 
read Aristotle's passage as identical to Simplicius's. 
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description is quite unproblematic: in all cases, the first sphere rotates about the celestial 
axis, and the second sphere rotates about the ecliptic pole. This remains true of the first 
and second lunar spheres regardless of the speeds we might wish to assign to the second 
and third spheres. Simplicius specified beyond Aristotle that in all cases the second 
sphere rotates with the mean ecliptic period of the member it pertains to, be it the sun, 
moon, or any of the planets. In the case of the moon this amounts to a gross incongruence 
with the observed appearances. But the only way to suggest that this was also Aristotle's 
view, is by reading Simplicius's specification of rotational speeds into Aristotle's text. 
This is a possible, but by no means the only plausible, reading of these texts. It is equally 
plausible to take these problematic passages to suggest that Simplicius's testimony is 
less trustworthy than Aristotle's. 

Knorr recently observed that "the mere survival of a document need not compel us 
to believe what it says."23 This cannot be ignored considering the existence of several 
problematic instances in Simplicius's commentary on Aristotle's description of the Eu- 
doxian homocentric theory. In particular, it would not be an isolated misrepresentation 
on Simplicius's part to inappropriately emphasize the hippopede which Aristotle did 
not even see fit to mention. Furthermore, in this particular case specific considerations 
regarding the mathematical nature of the hippopede might have encouraged Simplicius 
to do so. The hippopede of Schiaparelli's arrangement possesses a great mathematical 
value because it can be generated by the intersection of two simple solids - a sphere and 
a cylinder - and its entire trace may therefore be reduced to the classical geometrical 
procedure of synthetic construction.24 This may be the reason for the emphasis given 
to it by Simplicius. There seems to be no reason to doubt that Eudoxus constructed this 
curve, and used it as a rigorously analyzable example of oscillatory motion generated 
by the combination of uniform homocentric rotations. It is not at all clear, however, that 
in Eudoxus's overall astronomical work, the hippopede occupied a central position. 

From the mathematical point of view, the curves generated by the alternative arrange- 
ment are not as attractive as the hippopede. They may, of course, be generated by the 
intersection of a sphere with other surfaces. However, unlike the cylinder that generates 
the hippopede, the new generating surfaces cannot be defined independent of the curve 
they create while intersecting a sphere. In other words, we cannot avoid treating the de- 
sired curves as generated by mechanical motion. In terms of rigorous Greek geometry, 
therefore, the alternative curves may have been considered problematic as mathematical 
entities, and progressively more so in the post-Euclidean Hellenistic tradition. Indeed, 
Simplicius seems to have rated mechanical construction as an inferior approach to ge- 

23 Wilbur Richard Knorr, The Ancient Tradition of Geometric Problems, (New York: Dover 
Publications, Inc., 1993), p. 10. "Many scholars doubt Simplicius's authority and question Plato's 
putative role in the development of astronomical theory." B.R. Goldstein and A.C. Bowen, "A 
New View of Greek Astronomy", ISIS, 74 (1983): 330-340, p. 330. 

24 Following Schiaparelli, Heath showed how in addition to a cylindrical intersection, the 
hippopede is the intersection of a sphere with two cones joined at the apex, but this does not exhaust 
the mathematical beauty of this curve. John North ("The Hippopede," in A. von Gotstedter (ed.), Ad 
Radioes, (Stuttgart: Franz Steiner Verlag, 1 995), pp. 143- 1 54) recently showed that the intersection 
of a sphere with a parabolic surface also produces the hippopede of Schiaparelli's interpretation. 
This can easily be demonstrated in modern analytical terms as shown in the appendix. 
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ometrical problems.25 As an astronomical entity, however, the alternative curve is both 
legitimate in Greek usage and highly useful. We possess some evidence to the effect 
that in the study of geometrical problems the Greeks were not exclusively dependent on 
rigorous geometrical analysis as exemplified in Schiaparelli's classical paper, but that 
they made considerable use of physical models where rigorous analysis failed them. In 
a well-known paragraph, Plutarch specifically mentioned Eudoxus and his Pythagorean 
mentor Archytas in this connection: 

For the art of mechanics, now so celebrated and admired, was first originated by 
Eudoxus and Archytas, who embellished geometry with its subtleties, and gave 
to problems incapable of proof by word and diagram, a support derived from 
mechanical illustrations that were patent to the senses.26 

With elementary trigonometry, equally elementary use of the group of spherical rota- 
tions and a low-power home computer, it is possible to try different setups of homocentric 
spheres and to generate various hypothetical planetary paths. Eudoxus, and others that 
worked with his planetary scheme, had neither systematic trigonometric tables to execute 
the necessary calculations nor personal computers. However, the spherical arrangement 
described in Fig. 4 may very well have functioned as a crude analogue computer. It must 
be emphasized that there is no need to actually build nested homocentric spheres for this 
purpose. A set of concentric rings, consecutively attached to each other at diametrically 
opposed swivel points would suffice, and an object attached to the innermost ring can 
be made to demonstrate the basic motion of a planet according to any of the alternatives 
discussed thus far, including Schiaparelli's. A finer study of the traces generated by 
such motions requires no more than a single sphere and a compass for drawing a set of 
points on the sphere that may be joined to form continuous paths. It is time-consuming 
work, but not any more so than Kepler's manual calculations of planetary orbits. We 
have no evidence regarding the way Eudoxus and his immediate followers went about 
the practical business of studying the details of their newly invented cinematic theo- 
retical astronomy. Consequently, we cannot reject out of hand the possibility that their 
theoretical astronomy was more an analogue graphical than a rigorous geometrical af- 
fair, whatever "rigorous" may have meant in those days. We do possess indications that 
portray Eudoxus as interested in the mapping of stars on solid spheres. Cicero, when 
recounting the sack of Syracuse, described some booty brought to Rome by Marcellus, 
that contained a spherical mechanization of planetary motion created by Archimedes. 
The mechanization, Cicero explained, was Archimedes's innovation, but plotting stars 
on solid spheres was already an old tradition; and Cicero explicitly mentioned Eudoxus 
of Cnidus in this respect. It was, Cicero reported "... a very early invention, the first one 

25 Knorr argued at length (The Ancient Tradition of Geometric Problems, [New York: Dover 
Publications, Inc., 1993]), that this gradual shift toward formalization and rigorization is responsi- 
ble for an over-rigorized image of early Greek geometrical practices created by the doxographers 
of the early Christian era. 

26 Plutarch's Lives, "Marcellus," XIV. 5-6. Plutarch's story that Plato strongly disapproved 
of Eudoxus and Archytas for using such mechanical devices, and ". . . inveighed against them as 
corrupters and destroyers of the pure excellence of geometry" is open to doubts. 
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ofthat kind having been constructed by Thaïes of Miletus, and later marked by Eudoxus 
of Cnidus . . . with the constellations and stars which are fixed in the sky . . . ,"27 Of far 
greater importance are the poem by Aratus that supposedly describes Eudoxus's stellar 
sphere and the detailed criticism of this poem by Hipparchus, who claimed that Aratus 
closely followed Eudoxus. It has been suggested that the sculpted depiction of the stellar 
sphere carried by Atlas was also modeled on Aratus's poem.28 Now, if Eudoxus devoted 
time to mapping the fixed stars, the equator, the ecliptic, the tropics, and the Arctic circles 
on a sphere, it would not be out of character for him to try to plot at least the outstanding 
aspects of planetary motion, namely, the retrograde phases, on a sphere. Thus, in an 
astronomical tradition that makes use of both physical models and geometrical analysis, 
inability to achieve rigorous geometrical demonstration would not represent an insur- 
mountable obstacle to further progress. Analogue graphical "computations" in the above 
sense, using the alternative loop as the generator of retrograde motion, would generate 
traces that do agree qualitatively with the observed paths traced by the planets in their 
motion. If true, this suggests that we view the Greek astronomer in the 4th century BC 
as a practical geometer interested more in the generation of astronomically useful forms 
than in their rigorous justification. 

Of course, without conflicting with this view of Greek astronomy, the successful 
synthetic demonstration of one model of homocentric spheres, namely, the one that cre- 
ates the hippopede of Schiaparelli's interpretation, could very well encourage further 
study and development of other such models. At the same time, it would be natural 
for a doxographer of Simplicius's taste and inclinations to give special emphasis to the 
mathematically justified model as representing a first triumph in the attempt to bring 
spherically symmetric astronomy and rigorous geometry into harmony. About nine hun- 

27 Cicero, De re publica, I, XIV, 21-22. Dicks noted that the attribution of such a sphere to 
Thaïes does not add credence to Cicero's account. It may also be mentioned that Cicero reported on 
the Archimedean spheres in the course of recounting a conversation that may or may not have taken 
place in reality between Scipio Aemilianus and some friends. The object of the conversation was 
to present a typically Roman emphasis on the overriding importance of practical issues pertaining 
to public life, as opposed to Greek idealistic and abstract thought. When the older and highly 
respected Laelius joined the conversation, he asked Philus, who initiated it: "Do you really think 
then, Philus, that we have already acquired a perfect knowledge of those matters that relate to our 
own homes and to the State since we are now seeking to learn what is going on in the heavens?" 
and he continued to state his opinion that the usefulness of the abstract and mathematical sciences 
is that ". . . if for anything at all, they are valuable only to sharpen somewhat and, we may say stir up 
the faculties of the young, so that they find it easier to learn things of greater importance." After this, 
the conversation quickly came down to earth, but not before Laelius repeated the point attributed 
by Scipio to Socrates about the unusefulness of natural philosophy. Under these circumstances, 
it is not surprising to find modern scholars expressing doubts regarding the reliability of Cicero's 
report. On the other hand, why lie about the use of such spheres? Indeed, why bring them up in the 
first place? At the very least, the passage reflects the existence of such devices in Cicero's time, 
while their attribution to Thaies in the above manner suggests some confusion regarding Thales's 
state of knowledge. But regarding Eudoxus, the poem of Aratus, its critique by Hipparchus, and 
the statements by Plutarch suggest that Cicero used a real historical fact to make a political point. 

28 J.B. Harley and David Woodward, The History of Cartography, 3 vols, (Chicago: The 
University of Chicago Press, 1987), vol. 1, pp. 140-143. 
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dred years separate Simplicius from the Aristotelian texts that he commented on, and 
planetary astronomy changed considerably in the interim. In Aristotle's time the Eudox- 
ian homocentric spheres represented the state of the art in Greek planetary theory. As 
such this theory was as important as Eudoxus's contributions to mathematics. Aristotle's 
text, which accommodates both the hippopede and its alternative equally well, would 
fit nicely with this state of affairs if we actually allow it to include both interpretations. 
Indeed to Aristotle, who in the Metaphysics was demonstrably more interested in the 
mechanization than in the mathematization of astronomy, there would be no reason to 
give undue emphasis to one out of several known spherically symmetrical arrangements, 
merely on account of its mathematical neatness. By Simplicius's time, planetary theory 
was dominated by the Ptolemaic model, while Eudoxus's homocentric spheres were 
primarily an ancient museum piece. Eudoxus's contributions to geometry, on the other 
hand, were still as relevant as ever. If Simplicius's taste was more philosophical than 
astronomical, he may have been naturally inclined to single out the "mathematically cor- 
rect" hippopede at the expense of several other alternatives whose days of astronomical 
usefulness have long gone by.29 

e. Difficulties Associated with the Astronomical Function of the Hippopede 

The reconstructions described in this discussion assume that the primary purpose of 
the hippopede in Simplicius's account is to generate the retrograde motion of a planet. 
To do that, the ecliptic component of the motion along the hippopede must exceed the 
rotational speed of the second sphere, which accounts for motion around the ecliptic. 
Now, the exterior planets Jupiter and Saturn retrogress many times during a single 
revolution around the heavens. This means that the third and fourth spheres rotate several 
times faster than the second sphere. In other words, the planet traverses the hippopede 
generated by the third and fourth spheres several times during a single revolution of the 
second sphere. Under such circumstances, motion even on a small hippopede becomes 
swift enough to produce retrograde motion, and, as Schiaparelli showed, hippopedes 
may be defined for these two planets to produce retrogressions of the correct arc lengths 
(see Fig. 14 and 15). 

The cases of Mars and Venus, by contrast, present severe difficulties because their 
rates of revolution around the sun are comparable to that of the earth. The case of Venus 
is the worst. The synodic period of Venus is 584 days. Being an interior planet, its ecliptic 
motion must be taken into account by a sphere that rotates once in 365 days. This means 
that its 3rd and 4thspheres rotate at 365/584, or 62.5% the speed of its ecliptic (2nd) sphere. 
In other words, Venus completes nearly two revolutions around the ecliptic for every 
retrograde episode in its composite motion. In order to give the planet sufficient speed 
around the hippopede so as to produce retrogressions, the size of the hippopede must 

29 That philosophical considerations favoring rigorous demonstrations over mechanical ar- 
rangements colored the observations of many late Hellenistic commentators - Simplicius included 
- on Greek geometry is argued in W.R. Knorr, The Ancient Tradition of Geometric Problems, (New 
York: Dover Publications, Inc., 1993), pp. 7, 364. 
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Figure 14 

Figure 15 

Figure 14 shows the hippopede created by the equal and opposite rotations of two spheres 
around axes that are inclined by 14° relative to one another. When a planet moving along this 
hippopede is simultaneously carried around the ecliptic at a rate that allows it to complete 1 1 
hippopedes in the course of one lap around the ecliptic, it traces the course shown in Fig. 15. 
Jupiter's sidereal period is 1 1 .86 years; its synodic period is 1 .092 years, so it completes about 10.8 
retrogressions during a single circuit of the ecliptic. Its deviation from the ecliptic in latitude is very 
small, and the arc length of its retrogressions is on the order of 15°. On the whole, then, the 

hippopede appears to provide a fairly good qualitative representation of its motion 
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Figure 16 

Figure 17 

Figure 16 shows a hippopede created by an inclination of 87° between the axes of the third 
and fourth spheres. Figure 17 shows the planetary trace created when the planet completes 88% 
of the hippopede by the time its ecliptic sphere completes a whole revolution, which represents the 
ratio of Mars's mean ecliptic motion to its synodic period. Note how far the planet is made to 
stray from the ecliptic while it traces two retrograde loops of small arc length in a single 

synodic period 
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be increased (note that the planet will complete 5/8 of its hippopedal motion regardless 
of the hippopede's size during one revolution of the 2nd sphere). In particular, a large 
angle of inclination (at least 100°) between the axes of the third and fourth spheres 
must be specified. Unfortunately, this produces an undesirable increase in the maximum 
angular breadth of the hippopede in addition to the desired increase in its angular length. 
Fortunately, Venus performs its retrogressions when it is close to the sun, which makes 
direct observation difficult. Martian retrogressions, by contrast, occur when Mars is in 
opposition to the sun, and are therefore not similarly rescued from observation. 

Mars circles the sun in 687 earth days and its mean synodic period is 780 days. 
That is to say, it must complete 88% of its hippopede by the time its ecliptic sphere 
completes a full revolution. The result of attempting to generate Martian retrogressions 
with a hippopede bears no resemblance at all to the observed ones. The hippopedal 
motion creates excessive deviations in latitude - dozens of degrees - from the ecliptic. 
Such deviations would place the planet well outside the zodiacal belt. Even the crudest 
of observations would have disclosed it, but nothing of the sort ever occurs (see Fig. 16 
and 17), and Simplicius did note that Eudoxus was criticized for the motion in latitude 

generated by his theory. 
This brings to mind the often-made statement that the hippopede's failure in the cases 

of Mars and Venus shows that it served only as a qualitative account of planetary motion 
and as no more than a demonstration of general feasibility.30 There seems to be little 
reason to doubt that Eudoxus's homocentric astronomy served primarily as a general, 
qualitative account and not as a precise quantitative model. At the same time, we ought 
to exercise some caution and be a bit more clear about what we mean by "qualitative." 
Hargreave's discussion suggests one meaning for "qualitative" in this connection.31 To 
be even moderately successful, any planetary theory must account for three readily 
observed phenomena: 1) All of the planets possess a mean eastward motion relative to 
the fixed stars; 2) the eastward motion is periodically interrupted by retrograde episodes 
during which a planet appears to move from east to west relative to the fixed stars; 
3) in addition to this motion in longitude - that is, along the ecliptic - each planet 
shows some latitudinal deviations from the ecliptic in the course of its motion. Look 

again at the theoretical Martian path in Fig. 17 created by the hippopede in Fig. 16. It 

possesses a mean motion around the ecliptic, it shows distinct retrograde phases, and it 

certainly produces latitudinal deviations from the ecliptic. So strictly speaking, there is 
no qualitative failure in the above sense of the word in Eudoxus's theory of Mars. At the 
same time, there is no denying the gross incompatibility of the theoretical and observable 

paths of Mars in retrogression. It appears, then, that Eudoxus's "qualitative" failure in 
the case of Mars boils down to these large deviations of theory from observation.32 To 

30 See, e.g. A. Aaboe, "Scientific Astronomy in Antiquity", Philosophical Transaction os the 
Royal Society of London, Series A, 276 (1974): 21-42, p. 40. 

31 D. Hargreave, "Reconstructing the Planetary Motions of the Eudoxean System," Scripta 
Mathematica, 28 (1967): 335. 

32 Heath stated that Eudoxus's Martian theory fails to produce retrogressions because inclina- 
tions larger than 90° are required for the two inner spheres, and that would make them rotate in 
the same direction. The problematic nature of this observation has been discussed in the previous 
sections, but regardless of this discussion, Heath's observation (which is common in the secondary 
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reject the theoretical trace as qualitatively unacceptable because of these deviations is to 

compare the shape of the theoretical trace to the observed traces with a definite criterion 
for qualitative lack of congruence. Unfortunately, this poses the difficult problem of 
deciding how large such deviations must be in order to be called a qualitative failure. 

Neugebauer appears to have used a somewhat different sense of the word "quali- 
tative" in this respect, which both sharpens the issue and avoids the hopeless problem 
of setting quantitative criteria for qualitative differences.33 Quantitative methods, he 
observed, appear to have become central to Greek astronomy only in the time of Hip- 
parchus, whose work was significantly enriched by exposure to Babylonian arithmetical 
astronomy. This suggests a sense of the word "qualitative" as opposed to "quantitative" 
that does not necessarily equate "qualitative" with "imprecise." The concepts of geomet- 
rical congruence and similarity are quite precise without being quantitative, and one may 
be qualitatively sensitive to very subtle differences between geometric forms. Subtle as 
they may be, however, such differences must remain qualitative as long as no method of 
quantifying the compared forms is available. This at once reveals the immense impor- 
tance of Hipparchus's new quantitative astronomy, without rendering the old qualitative 
astronomy insensitive to small differences of geometrical form. 

The distinction, then, is between quantitative and qualitative modeling, but "qualita- 
tive" in this sense does not mean "grossly inaccurate." The hippopede certainly produces 
retrograde motion, but for all intents and purposes, it is still a qualitative failure. Fig. 19 
shows the retrograde trace generated by a hippopede that creates three retrogressions 
per ecliptic revolution, which is about the ratio Eudoxus used for Mars according to 
Simplicius. Being 200% off the mark, this ratio is questionable, considering that current 
values for the synodic and ecliptic periods of all the other planets are well within 10% 
of the Eudoxian values, as the table below shows. Both Ideler and E.F. Apelt, who an- 
ticipated much of Schiaparelli's reconstruction, attributed the aberrant Martian synodic 
period to a scribe's error.34 Schiaparelli was more cautious, and quite reasonably pre- 
ferred to suspend judgement on the issue in the absence of other evidence.35 As Heath 

literature) is simply false: as Figs. 16 and 17 above show, an inclination of 87° clearly produces 
two small retrograde phases in the path of Mars. One may choose to follow Simplicius's lead, 
and nail Eudoxus's failure to the widely exaggerated deviations from the ecliptic, which exceed 
the observed ones by about 25°. However, consider that Mars's retrograde arc can be up to 19.5° 
long, while the retrogression produced by the Eudoxian theory as depicted in Fig. 17 is only about 
2°-3° long. Eudoxus's theory of Mars is an order of magnitude off both in longitude and latitude. 
The large deviations in latitude are perhaps the easiest to single out, but the traditional emphasis 
on latitudinal deviation in this context should be taken as a matter of convenience more than an 
identification of the fundamental problem. 33 O. Neugebauer, The Exact Sciences in Antiquity, 2nd edition, (New York: Harper & Brothers, 
1957), pp. 156-162. 34 Ideler, "Uber Eudoxus (Zweite Abtheilung)," Abhandlungen der Königlichen Akademie der 
Wissenschaften zu Berlin, (1830): 49-88, p. 78. E.F. Apelt, "Die Sphärentheorie des Eudoxus 
und Aristoteles," Abhandlungen der Friesischen Schule, Zweites Heft (Leipzig: Verlag von Wilh. 
Engelmann, 1849): 27-49, p. 42. 35 G. V. Schiaparelli, "Le Sfere Omocentriche di Eudosso, di Callippo e di Aristotele," in Scritti 
Sulla Storia della Astronomia Antica, 3 vols., (Bologna: Nicola Zanchelli, Editore), voi. 2, p. 71. 
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Planet Synodic periods ecliptic periods 
Eudoxus modern %error Eudoxus modern %error 

Saturn 390 days 378 days 3 30 years 29 years 166 days 2 
Jupiter 390 days 399 days 2 1 2 years 1 1 years 3 1 5 days 1 
Mars 260 days 780 days 200 2 years 1 year 322 days 6 
Venus 110 days 116 days 5 1 year 1 year 0 

Mercury 570 days 584 days 2 1 y ear 1 year 0 

already noted, a 3:1 ratio of synodic to ecliptic period would make Mars undergo two 
superfluous retrograde phases out of opposition in addition to the one in opposition, and 
that is undoubtedly the most significant discrepancy associated with this ratio.36 How- 
ever, even ignoring this discrepancy and restricting the comparison only to the theoretical 
and observed forms of the retrograde phase itself, the inadequacy of the hippopede im- 
mediately stands out. Basically, this is because a figure of 8 is not qualitatively similar to 
a simple stretched loop. In most cases, a retrogressing Mars describes a simple elongated 
and slightly skewed loop on the background of the fixed stars. The entire loop is located 
to one side of the ecliptic. By contrast, retrograde motion generated by Schiaparelli's 
hippopede is always exactly symmetrical with respect to the ecliptic, which is crossed 
by the theoretical planet precisely in the middle of the retrograde track. Furthermore, 
the retrograde path itself usually looks like a double loop that bears no resemblance to 
the observed motion.37 It takes no more than a score of random observations of Mars 
during the 5 months it takes to trace its retrograde loop to see that a hippopede could 
never produce an acceptable semblance of its trace, even if the hippopedal path has the 
correct arc length (compare Figs. 18 and 19). 

The only time that a hippopede could create a very rough semblance of a planet's 
actual retrograde path is when the middle of the retrograde phase occurs near the inter- 
section of the planet's path with the ecliptic, in which case the retrogression ceases to 
look like a loop, and assumes the form of a simple zig-zag motion. On the average, Mars 
traces such paths in about 3 out of 10 retrogressions. A closer comparison of such a path 
with the one created by a hippopede (see Figs. 20 and 21) again shows that because of the 
hippopede's crossing self-intersection and orientation relative to the ecliptic component 
of the motion, it makes the planet curve into and out of the retrograde track in a manner 
that cannot be reconciled with the observed trace. 

These qualitative incompatibilities between the observed and theoretical paths re- 
main blatant even when the observed path is traced only relative to the local group 
of stars that form its immediate background without reference to the ecliptic, which 
may not have been mapped out with sufficient accuracy for critical comparison with a 

36 Heath, Aristarchus of Samos, p. 210. 
51 See O. Neugebauer, A History of Ancient Mathematical Astronomy, Part 111, (Berlin: 

Springer- Verlag, 1 975), pp. 1 255-1 256 for illustrations of retrograde paths for Jupiter and Saturn. 
Mars's retrograde loops are considerably wider and more easily observable. 
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Fig. 18. Mar's between Leo and Virgo, 10/96-8/97; arc length M 9° 

x^x 
Fig. 19. Section of the stellar sphere (solid front, dotted back) showing parts of a hippopedal 
path around the ecliptic, with a retrograde loop (arc length ̂20°) created by a 35° hippopede 

with a period 3 times shorter than the period of ecliptic revolution 

planetary path in Eudoxus's time. In other words, it is difficult to see how the discrep- 
ancies between the observed and theoretical forms can be swept under the rug by any 
sensible use of the term "qualitative agreement" in this context. In principle, and regard- 
less of the particular difficulties introduced by the ratios of synodic to ecliptic periods 
for Mars, Venus, and Mercury, Schiaparelli's version of the hippopede simply cannot 
reproduce the basic form of planetary retrogressions. Indeed, Schiaparelli himself em- 
phasized precisely this qualitative incongruence of form in his general discussion of 
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Fig. 20. Mars in Libra, 12/83-10/84 

n7 „  -  : i 

Fig. 21. Section of the stellar sphere (solid front, dotted back), traversed by a 40° hippopede 
making two retrogressions per ecliptic revolution 

the Eudoxian theory,38 but he was not generally followed in this by later historians of 
science. Heath, to give but one example, devoted 3 pages to quantitative comparisons of 
observed and predicted arc lengths and breadths, without once noting the formal incon- 

38 G. V. Schiaparelli, "Le Sfere Omocentriche di Eudosso, di Callippo e di Aristotele,'* in Scritti 
Sulla Storia della Astronomia Antica, 3 vols., (Bologna: Nicola Zanchelli, Editore), voi. 2, pp. 75- 
76. 
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gruence between the theoretical and observed curves.39 Now, Eudoxus was arguably the 
greatest geometer of his time, and much of his work involved the study of geometrical 
forms - not merely straight-edged ones, but curved forms for the creation of which he 
constructed fairly elaborate instruments. To claim that he never engaged in systematic 
quantitative observations of planetary motion is one thing; it is quite another to claim that 
as a geometrician of his stature Eudoxus was insensitive to the incongruence between 
the trace generated by a moving hippopede and a rudimentary observation of Mars's 
actual path. This does not add up to a sufficient reason for rejecting Schiaparelli's inter- 
pretation, but the significance of his interpretation must be clear - it implies that Eudoxus 
never bothered to take more than a casual look at Mars in retrogression. 

In the past decade, Bowen and Goldstein produced a series of studies on the nature 
of early Greek astronomical observations.40 For the purposes of the present analysis, 
the relevant conclusion from Bowen and Goldstein's studies is that it would be unlikely 
for Eudoxus or Callippus to map and date the full course of Mars relative to the ecliptic 
with the precision required for a critical comparison with the theoretical alternatives 
described in this paper. That is to say, any discrepancy in a pointwise comparison of 
the theoretical and observed position of the planet at a given date relative to some 
global mapping scheme would fall well within the range of observational inaccuracy 
in Eudoxus's time. However, a different picture emerges if it is admitted that rather 
than the precise reproduction of the planet's location in real time, the desired object 
was to reproduce the basic form of the planet's retrograde path. To begin with, this 
harmonizes with the assumption that the Eudoxian (as well as the Callippic) scheme was 
a qualitative rather than a quantitative planetary theory. As interpreted here, the Eudoxian 
and Callippic theories were designed to address the departures of planetary motions from 
uniform rotation. In this framework, retrograde motion is clearly the primary problematic 
phenomenon, not the prediction or retrodiction of a planet's coordinates at a given date. 
Significantly enough, observational procedures that fall considerably short of Bowen and 
Goldstein's standards for being considered as precise, dated observations are more than 
sufficiently precise to reveal the inadequacy of the hippopede as a realistic retrograde 
generator. In other words, observational practices in violation of Bowen and Goldstein's 
conclusions need not be attributed to Greek astronomers of the 4th century BC in order 
for them to have shown that the hippopede could not pass the test of observation. To 
see this, consider that Mars's retrograde loops are not tiny forms that require refined 
instruments to be observed. They vary in arc length roughly from 1 Io to 19°, and their 
breadth ranges up to 2.5°. Using three or four prominent stars in the constellation against 
which Mars retrogresses, the form of its path can be easily traced by a small number of 
observations unsystematically spread over the course of five months without ever needing 
to measure angles in excess of 10°. No particular standard of angular measurement is 
required for this, nor does the planet's position need to be fixed relative to any global 

39 Heath, Aristarchus of Santos, pp. 208-210. 4U Of particular importance to this study are "Hipparchus' Treatment of Early Greek Astron- 
omy: The Case of Eudoxus and the Length of Daytime," Proceedings of the American Philo- 
sophical Society, 135 (1991): 233-254, and "The Introduction of Dated Observations and Precise 
Measurement in Greek Astronomy" A rchive for History of Exact Sciences, 43 (1991): 94-132. 
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coordinate system or a timed table of stellar risings and settings. Because of the small 
angles involved, the difficulties associated with the sectioning of a circle disappear, and 
the problem reduces to one of measuring linear separations on a practically flat patch of 
sky. In fact, a T-bar 1 meter long, with a 15 cm long cross beam on which 16 equidistant 
segments are marked provides a primitive dioptra capable of measuring small angles by 
increments of roughly 0.53°. Time measurements of any kind are not required. In other 
words, significantly less sophisticated observational techniques of a sort that is not ruled 
out by the conclusions of Bowen and Goldstein suffice for clearly demonstrating the 
inadequacy of Schiaparelli's arrangement as a basis for accounting for the appearances. 
We shall see that a similar comparison would also indicate some deviations from observed 
results on the part of the alternative reconstruction of Eudoxus's theory. However, as a 
step toward a qualitative theory the alternative certainly appears to point in the right 
direction, and, we shall also see, it could provide Callippus with a starting point to a far 
better theory than the one ascribed to him by Schiaparelli. 

All of this does not necessarily mean that the hippopede was completely unimportant 
in Eudoxus's astronomy, or that Simplicius's text is totally misleading, or that Schia- 
parelli's reconstruction should be rejected. It does not necessarily follow that Eudoxus 
and his contemporaries carried out certain observations just because such observations 
were within their capabilities. It does suggest, however, that if Schiaparelli's hippopede 
was central to the Eudoxian astronomical system, then Eudoxus's interest in elementary 
observational astronomy was at best marginal. It appears more likely in this case, that 
for Eudoxus the problem of accounting for planetary motion was no more than a spring- 
board to a purely mathematical problem of analyzing superimposed spherical rotations. 
We have seen that regardless of its astronomical usefulness the hippopede represents 
a triumph of geometrical analysis. Furthermore, Riddell has shown that Schiaparelli's 
arrangement with the third sphere rotating twice as fast as the fourth may be used as a 
mechanical contrivance for solving the problem of doubling the cube.41 This may be 
used to portray a Eudoxus who transported a primarily mathematical device into an as- 
tronomical context as a quick afterthought that he had no particular interest to follow up 
with observational comparisons. Unfortunately, we do not really know what Eudoxus's 
attitude to observational astronomy was. Strabo reported that Eudoxus had observato- 
ries in his home island of Cnidus and in Heliopolis, Egypt, which still existed in the 
time of Augustus when Strabo wrote about them.42 If the poem of Aratus is based on 

41 R.C. Riddell, "Eudoxan Mathematics and the Eudoxan Spheres" Archive for History of 
Exact Sciences;9 20 (1979): l-19,esp.pp. 14-17. 

42 The Geography of Strabo, 8 vols., Tr. H.L. Jones, (London: William Heinemann, 1908), vol. 
VIII, pp. 83-85 (C 806-C 807), ". . . for a kind of watchtower is to be seen in front of Heliupolis, 
as also in front of Cnidus, with reference to which Eudoxus would note down his observations 
of certain movements of the heavenly bodies." Strabo's story that Eudoxus visited Egypt with 
Plato for thirteen years, no less (alternative readings of three years and sixteen months have been 
suggested), seems rather questionable. But Strabo's indication that Eudoxus occupied himself with 
astronomical observations of some sort need not be discarded along with the less credible parts of 
the story. A. Berry, A Short History of Astronomy, (New York: Dover Publications, 1961, reissue 
of the original 1898 text), p. 29, took Strabo's testimony at face value, and thought of Eudoxus 
as an active observational astronomer. Paul Tannery, Recherches Sur L'Histoire De L'Astronomie 
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observations carried out by Eudoxus, then he did have more than a passing interest in 
active astronomical observations. 

We know that Eudoxus devoted a treatise to the theory of homocentric spheres, but 
neither it, nor any other astronomical work by Eudoxus and Callippus has survived. 
Later sources, particularly Ptolemy, do not refer to any observations by Eudoxus and his 
contemporaries for the purpose of ascertaining the form of planetary retrograde loops. 
But then, the sort of observations that Eudoxus was likely to carry out for this purpose 
would have been far too crude and imprecise for Ptolemy's more refined purposes, so 
he had little motivation for citing such old knowledge, even if it did exist. In the absence 
of any extant references to observations carried out by Eudoxus for the purpose of 
ascertaining the general shape of retrograde loops, we would normally conclude that he 
did not, in fact, engage in such observations. However, the general loss of nearly all the 
astronomical works from his period requires that we qualify such statements as follows: It 
seems more likely that Eudoxus did not embark on an observational program designed to 
elucidate the form of planetary retrogressions, but technically they were certainly within 
his reach, and for lack of sufficient evidence we cannot reject the possibility completely. 
Considering this, it seems unjustifiable to close our historical view to the possibility 
that observational planetary astronomy was of more than marginal interest to Eudoxus, 
and that consequently the hippopede as reconstructed by Schiaparelli could not play a 
central role in his planetary theory. 

f. Astronomical Advantages of the Alternative Interpretation 

From the astronomical point of view, the alternative arrangement possesses several 
decided advantages over Schiaparelli's, and goes a considerable way toward alleviating 
the difficulties outlined in the previous section. This is particularly true of the general 
alternative interpretation of Aristotle's text, but even the restricted alternative based on 
Simplicius's text creates more realistic depictions of planetary retrogressions than the 
hippopede of Schiaparelli's reconstruction. In the general case, the availability of two 
independent inclinations instead of one makes it possible to create simple long and nar- 
row loops lying along the ecliptic as opposed to the self-crossing figure of eight that 
characterizes the hippopede of Schiaparelli's interpretation. The addition of phase an- 
gles to the alternative arrangement skews the resulting loops relative to the ecliptic (see 
Figs. 8 and 9). When coupled to a rotating ecliptic sphere, this alternative arrangement 
gives rise to simple elongated and slightly skewed retrograde loops resembling the ob- 
served ones (see Fig. 10). We have seen in the previous section that the hippopede fails 
to provide an adequate semblance of Martian retrogressions even if the grossly erro- 
neous synodic period of 260 days is taken. This is no longer the case in the framework 
of the alternative arrangement. The loop it generates still diverges from the real one in 

Ancienne, (Paris: Gauthier- Villars & Fils, 1893, Reprinted by Arno Press, New York, 1976), 
pp. 44-45, who was equally aware of Strabo's testimony, remained unconvinced, and considered 
that Eudoxus's many interests suggest that he did not possess the patient character required for 
lengthy systematic observations. 
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details such as the particular curvatures of its upper and lower sections, the point of self- 
intersection, and its general position relative to the ecliptic (see Figs. 22 and 23). But it 
clearly possesses the correct qualitative form and all of the above discrepancies require 
far more precise observations and path analysis to perceive than those that characterize 
the comparison with the hippopedal traces.43 Having said all ofthat, it is not very likely 
that Eudoxus actually used 260 days for the mean synodic period of Mars, when the 
real figure is 780 days. When this number is used, the alternative interpretation, either 
in its restricted or general form, clearly diverges from observed Martian retrogressions. 
It is possible, for example, to enlarge the inclinations and to produce retrograde motion 
without unacceptable departures from the ecliptic. However, Figs. 24 and 25 below show 
that as the inclinations increase, they accentuate the differences between the geometry 
of a plane and the geometry of a spherical surface. In excess of a certain size, the al- 
ternative loop looks like a rubber band that overlaps itself twice instead of the merely 
larger ellipse that a deferent and an epicycle would create on a plane surface. A proper 
choice of phase angle will produce a looped retrogression, but the basic discrepancy of 
form clearly reveals itself by excessive motions in latitude that prevent the loop from 
assuming the long flat shape of typical planetary retrogressions. Hence, while the al- 
ternative arrangement satisfies the general requirement of qualitative representation of 
planetary retrograde motion, it still falls short of reproducing the particulars of Mars. 

Fig. 22. Mars between Leo and Virgo, 10/96 - 8/97; arc length -19° 

43 By varying the parameters (e.g. planet on latitude 17.5° measured from the pole of sphere 4, 
inclination of 18.5° between spheres 3 and 4, and a phase angle of 4°), the alternative arrangement 
can yield a far better qualitative semblance of the zig-zag path (shown in Figure 20 above) than 
Schiaparelli's hippopede. The zig-zag path can also be produced by the restricted form of the 
alternative arrangement (e.g. 18° for the inclination of spheres 3 and 4 and for the latitude of the 

planet on sphere 4, and a phase angle of 5°). 
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yy 
Fig. 23. The retrograde path generated by the alternative arrangement, with the planet carried on 
latitude 17° (measured from the pole) of sphere 4, an inclination of 19° between the axes of 

spheres 3 and 4, and a phase angle of 2°. The ratio of ecliptic to synodic period is 730/260 

From the point of view of historical reconstruction, this is precisely the sort of effect 
we need, because historical reconstructions of Eudoxus 's work that do allow him to 
account for the motions of the inner planets would be hard put to explain the references 
to Callippus, who found it necessary to amend Eudoxus's theory for Mars, Venus, and 
Mercury. Thus, contrary to the unavoidable implication of Schiaparelli's interpretation, 
we now have a Eudoxus who did capture the basic qualitative form of planetary retrograde 

Figure 24 

This content downloaded from 128.196.132.173 on Fri, 26 Sep 2014 22:57:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


256 I. Yavetz 

Figure 25 

Figure 24 shows the curve that results from the combined motion of the alternative arrangement 
with the planet on latitude 40° as measured from the pole of the fourth sphere, while the axes 
of the third and fourth spheres are inclined by 49° to each other and a phase angle of 4° is 
used. Figure 25 shows the trace that a planet leaves on the stellar sphere if it completes 88% of the 
curve in Fig. 24 by the time that its ecliptic sphere completes one full revolution in accordance 

with Mars's ratio of sidereal to synodic period 

Figure 26 
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Figure 27 

Figure 26 shows the curve generated by the alternative arrangement, restricted to two equal 
inclinations, 44° each, with a phase angle of 4°. Figure 27 shows the resulting planetary path 

around the ecliptic, when the Martian ratio of .88 for the sidereal/synodic periods is chosen 

motion, but left it for Callippus to produce a satisfactory account for the actual motion 
of the three inner planets. 

g. What Callippus May Have Done 

We know practically nothing about the details of Callippus's contributions, save the 
general statement that he added two spheres each to the motion of the sun and moon, 
and one sphere to each of Mars, Venus, and Mercury.44 For Mars, Schiaparelli showed 
how an additional sphere can create a curve more complicated than the hippopede with a 
construction that is a clever variation on his basic arrangement.45 The first two spheres, 
as before, account for the diurnal rotation and for motion in the ecliptic plane. Again 

44 See Heath, Aristarchus of Samos, pp. 212-213. 45 G. V. Schiaparelli, "Le Sfere Omocentriche di Eudosso, di Callippo e di Aristotele," in Scritti 
Sulla Storia della Astronomia Antica, 3 vols., (Bologna: Nicola Zanchelli, Editore), voi. 2, pp. 79- 
81. 
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as before, the third sphere's poles are attached to the second sphere at the ecliptic. The 
fourth sphere is inclined by 90° to the third, i.e., the pole of the fourth sphere rests on 
the equator of the third. The fifth sphere's pole is inclined at 45° relative to the pole of 
the fourth sphere, in the direction of the pole of the third sphere. In other words, the 
starting position has the pole of the fifth sphere halfway between the pole of the third 
and fourth spheres. The planet rests on the equator of the fifth sphere. The fourth sphere 
rotates twice as fast as the third, in the opposite sense of the third sphere's rotation. The 
fifth rotates at the same speed and direction as the third. (Note that by fixing the pole of 
the fifth sphere directly under the pole of the fourth, the fifth sphere is made to rotate at 
the speed of the third, but in the opposite direction. In other words, this would create a 
hippopede). The resulting curve lies symmetrically along the ecliptic. It is just over 90° 
long, and contains two triple points near its ends as Fig. 28 below shows. The advantage 
of this curve is twofold. To begin with, it is narrow, so that the planet's deviation in 
latitude does not exceed the observed deviation. Then, since the planet is made to spend 
a long time near the ends of the curve because of the extra loops it must perform there, 
its motion along the interior part of the curve between the two triple points is very quick. 
Therefore, this relatively small curve can generate retrograde motion even when the 

ecliptic period of the planet is shorter than the synodic period (which is the period of 
time it takes to complete a circuit of the retrograde generating curve). Retrograde motion 

may be obtained with this new curve for Mars, that has a ratio of 0.88 between its ecliptic 
and synodic periods (see Figs. 28 and 29). 

As Dreyer noted, the new curve crosses the ecliptic eight times - unlike the hip- 
popede, which crosses the ecliptic four times.46 In the course of a single synodic period, 
therefore, the planet would oscillate across the ecliptic several times more than it ac- 

tually does. The observational rejection of such a deviation, however, requires careful 

plotting of the planet's course around the entire ecliptic and comparison of this plot 
with the sun's motion. This involves systematic observations that are considerably more 

demanding than the few random observations relative to a single zodiacal constellation 
that suffice to portray the form of the retrograde phase itself. Unfortunately, even such 
a limited observation of just the retrograde portion of the planet's course is incongruous 
with the theoretical path created by Schiaparelli's arrangement, because planets never 
curve in and out of their retrograde phase as the model suggests. Furthermore, Mars in 

particular traces distinct loops, which Schiaparelli's arrangement cannot reproduce. In 
the case of Callippus, this requires us to stretch the meaning of "qualitative" agreement 
with the phenomena even beyond the level of discomfort associated with the case of 
Eudoxus. Recall that Callippus allegedly amended Eudoxus's solar theory because it 

yielded seasons of equal length. Callippus added two spheres to the sun's motion, pre- 
sumably to create a hippopede (or an alternative retrograde generating loop) much too 
small to produce retrograde motion, but sufficient to slow the sun down in part of its 
course and speed it up in the remaining part so as to produce four seasons of unequal 
length. It does not seem reasonable that the same Callippus, who supposedly worried 
about disagreements of one or two days out of 90 in the case of the sun, would allow 

46 J.L.E. Dreyer, A History of Astronomy from Thaïes to Kepler, (New York: Dover Publications, 
Inc., 1953 reprint of the 2nd edition, 1906), pp. 104-106. 
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Figure 28 

Figure 29 

Figure 28 shows the trace created by the arrangement used by Schiaparelli to reconstruct 
Callippus's variation on the Eudoxian theme. Figure 29 shows the path for Mars generated by this 
arrangement. Such traces, as explained above, occur only when the planet crosses the ecliptic 
during the retrograde phase. Note how the model makes the planet curve into and out of the 

retrogression in a manner that is never encountered in reality 
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significantly more blatant discrepancies between the theoretical and observed traces of 
planetary retrograde motion. 

It should be noted that the arrangement Schiaparelli used to reconstruct Callippus's 
amendment is useful only within a narrow range: it produces a retrogression generator 
in the form of a relatively long (approximately 90° of arc), narrow closed curve along 
the ecliptic if the angle between the fourth and fifth spheres is 45 °.47 However, for 
inclinations of 20 or 70 degrees, the arrangement creates quite unacceptable forms as 
Figs. 30 and 31 show. In other words, while the 90°, -45°, 90° arrangement above could 
provide barely acceptable retrograde motion for Mars, its one variable parameter (being 
the angle between the poles of the fourth and fifth spheres, set here to 45°) cannot be 
varied to accommodate the cases of Venus or Mercury. 

Echoing Schiaparelli, Heath referred to this arrangement as the simplest of several 
possible alternatives which he did not proceed to describe. Indeed, other variations using 
a fourth sphere that rotates twice as fast as the third, and a fifth sphere that rotates at 
the same speed and the same direction as the third are made possible by abandoning the 
restriction of the angle of inclination between the third and fourth spheres to 90°. For 
example, instead of the 90°, -45°, 90° arrangement that Schiaparelli showed, use 27°, 
53°, and 90°. This yields a hippopede that cannot be reduced to intersecting spheres and 
cylinders. It is very narrow, but spans an arc of 170° along the ecliptic. This would create 
a differently shaped retrogression for Mars (see Figs. 32 and 33). This form is acceptable 
for an ecliptic-crossing retrogression. As already noted, however, such retrogressions 
are relatively rare. 

In contrast with these variations on Schiaparelli's reconstruction, the alternative 
scheme creates none of the above difficulties when taken as Callippus's point of de- 
parture. The addition of a fifth sphere to the alternative interpretation is analogous to 
the development of the next term in a series expansion, and its effect is intuitively 
explicable. The additional sphere, placed beneath the fourth sphere of the original ar- 
rangement, makes the elongated, ellipse-like curve carry an additional epicycle to which 
the planet is attached. On the ecliptic, the long axis of the original curve is added to 
the (angular) radius of the epicycle, while at 90° from the ecliptic the short axis of the 
curve is subtracted from the epicycle's radius. This creates a longer and narrower loop 
as shown below. With a small phase angle as described in section c above, the new curve 
may be slightly rotated relative to the ecliptic. By specifying that 88% of this loop be 
traversed while its center of symmetry completes one revolution around the ecliptic, we 
can produce retrograde motion in accordance with the basic characteristics of Mars's 
motion (see Figs. 34 and 35). The graphs at the end of the appendix show that every form 
of Martian retrogression can be quite nicely reproduced with such a four-sphere arrange- 
ment. The position of the retrograde loops relative to the ecliptic, and the speed of the 

47 Schiaparelli noted that several alternative 3-sphere structures can create retrograde gener- 
ating curves in keeping with Callippus's needs, but did not proceed to describe them. Instead, he 
described only one arrangement and characterized it as the ". . . simplest way which preserves the 
natural limits of the [motion in] latitude. . . " G. Schiaparelli, Scrìtti Sulla Storia della Astrono- 
mia Antica, Vol. 2, (Bologna: Nicola Zanichelli, Editore), p. 79. Both Dreyer and Heath simply 
reproduced the figures from Schiaparelli's original paper. 
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Figure 30 

Figure 31 

Figure 30 shows the curve created by inclining the fifth sphere by 20° relative to the fourth 
in Schiaparelli's arrangement. The similarity between this curve and Schiaparelli's 
reconstruction of Eudoxus's hippopede is deceptive: unlike the hippopede, this figure of 8 is created 
by intersecting a sphere with a pipe that has an oval cross-section, not a circular one. Figure 31 
shows the curve resulting from inclinations of 90°, -70°, and 90°. Both generate retrograde 

traces that are unacceptable for reproducing planetary motions 
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Figure 32 

^^^2^^ 
Figure 33 

Figure 32 shows the modified figure of 8 generated by using angles of 27°, 53°, and 90° in 
Schiaparelli's scheme instead of the 90°, -45°, 90° used by Dreyer and Heath to illustrate the 
arrangement. Figure 33 shows the resulting planetary motion using Mars's ratio of synodic to 
ecliptic to synodic period (0.88). Retrograde motion is produced, but it still fails to reproduce the 

basic looped form that characterizes typical Marian retrogressions 
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Figure 34 

Figure 35 
Figure 34 shows the curve created by three spheres. The poles of the first are fixed to the ecliptic 
(depicted by the dotted great circle that bisects the two small latitude circles). The poles of the 
second are tilted by 17° relative to the poles of the first; the poles of the third are tilted by 45° with 
respect to those of the second, and the planet is placed on latitude 25° of the third sphere measured 
relative to its pole. By starting the planet at an angle of -.4° on its latitude relative to the 
ecliptic, the whole resulting curve is slightly turned with respect to the ecliptic. Figure 35 shows 
the trace that results when the planet is moved like Mars around the ecliptic, completing 88% of its 
motion around the curve of Fig. 34 by the time it completes one revolution around the ecliptic. 
The angle of view in Fig .35 is rotated to show a view of the retrograde phase as seen by an 
observer at the center of the stellar sphere. This should be compared with the observed retrogression 

of Mars in Leo from June '94 to April '95 
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planet in this theoretical course will not quite match the motion of Mars. The observation 
of such discrepancies, however, would require the sort of careful timed observations that 
are not evident in Greek astronomy prior to the third century BC at the earliest. Barring 
such errors, the general shape of the theoretical loop may quite reasonably be described 
as having excellent qualitative agreement with the observed trace of Mars's retrograde 
motion. Venus is slightly more difficult to satisfy, because its synodic period is only 5/8 
of its sidereal period, but here also, close likeness to its actual path may be obtained by 
selecting three larger inclinations for the three inner spheres to create a longer retrograde 
generating loop.48 

Figures 36-53 below demonstrate the ability of the alternative Callippic arrangement 
to reproduce the geometrical forms of individual Martian retrogressions. No attempt has 
been made to arrive at a precalculated best fit, which would be quite outside the most 
optimistic assessment of analytical abilities in classical Greece. The particular parame- 
ters for each retrogression represent one out of a range of possible choices that would 
satisfy a qualitative, visually gauged similarity of form. In all of the examples, the eclip- 
tic sphere rotates in the same direction (west to east relative to the stellar sphere), with a 
period of 0.88 of the synodic period, which is the time it takes for the three inner spheres 
to complete a single revolution (recall that relative to an observer on the ecliptic sphere, 
all three inner spheres appear to spin equally fast; the third and fifth spheres rotate in 
the same direction, the fourth spins opposite to them). The main retrogression features 
the various skew directions of the loops and their locations on both sides of the ecliptic, 
are all produced by small variations of the phase and three inclination angles, keeping 
constant their rotational directions and speeds of the spheres about their respective poles. 
All of the theoretical paths are traced on the back side of the stellar sphere, to present a 
view "over the shoulder" of an earthbound observer at the common center of the spheres. 
They show only a small area of the sky centered on the retrograde loop. In most cases, 
in addition to the retrograde loop, the figures contain a non-retrograde trace from Mars's 
previous passage through this area. These are irrelevant to the comparison, and may 
be ignored. In all cases, the ecliptic is marked by a series of dots more widely spaced 
than those that plot the retrograde trace. The reproductions of Martian motion based on 
modern calculations are plotted approximately in the same scale as the theoretical curves 
produced by the alternative Callippic arrangement. To facilitate comparison, the dots that 
mark the ecliptic in the Callippic figures have been plotted every 2° of arc. The angular 
size of each theoretical loop may be guaged against this measure, and compared to the 
sizes noted below each reproduction of Mars's actual motion. Note that while the forms 

48 Use, for example, angles of 23°, 60°, and 32° for the inclination between spheres 3 and 4, 4 
and 5, and the planet's latitude relative to the pole of the. (innermost) sphere 5 respectively, and a 
phase angle of 2°. Superimpose the resulting retrograde generating loop on a mean ecliptic motion 
whose period is 5/8 of the synodic period (being the time to go around the retrograde generator). 
This will result in a typically skewed retrograde loop roughly 10° long and 2° wide. Note again 
that comparison of the theoretical path with direct observation is practically impossible because 
of Venus's proximity to the sun. 
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of individual Martian retrogressions can be approximated quite well by the alternative 
Callippic arrangement of four concentric spheres, the location of the retrograde trace 
relative to the ecliptic can be up to 3° off. (For further details on the construction of the 
theoretical paths, see appendix, §&). 

Fig. 36. Mars in Leo, 9/79-7/80; loop size: 19° X 2G6' 

••*•*" . • * " 

Fig. 37. Phase angle: 0.3°, 1st inclination: 16.75°, 2nd: 44.5°, 3rd: 24.75° 

To the extent that reproducing the form of any given planetary retrogression was 
the problem to which Eudoxus and Callippus directed their efforts, it can be said that 
if Callippus developed the theory along the lines of the alternative reconstruction, then 
he successfully finished what Eudoxus had begun. All of this should not be taken to 
mean that Callippus solved the problem of planetary retrograde motion. Indeed, the 
alternative arrangement can reproduce a good likeness of any Martian retrograde loop. 
However, once fixed with a given set of specific parameters, the arrangement will keep 
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Fig. 38. Mars in Virgo, 10/81-8/82; loop dimensions: 18C32' X 0c33' 

.••*** « • * 

Fig. 39. Phase: 1.2°, 1st inclination: 17°, 2nd: 44°, 3rd: 24.75° 

reproducing the same retrograde loop over and over. The scheme cannot automatically 
reproduce the variation in the form of the retrogressions from one to the next. The 
inclinations and phase angle must be reassigned for each new variation, and even the 
rotational directions of the three inner spheres have to be reversed in order to create the 
full range of Martian retrogressions (the speeds remain constant and always reflect the 
mean synodic period of the planet). Absence of variability remains a general failure of 
any Eudoxian or Callippic theory. In other words, Callippus successfully finished what 
Eudoxus had begun only to the extent of retrospectively accounting for the geometrical 
form of any given Martian retrogression, but not to the extent of predicting the variations 
in form from one synodic period to the next. This, however, cannot be ascertained by 
random observations. One might carefully observe Mars in retrogression once, then 
choose appropriate parameters for the spheres to reproduce the motion. Slightly more 
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Fig. 40. Mars in Libra, 12/83-10/84; zigzag dimensions: 16C45' X 3°56' 

 
^..*  # 

Fig. 41. Phase: 2°, 1st inclination: 17.25°, 2nd: 42.5°, 3rd: 25.25° 

than two years later, another Martian retrogression might be observed, with the likely 
result of revealing the inadequacy of the previous choice of parameters. At this point, 
one might simply choose a new set of parameters, only to be frustrated again by the next 

retrograde phase. It takes systematic observations of Mars in retrogression for 15 years 
at the very least, and probably closer to twice as long, before any sense of the cyclical 
nature of these variations can begin to be perceived with any degree of confidence. There 

might not have been sufficient time for such data to be collected in Callippus's lifetime. 
However, the very existence of cinematic theories such as Eudoxus and Callippus created 
could provide a powerful incentive for systematic observations of planetary motion. That 
the earliest known records of such observations in Greece date back to the beginning of 
the 3rd century BC is again in accordance with the fact that Callippus flourished in the 
second half of the 4th century BC. 
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Fig. 42. Mars in Sagittarius, 3/86-1 1/86; loop dimensions: 1147' X Ie 1 Y 

Fig. 43. Phase: 1.4°, 1st inclination: 15.5°, 2nd: 38°, 3rd: 27°. 

Paul Tannery found it difficult to believe that with their cinematic theories explicitly 
formulated, none of Eudoxus's immediate followers was moved to observe the motions 
of the planets. He conjectured that no record of their observations survived because they 
were perceived as lecture experiments designed to demonstrate a theory rather than as 
research experiments designed for the critical evaluation of a theory.49 Regardless of 

49 "On pourrait les comparer à des expériences de physique d'amphithéâtre, non pas à des 
recherches de laboratoire." Paul Tannery, Recherches Sur L'Histoire De L'Astronomie Ancienne, 
(Paris: Gauthier- Villars & Fils, 1893, Reprinted by Arno Press, New York, 1976), p. 45. Heath 
viewed things differently: "Whether Callippus actually arranged his additional spheres in the way 
suggested by Schiaparelli or not, the improvements which he made were doubtless of the nature 
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Fig. 44. Mars in Pisces, 5/88-2/89; loop dimensions: 1 1°47' X 0°19' 

 __-. ~r-  V  

Fig. 45. Phase: -1.9°, 1st inclination: 16°, 2nd: 38.5°, 3rd: 26°. 

why certain records did or did not survive, there is nothing to prevent what might have 
started as a demonstration experiment from turning into a critical comparison of theory 
with observation. Furthermore, Tannery's conjecture notwithstanding, nothing that we 
know forbids the possibility that Eudoxus, Callippus, or any of their contemporaries, 
purposefully turned their attention to planetary retrograde motion for the purpose of 

assessing the value of their most recent theories on the subject. All of the alternative 
homocentric reconstructions of Eudoxus and Callippus's work that have been discussed 

indicated above; and his motive was that of better 'saving the phenomena', his comparison of the 
theory of Eudoxus with the results of actual observation having revealed differences sufficiently 
pronounced to necessitate a remodeling of the theory." (Heath, Aristarchus of Samos, p. 216). 
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Fig. 46. Mars in Taurus, 6/90-5/91; zigzag dimensions: 16°52' X 3°48' 

••*** • * * 

Fig. 47. Phase: -1.7°, 1st inclination: 17°, 2nd: 43°, 3°: 24.75° 

in this paper (Schiaparelli's included) are consistent with these possibilities. However, 
they differ in the degree of harmony between theory and observation that they entail. 
Unfortunately, without additional information it does not seem possible to decide how 
Eudoxus and his followers regarded the relationship between astronomical theory and 
astronomical observations. 

h. Conclusions and Conjectures 

In general, expositions of the Eudoxian system in the current secondary literature 
reflect Heath's assessment that Schiaparelli's interpretation ". . . will no doubt be accepted 
by all future historians (in the absence of the discovery of fresh original documents) as 
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Fig. 48. Mars in Gemini, 8/92-6/93; loop dimensions: 18°48' X 1°27' 

t.»* • . * 

Fig. 49. Phase: -0.8°, 1st inclination: 17°, 2nd: 44.5°, 3°: 24.75° 

the authoritative and final exposition of the system."50 This exclusive identification of 
the Eudoxian homocentric scheme with Schiaparelli's reconstruction seems unusually 
specific and ambiguity-free compared to our uncertain knowledge of other aspects of 

50 Heath, Aristarchus of Samos, p. 194. An exception to this rule is D.R. Dicks's measured 
observation that "Schiaparelli's reconstruction (which is, of course, hypothetical, since the geo- 
metrical details are nowhere given in the ancient sources) has been generally accepted, and the 
accounts of Dreyer and Heath are both closely based on it." (Early Greek Astronomy to Aristotle, 
[London: Thames and Hudson, 1970], p. 177). 
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Fig. 50. Mars in Leo, 9/94-8/95; loop dimensions: 19°22' X 2 31' 

• £**** 

yy"" 
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Fig. 51. Phase 0.1°, 1st inclination: 17°, 2nd: 45°, 3rd: 25° 

early Greek astronomical thought. By contrast, this study suggests that unless further 
evidence can be brought to bear on the subject, our knowledge of Eudoxian astronomy 
is not as unusual as might be gathered from Schiaparelli's reconstruction. Aristotle's 
text is equally interpretable either according to Schiaparelli or according to the general 
version of the alternative view described here. Accommodation of both Simplicius's 
and Aristotle's texts does call for a further restriction on the alternative interpretation of 
Aristotle's text, but it does not require a full reversion to Schiaparelli's interpretation. 
Furthermore, there is no a-priori requirement that all aspects of both texts need to be 
satisfied. In fact, Schiaparelli himself found it necessary to correct Simplicius on some 

points of Eudoxus's system. At present we have no hard evidence, direct or indirect, that 
enables us to make a sound choice between the various alternatives. Such a choice would 

rely too heavily on an unduly restricted interpretation of the single word "hippopede" 
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Fig. 52. Mars in Virgo, 10/96-8/97; loop dimensions: 19° 14' X Io 1 1' 

.***" . * * 

Fig. 53. Phase: 0.9°, 1st inclination: 17.25°, 2nd: 44.75°, 3rd: 25° 

written 900 years after the fact, in a second-hand account by a writer who proved himself 
less than reliable in the very same context. Of course, this does not give license to pick 
and choose from Simplicius's text at will without historical justification, but this applies 
with equal force to Schiaparelli's reconstruction, as well as the new alternatives that 
have been developed here. In the final analysis, given our present state of knowledge, we 
may only advance the alternative interpretations of Aristotle's testimony as possibilities 
to be considered alongside Schiaparelli's reconstruction, not as substitutes for it. With 
the paucity of information that characterizes the history of Greek astronomy in the 
4th century BC, it is practically impossible not to have several possible interpretive 
orientations, and it would appear that suspension of judgement is the better part of valor. 
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We may have to be content with the understanding that spherically symmetrical as- 
tronomy could have been considerably more flexible in ancient Greece than Simplicius 
and Schiaparelli suggest. As such it may have encouraged a great deal of speculative 
study within its framework and in its terms. Indeed, in its general Aristotelian version, 
this spherical astronomy is capable of supplying the basic concepts with which later 
thinkers could break its homocentric constraints and lead to the epicycloidal astron- 
omy of Ptolemy. The basic scheme illustrated in Figs. 4, 5, and 8 clearly indicates the 
deferent-epicycle arrangements that Apollonius began to study and that came to char- 
acterize Ptolemaic astronomy. Passage to the models of Ptolemy requires extrication of 
these superimposed rotations from the spherical surface, and embedding them in planes 
that are parallel, or nearly parallel to the plane of the ecliptic. This suffices to create 
the basic epicycloid evident in astronomy from Ptolemy to Copernicus. The alternative 
interpretation therefore suggests the possibility of a pre-existing geometrical motivation 
for this model and hence a natural conceptual affiliation between Eudoxus and Apollo- 
nius. The difficulties encountered by Eudoxus's system would thus not entail a complete 
overthrow of his geometrical tools, which with a relatively simple modification may have 
been found quite useful outside the general astronomical scheme that he wove around 
them. 

Finally, both Schiaparelli's reconstruction and the alternative outlined in this paper 
are in keeping with the presently accepted limitations on the state of observational as- 
tronomy prior to the work of Timocharis in the early 3rd century BC, but they suggest 
different possible reconstructions of the evolution of Greek astronomy following Eu- 
doxus. Under Schiaparelli's interpretation, the Eudoxian and Callippic models could not 
pass the test of rudimentary observations well within the capacity of Greek astronomers 
at the time. That such models were advanced just the same seems to indicate a rela- 
tively low level of interest in observational planetary astronomy, at least on the part of 
Eudoxus and Callippus. Schiaparelli's interpretation, then, depicts a wide gulf between 
theory and reality, and suggests a rather idealistic development of theory that was only 
marginally guided or corrected by observation. It inevitably leads to assessments such 
as the following from Pannekoek: 

The great Greek scientists were not observers, not astronomers, but keen thinkers 
and mathematicians. Eudoxus' theory of the homocentric spheres is memorable 
not as a lasting acquisition of astronomy but as a monument of mathematical 
ingenuity.51 

The alternative Eudoxian model leads to a Callippic system that has the theoretical 
capability of reproducing a good likeness of any planetary retrograde loop. However, 
even if this was the scheme used by Eudoxus and Callippus, it is still possible that both 
they and their contemporaries remained unaware of its full potential. Indeed, we do 
not even know whether Eudoxus or Callippus attempted to extract specific planetary 
retrograde loops from their possible arrangements of homocentric spheres, let alone 
compare them with actual observations. Consequently, the superior inherent capability 

51 A. Pannekoek, A History of Astronomy, (London: George Allen & Unwin, LTD., 1961; New 
York: Dover, 1989), p. 111. 
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of the alternative model does not necessarily imply a finer observational knowledge of 
the loops traced by retrogressing planets, and Pannekoek's judgement could hold equally 
true under the alternative interpretation as under Schiaparelli's. However, unlike Schia- 
parelli's reconstruction the alternative one also makes possible - though not necessary 
- a more harmonious depiction of the coexistence of theory with observation. The ob- 
servational practices required for such a coexistence are significantly less sophisticated 
than the precise dated observations of the 3rd century BC, but still sufficient for critically 
studying the primary astronomical phenomena that the theory was presumably designed 
to address, namely, planetary retrograde motion. Besides Pannekoek's view, then, the 
alternative interpretation also makes possible a more harmonious and gradual evolution 
of Greek theoretical and observational planetary astronomy from Eudoxus's and Cal- 
lippus's studies of phenomena localized in small areas of the sky, to Ptolemy's global 
mapping relative to a standardized celestial grid. While our current state of knowledge 
makes it more probable that Eudoxus and Callippus did not engage in the sort of ob- 
servations implied by this view, we do not possess sufficient evidence to reject it out of 
hand. 

Appendix 

a. Obtaining an analytical expression for the hippopede. 

Throughout the discussion, the observer's coordinate system is defined with the z- 
axis pointing northward on the page, the j-axis pointing east, and the x-axis pointing up 
from the face of the page. Positive rotations around any axis are defined by the right hand 
rule. We first generate the rotation operators (this is just for completeness of discussion 
here, they may by found in almost any text on classical mechanics). Rotate by angle a 
round the z-axis. This yields: 

z = z; xf = x cos a - y sin a; yf = x sin a + y cos a 

This may be represented by the matrix operation: 

"cosa -sin a 0~| |~jc~ 
sina cosa O y 
0 0 lj '_z_ 

where the 3x3 matrix represents the operator that rotates any point round the z-axis. It 
is easy to show by similar considerations that the operators for rotation around the y- 
and jc-axes are respectively: 

" 
cosß 0 sinßl |~10 0 

0 1 0 ; 0 cos y - sin y 
_ - sinß 0 cosß J Osiny cosy 

Using these, we create the hippopede in three steps: 
1) Turn a planet resting at (1,0,0) by a round the z-axis: 
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"cosa -sina 0~| [~1~| Teosa" 
sina cosa 0 0 = sina 
o o íj Loj L o 

2) Turn the result by y around the jc-axis to create the inclination between the poles 
of the outer and inner spheres. This will complete the function of the inner sphere: 

"10 0 "I fcos a "I F cosa 
0 cos y - sin y sin a = cos y sin a 
0 sin y cos y J |_ 0 J L sm Y sm a _ 

3) We now have to turn the outer sphere, namely the result of the first two operations, 
by an angle -a around the z-axis: 

cos a sin a 0 
" " 

cos a 
" 
cos2 a 4- cos y sin2 a 

- sin a cosa 0 cosy sin a = (cosy - 1) sina cosa (1) 
0 0 1 _ _ sin y sin a _ _ sin y sin a 

The right side of Eq. (1) will generate the hippopede when a is allowed to range from 0° 
to 360°. The size of the hippopede is determined by y . One can see that the relationship 
between the x and z coordinates is: 

(cosy- 1) 2 x = H  s  z , 
sin y 

which defines a parabola in the x - z plane, with the x coordinate as the axis of symmetry. 
If a parabolic sheet is created by extruding this parabola along the y-axis, then the 
hippopede is formed by the intersection of this sheet and a sphere. 

b. Derivation of the trace left on a sphere by the alternative scheme 

Consider a planet fixed on latitude 8 (measured from the pole) of a sphere. Fix this 
sphere inside another sphere, whose own pole is inclined to the pole of the planet carrier 
by an angle y. Spin the two spheres in opposite directions at equal speeds and observe 
the planet's motion. It is equivalent to the combined motion of an epicycle of angular 
size 28 on a deferent of angular size 2y lying on a spherical surface, and turning in 
opposite senses at equal speeds. The basic procedure is to tilt the vector (1, 0, 0) by 8 
around the j-axis, then turn it 2a round the jc-axis, then tilt the whole thing a further 
y round the j-axis, and finally turn by -a around the Jt-axis. The outcome results in 
the y-tilted center of 2a rotation being rotated around the jc-axis by -a, while the net 
rotation around this tilted pole is reduced to a. So we follow four distinct steps: 

1) Rotate the vector (1, 0, 0) by 8 round the j-axis, to create the rotating radius vector 
that will create the epicycle: 

cos 8 0 sin 5 ~| F 1 ~j F cos 8 
0 10 0 = 0 

_ - sin<5 0cos<$J [_0j L~sm^- 
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2) Turn this by 2a round the x-axis to start the epicyclic component: 
"10 0 "I F cos<5 "I I" cos 8 
0 cos 2a - sin 2a 0 = sin 2a sin 8 
0 sin 2a cos 2a J |_ - sin 5 J [_ - cos 2a sin 5 _ 

(Note that rotating twice by a gives the same result, as it must if the operators are to 
represent rotations properly). 

3) Tilt by y round the y -axis to place the epicycle on the circumference of a deferent: 

cos y 0 sin y "I 
" 

cos 8 cos y cos 8 - sin y cos 2a sin 8 
0 10 sin 2a sin 8 = sin 2a sin 8 

_ - sin y 0 cos y J - cos 2a sin 8 _ _ - sin y cos 8 - cos y cos 2a sin 8 _ 

4) Turn by -a around the jc-axis to move the center of the epicycle along the deferent, 
and reduce the epicycle's rotation to a: 

"1 0 0 ~| F cos y cos 8 - sin y cos 2a sin 8 
0 cosa sina sin 2a sin 8 = 
0 - sin a cos a J [_ - sin y cos 8 - cos y cos 2a sin 8 _ 

cos y cos 8 - sin y cos 2a sin 8 ~| 
cos a sin 2a sin 8 - sin a sin y cos <5 - sin a cos y cos 2a sin 8 

_ - sin a sin 2a sin 8 - cos a sin y cos 8 - cos a cos y cos 2a sin <5 J 

This yields the observer's coordinates for the resulting motion. 
More generally, the position of a point on a given latitude 0 measured relative to the 

x-axis of a sphere that rotates a degrees about the jc-axis may be specified by two matrix 
operators as follows: 

"10 0 "I I" coso 0 sino"! [~1~] |~jc" 
0 cos a- sin a 0 10 0 = y 
0 sina cosa J |_ - sino 0 coso J |_0j |_£_ 

To superimpose another spherical rotation on the above, apply another pair of matrix 
operators to the vector (x, y, z) with a new angle of inclination and a new rotation. This 
may be repeated any number of times, with different inclinations and different rotations. 
In the case of Callippus, we need three such operator pairs. The three angles of inclination 
must be chosen so as to create a retrograde-generating curve of the appropriate length 
and width, while the rotational angles must be a for the third sphere, -2a for the fourth, 
and 2a for the fifth. Throughout the operation, the coordinate system is fixed, and only 
the vectors are rotated. The coordinate system is chosen so that the x-axis points directly 
outward from the screen, the j-axis points horizontally to the right of the screen, and the 
z-axis points vertically up. The order, symbolically, is: [a+0]x[0]y [-2a]x[<5]y [2a]x[)/]y 
ex. Here exis a unit vector in the x direction, a is the running variable, 0 the phase angle 
(the angle between the long axis of the retrograde generator and the ecliptic), y is the 
latitude (measured from the pole, not the equator) of the planet on the innermost (5th 
overall) sphere, 8 is the inclination of the 5th sphere relative to the 4th, 0 is the inclination 
of the 4threlative to the 3rd, and the poles of the third sphere, as always, are fixed to the 
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ecliptic, being the equator of the 2nd sphere. The subscripts outside the brackets signify 
the axis of rotation, so that [y]y ex signifies a counter-clockwise rotation of (1,0,0) by 
y around the y-axis. To complete the picture, one more rotation around the y-axis is 
required to create the mean ecliptic motion of the planet, say [ß]y. Both ß and a are 
running variables, such that Aa/Aß= (synodic angular speed)/(mean ecliptic angular 
speed) = (mean ecliptic period)/( synodic period) for the planet under consideration 
(about 0.88 in the case of Mars). 

For instance, the curve in Fig. 34 was created by placing the planet on latitude 25° 
of the innermost sphere, which rotates about its axis at a speed of 2a. The innermost 
sphere's axis is inclined by 45° to the axis of the sphere above it, which rotates at a speed 
of -2a, and which is itself inclined by 17° relative to the axis of the next higher sphere 
which rotates at a speed of a. This last axis is attached to the ecliptic, and carried around 
it at the mean ecliptic period of the planet. To see how this creates the resulting curve, 
consider first that the axis of the innermost sphere is moving on the alternative Eudoxian 
curve created by placing a planet on latitude 45° of the Eudoxian 4th sphere whose axis 
is inclined by 17° relative to the Eudoxian 3rd sphere. This creates a curve with a 62° 
semi-major axis, and a 28° semi-minor. In the Callippean scheme, the planet is rotating 
on latitude 25° measured from a pole that follows the Eudoxian path. This results in a 
curve with an 87° semi-major axis, and a 3° semi-minor axis, which is reproduced in 
Fig. 34. In this figure the retrograde loop is situated to the left of the ecliptic. Planets 
sometimes retrogress to the left, and sometimes to the right of the ecliptic. Reflecting the 
retrograde loop in Fig. 35 to the right of the ecliptic requires reversing the direction of 
motion along the retrogression generator in Fig. 34. To obtain this effect, use inclinations 
of 20°, 42°, and 25°. This places the planet on latitude 25° of a spinning sphere whose 
pole travels along a Eudoxian generator with a same semi-major axis of 62° as before, 
and a semi-minor axis of 22°, as opposed to 28° before. Because the planet's latitude 
on the innermost sphere is now 3° larger than the difference between the 1st and 2nd 
inclinations instead of 3° smaller, the left and right sides of the resulting retrogression 
generator are switched, which has the effect of reversing the direction of motion. As Figs. 
6 and 7 show, the reversed generator is not exactly congruent with the generator in Fig. 
34, despite having the same semi-major and semi-minor axes (87° and 3° respectively). 
However, since the angular size differences between the inclinations that create the two 
versions are small, the divergence of form is negligible in application to the creation of 
Martian retrograde loops at the relevant level of accuracy.52 
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52 An early version of this paper was read at the Dibner Institute's Colloquium in the course 
of a Dibner fellowship for 1 996-97, during which much of the work on the paper was carried out. 
I thank Noel Swerdlow for several useful suggestions and critical remarks. 
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