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Abstract
A many-body system of N nonlinear ordinary differential equations of second
order which is amenable to exact treatments (a ‘goldfish’) (Calogero 2001
The neatest many-body problem amenable to exact treatments (a ‘goldfish’?)
Physica D 152–153 78–84) is shown to be equivalent through an exact
transformation to the equations of one-dimensional motion of (N − 1) free
particles (a school of free particles, indeed). The transformation is obtained by
applying the reduction method and Lie group analysis as introduced in Nucci
(1996 The complete Kepler group can be derived by Lie group analysis J. Math.
Phys. 37 1772–5).

PACS numbers: 02.20.Sv, 45.50.Jf

1. Introduction

In [1] Calogero derived a solvable many-body problem, i.e.

z̈n = 2
N∑

m=1,m�=n

żnżm

zn − zm

(n = 1, . . . , N), (1)

by considering the following solvable nonlinear partial differential equation:

ϕt + ϕx + ϕ2 = 0, ϕ ≡ ϕ(x, t)

and looking at the behaviour of the poles of its solution. In [3] the same system (1) was
presented, its properties were further studied and its solution was given in terms of the roots
of the following algebraic equation in z:

N∑
m=1

żm(0)

[z − zm(0)]
= 1

t
. (2)

In that paper, Calogero called system (1) ‘a goldfish’ following a statement by Zakharov
[21]. In the preface of [2], Calogero states: ‘By “amenable to exact treatments” we mean
that ( . . . ) significant progress can be made by “exact” (i.e., not approximate) techniques.’
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He then introduces three categories of problems—solvable, integrable, linearizable—(which)
are ordered in terms of increasing difficulty. In this paper we use the reduction method and
Lie group analysis as introduced in [16] to show that system (1) is more than solvable1 and
integrable2, it is actually linearizable, and can be transformed into the following trivial linear
second-order system of N − 1 equations

d2ũj

dỹ2
= 0 (j = 1, . . . , N − 1), (3)

which may be interpreted as the equations of one-dimensional motion of N − 1 free particles,
a school of free particles indeed.

Lie group analysis is the most powerful tool to find the general solution of ordinary
differential equations. Any known integration technique3 can be shown to be a particular
case of a general integration method based on the derivation of the continuous group of
symmetries admitted by the differential equation, i.e. the Lie symmetry algebra, which can
easily be derived by a straightforward although lengthy procedure. As computer algebra
software becomes widely used, the integration of systems of ordinary differential equations
by means of Lie group analysis is becoming easier to perform. A major drawback of Lie’s
method is that it is useless when applied to systems of M first-order equations4, because
they admit an infinite number of symmetries, and there is no systematic way to find even a
one-dimensional Lie symmetry algebra, apart from trivial groups such as translations in time
admitted by autonomous systems. One may try to derive an admitted M-dimensional solvable
Lie symmetry algebra by making an ansatz on the form of its generators.

However, in [16] we have remarked that any system of M first-order equations could be
transformed into an equivalent system where at least one of the equations is of second order.
Then the admitted Lie symmetry algebra is no longer infinite dimensional, and nontrivial
symmetries of the original system could be retrieved [16]. This idea has been successfully
applied in several instances [10, 16–18, 20]. Also in [12] we have shown that first integrals
can be obtained by Lie group analysis even if the system under study does not come from
a variational problem, i.e., without making use of Noether’s theorem [13]. We remark that
interactive (not automatic) programs for calculating Lie symmetries such as [14, 15] are most
appropriate for performing this task.

In the next section we show in detail how to transform (1) into (3). In the third and last
section we make some final remarks.

2. A school of free particles

Firstly we consider some particular values of N, i.e. N = 2, 3, 4, and then we consider
general N.

1 Solvable models are characterized by the availability of a technique of solution [2].
2 Integrable models are those for which some approach (for instance a ‘Lax pair’) is available [2].
3 We mean those taught in most undergraduate courses on ordinary differential equations.
4 Any undergraduate science/engineering student knows that an M-order ordinary differential equation can be
transformed into an equivalent system of M first-order equations. Less well known to students but common knowledge
among experts in Lie group analysis is the dramatic consequence that that transformation has on the dimension of
the admitted Lie symmetry algebra. In fact while the maximum Lie symmetry algebra admitted by a single M-order
equation is finite [5], the dimension of the Lie symmetry algebra admitted by a system of M first-order equations is
infinite.
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2.1. Case N = 2

In this case system (1) reduces to

z̈1 = 2
ż1ż2

z1 − z2
, z̈2 = 2

ż2ż1

z2 − z1
. (4)

If we introduce four new dependent variables w1, w2, w3, w4 such that

z1 = w1, z2 = w2, ż1 = w3, ż2 = w4 (5)

then system (4) becomes an autonomous system of four first-order equations, i.e.

ẇ1 = w3, ẇ2 = w4, ẇ3 = 2
w3w4

w1 − w2
, ẇ4 = 2

w4w3

w2 − w1
. (6)

If we follow the reduction method and introduce a new independent variable, say5 y = w1,
then system (6) reduces to the following non-autonomous system of three equations of first
order

w′
2 = w4

w3
, w′

3 = 2
w3w4

w3(y − w2)
, w′

4 = 2
w4w3

w3(w2 − y)
(7)

where ′ denotes derivative by y. If we derive w4 from the first equation of system (7), i.e.

w4 = w′
2w3

then we obtain the following system of two equations, one of first order and one of second
order

w′
3 = −2w′

2w3

w2 − y
(8)

w′′
2 = 2w′

2(w
′
2 + 1)

w2 − y
. (9)

It is noteworthy that equation (9) does not depend on w3, and that equation (8) can easily
be integrated as soon as the general solution of equation (9) is determined. Therefore, we
can apply Lie group analysis to equation (9) only. Using the interactive REDUCE programs
[14, 15], we obtain an eight-dimensional Lie symmetry algebra6 generated by the following
eight operators7

�1 = uy

u − y
(u2∂u − y2∂y), �2 = uy

u − y
(u∂u − y∂y)

�3 = uy

u − y
(∂u − ∂y), �4 = 1

u − y
(y∂u − u∂y)

�5 = 1

u − y
(∂u − ∂y), �6 = u2∂u + y2∂y

�7 = u∂u + y∂y, �8 = ∂u + ∂y

(10)

which means that equation (9), i.e.

u′′ = 2u′(u′ + 1)

u − y
, (11)

is linearizable by means of a point transformation [11]. In order to find the linearizing
transformation we have to look for a two-dimensional Abelian intransitive subalgebra [11],

5 We could have chosen any other dependent variable as the new independent variable.
6 This symmetry algebra is isomorphic to sl(3, R) [5, 6].
7 To simplify the notation we have replaced w2 with u.
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and, following Lie’s classification of two-dimensional algebras in the real plane [11], we have
to transform it into the canonical form

∂ỹ, ũ∂ỹ

with ỹ and ũ the new independent and dependent variables, respectively. We found that one
such subalgebra is that generated by �2 and �4 + �7, i.e.

�2 = uy

u − y
(u∂u − y∂y), �4 + �7 = 1

u − y
(u∂u − y∂y). (12)

Then, it is easy to derive that

ỹ = y + u = z1 + z2, ũ = yu = z1z2

and equation (11) becomes

d2ũ

dỹ2
= 0 (13)

which may be interpreted as the equation of one-dimensional motion of a single free particle.

2.2. Case N = 3

In this case system (1) reduces to

z̈1 = 2

(
ż1ż2

z1 − z2
+

ż1ż3

z1 − z3

)
,

z̈2 = 2

(
ż2ż1

z2 − z1
+

ż2ż3

z2 − z3

)
, (14)

z̈3 = 2

(
ż3ż1

z3 − z1
+

ż3ż2

z3 − z2

)
.

If we introduce six new dependent variables w1, w2, w3, w4, w5, w6 such that

z1 = w1, z2 = w2, z3 = w3,

ż1 = w4, ż2 = w5, ż3 = w6,
(15)

then system (14) becomes an autonomous system of six first-order equations, i.e.

ẇ1 = w4, ẇ2 = w5, ẇ3 = w6, ẇ4 = 2

(
w4w5

w1 − w2
+

w4w6

w1 − w3

)

ẇ5 = 2

(
w5w4

w2 − w1
+

w5w6

w2 − w3

)
, ẇ6 = 2

(
w6w4

w3 − w1
+

w6w5

w3 − w2

)
.

(16)

If we follow the reduction method and introduce a new independent variable, say8 y = w1,
then system (16) reduces to the following nonautonomous system of five equations of first
order:

w′
2 = w5

w4
, w′

3 = w6

w4
, w′

4 = 2

(
w5

y − w2
+

w6

y − w3

)

w′
5 = 2

(
w5

w2 − y
+

w5w6

w4(w2 − w3)

)
, w′

6 = 2

(
w6

w3 − y
+

w6w5

w4(w3 − w2)

) (17)

where ′ denotes derivative by y. If we derive w5 from the first equation and w6 from the
second equation of system (17), i.e.

w5 = w′
2w4, w6 = w′

3w4

8 We could have chosen any other dependent variable as the new independent variable.
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then we obtain the following system of three equations, one of first order and two of second
order

w′
4 = 2w4

w′
2(y − w3) + w′

3(y − w2)

(w2 − y)(w3 − y)
(18)

w′′
3 = 2w′

3
w′

2(w3 − y)2 + w′
3(w2 − y)(w3 − w2) + (w3 − w2)(w2 − y)

(w2 − y)(w3 − y)(w3 − w2)
(19)

w′′
2 = 2w′

2
w′

2(w3 − y)(w3 − w2) − w′
3(w2 − y)2 + (w3 − y)(w3 − w2)

(w2 − y)(w3 − w2)(w3 − y)
. (20)

It is noteworthy that the two second-order equations (19) and (20) do not depend on w4, and
that equation (18) can easily be integrated as soon as the general solution of system (19),
(20) is determined. Therefore, we can apply Lie group analysis just to the system (19),
(20), i.e.9

u′′
1 = 2u′

1
u′

2(u1 − y)2 + u′
1(u2 − y)(u1 − u2) + (u1 − u2)(u2 − y)

(u2 − y)(u1 − y)(u1 − u2)

u′′
2 = 2u′

2
u′

2(u1 − y)(u1 − u2) − u′
1(u2 − y)2 + (u1 − y)(u1 − u2)

(u2 − y)(u1 − u2)(u1 − y)
.

(21)

Using the interactive REDUCE programs [14, 15], we obtain a 15-dimensional Lie symmetry
algebra10 generated by the following 15 operators:

�1 = u1u2y
4∂y

(y − u1)(y − u2)
+

u4
1u2y∂u1

(−u1 + u2)(y − u1)
− u1u

4
2y∂u2

(−u1 + u2)(y − u2)

�2 = y3(u1y + u2y − u1u2)∂y

(y − u1)(y − u2)
− (−u1y + u2y − u1u2)u

3
1∂u1

(−u1 + u2)(y − u1)
− u3

2(u2y + u1u2 − u1y)∂u2

(−u1 + u2)(y − u2)

�3 = − u1u2y
3∂y

(y − u1)(y − u2)
− u3

1u2y∂u1

(−u1 + u2)(y − u1)
+

u1u
3
2y∂u2

(−u1 + u2)(y − u2)

�4 = y2(−4u2y − 4u1y + 3y2 + 8u1u2)∂y

(y − u1)(y − u2)
+

(8u2y − 4u1y − 4u1u2 + 3u2
1)u

2
1∂u1

(−u1 + u2)(y − u1)

+
u2

2(4u2y + 4u1u2 − 3u2
2 − 8u1y)∂u2

(−u1 + u2)(y − u2)

�5 = y(−u1u2 + y2)∂y

(y − u1)(y − u2)
− (u2y − u2

1)u1∂u1

(−u1 + u2)(y − u1)
+

u2(u1y − u2
2)∂u2

(−u1 + u2)(y − u2)

�6 = u1u2y
2∂y

(y − u1)(y − u2)
+

u2
1u2y∂u1

(−u1 + u2)(y − u1)
− u1u

2
2y∂u2

(−u1 + u2)(y − u2)

�7 = y∂y + u1∂u1 + u2∂u2

�8 = −y(−u2 − u1 + 2y)∂y

(y − u1)(y − u2)
+

(y + u2 − 2u1)u1∂u1

(−u1 + u2)(y − u1)
− u2(y + u1 − 2u2)∂u2

(−u1 + u2)(y − u2)

�9 = (y − u2 − u1)∂y

(y − u1)(y − u2)
− (y − u1 + u2)∂u1

(−u1 + u2)(y − u1)
+

(y − u2 + u1)∂u2

(−u1 + u2)(y − u2)

9 To simplify the notation we have replaced w2 with u2, and w3 with u1.
10 This symmetry algebra is isomorphic to sl(4, R) [5, 6].
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�10 = (−u1u2 − u2y − u1y + 3y2)∂y

(y − u1)(y − u2)
− (u1y + u2y + u1u2 − 3u2

1)∂u1

(−u1 + u2)(y − u1)

+
(u1u2 + u2y + u1y − 3u2

2)∂u2

(−u1 + u2)(y − u2)

�11 = y2∂y + u2
1∂u1 + u2

2∂u2

�12 = (u1 + u2)∂y

(y − u1)(y − u2)
+

(u2 + y)∂u1

(−u1 + u2)(y − u1)
− (u1 + y)∂u2

(−u1 + u2)(y − u2)

�13 = ∂y

(y − u1)(y − u2)
+

∂u1

(−u1 + u2)(y − u1)
− ∂u2

(−u1 + u2)(y − u2)

�14 = u1u2∂y

(y − u1)(y − u2)
+

u2y∂u1

(−u1 + u2)(y − u1)
− u1y∂u2

(−u1 + u2)(y − u2)

�15 = u1u2y∂y

(y − u1)(y − u2)
+

u1u2y∂u1

(−u1 + u2)(y − u1)
− u1u2y∂u2

(−u1 + u2)(y − u2)
(22)

which means that system (21) is linearizable [4, 19]. In order to find the linearizing
transformation we look for a four-dimensional Abelian subalgebra L4,2 of rank 1 and have to
transform it into the canonical form [19]

∂ỹ, ũ1∂ỹ, ũ2∂ỹ, ỹ∂ỹ ,

with ỹ, ũ1 and ũ2 the new independent and dependent variables, respectively. We find that one
such subalgebra is that generated by

X1 = �10 + �14 + �8 = y2∂y

(y − u1)(y − u2)
+

u2
1∂u1

(u1 − u2)(u1 − y)
+

u2
2∂u2

(u2 − u1)(u2 − y)

X2 = −�4 + 3�11 + 6�6 = (yu1 + yu2 + u1u2)X1

X3 = −�3 = yu1u2X1, X4 = 2�5 + �7 + 3�15 = (y + u1 + u2)X1.

(23)

Then, it is easy to derive that the linearizing transformation is

ỹ = y + u1 + u2 = z1 + z2 + z3

ũ1 = yu1 + yu2 + u1u2 = z1z2 + z1z3 + z2z3 (24)

ũ2 = yu1u2 = z1z2z3

and system (21) becomes

d2ũ1

dỹ2
= 0,

d2ũ2

dỹ2
= 0 (25)

which may be interpreted as the equations of one-dimensional motion of two free particles.

2.3. Case N = 4

In this case system (1) is

z̈1 = 2

(
ż1ż2

z1 − z2
+

ż1ż3

z1 − z3
+

ż1ż4

z1 − z4

)
, z̈2 = 2

(
ż2ż1

z2 − z1
+

ż2ż3

z2 − z3
+

ż2ż4

z2 − z4

)

z̈3 = 2

(
ż3ż1

z3 − z1
+

ż3ż2

z3 − z2
+

ż3ż4

z3 − z4

)
, z̈4 = 2

(
ż4ż1

z4 − z1
+

ż4ż2

z4 − z2
+

ż4ż3

z4 − z3

)
.

(26)

If we introduce eight new dependent variables w1, w2, w3, w4, w5, w6, w7, w8 such that

z1 = w1, z2 = w2, z3 = w3, z4 = w4,

ż1 = w5, ż2 = w6, ż3 = w7, ż4 = w8,
(27)
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then system (26) becomes an autonomous system of eight first-order equations. If we follow
the reduction method and introduce a new independent variable, say y = w1, then we obtain
a nonautonomous system of seven equations of first order. If we derive w6 from the first
equation of that system, w7 from the second equation and w8 from the third equation, i.e.

w6 = w′
2w5, w7 = w′

3w5, w8 = w′
4w5,

then we obtain the following single equation of first order:

w′
5 = −2w5((w3 − y)(w2 − y)w′

4 + (w4 − y)(w2 − y)w′
3

+ (w3 − y)(w4 − y)w′
2)/((w2 − y)(w3 − y)(w4 − y)) (28)

and the following system of three equations of second order11

u′′
1 = 2

(((
u2

3 − u3y − u′
3y

2 + (2u3 + y)(u3 − y)u′
2

)
y + ((2u′

3 + 1)y − u3)u
2
2

− ((u3 − 2y)u3 + (u′
3 + 1)y2)u2 − (u2 + u3)(u2 − y)(u3 − y)u′

1

)
u1

+ ((u2 − y)u′
3 + (u3 − y)u′

2)u
3
1 + (u2 − y)(u3 − y)u′

1u2u3

+ (u2 − y)
(
u2

3 − u3y − u′
3y

2
)
u2 − (u3 − y)u′

2u3y
2 + (((2u′

3 + 1)y − u3)y

−u2
2u

′
3 − (u3 + 2y)(u3 − y)u′

2 − ((u′
3 + 1)y − u3)u2

+ (u2 − y)(u3 − y)u′
1)u

2
1

)
u′

1/((u1 − u2)(u1 − u3)(u1 − y)(u2 − y)(u3 − y))

u′′
2 = (−2

(
(u2 − u3)(u2 − y)2(u3 − y)u′

1 − u3
2u

′
3y +

(
u2

2u
′
3 + u2u

′
2u3 − u2u

′
2y

+ u2u3 − 2u2u
′
3y − u2y − u′

2u
2
3 + u′

2u3y − u2
3 + u3y + u′

3y
2)(u2 + y)u1

+
(
u2

3 − u3y − u′
3y

2 + (u3 − y)u′
2u3

)
u2y + ((2u′

3 + 1)y − u3

− (u3 − y)u′
2)u

2
2y +

(
(u3 − y)u′

2u3 − u2
2u

′
3 + u2

3 − u3y − u′
3y

2 + ((2u′
3 + 1)y

−u3 − (u3 − y)u′
2)u2

)
u2

1

)
u′

2

)/
((u1 −u2)(u1 − y)(u2 − u3)(u2 − y)(u3 − y))

u′′
3 = (

2
(((

u2
2 + u3y

)
(u′

3 + 1) − (u3 − y)2u′
2 − (u3 + y)(u′

3 + 1)u2
)
u3y

− (u2 − u3)(u2 − y)(u3 − y)2u′
1 +

(
((u3 + y)u2 −u3y)(u′

3 + 1) + (u3 − y)2u′
2

− (u′
3 + 1)u2

2

)
(u3 + y)u1 +

(
(u2

2 + u3y)(u′
3 + 1) − (u3 − y)2u′

2

− (u3 + y)(u′
3 + 1)u2

)
u2

1

)
u′

3

)/
((u1 − u3)(u1 − y)(u2 − u3)(u2 − y)(u3 − y))

(29)

which admits a 24-dimensional Lie symmetry algebra isomorphic to sl(5, R) [5, 6], i.e. it is
linearizable [4, 19] by means of the following point transformation:

ỹ = y + u1 + u2 + u3 = z1 + z2 + z3 + z4

ũ1 = yu1u2u3 = z1z2z3z4,

ũ2 = yu1u2 + yu1u3 + yu2u3 + u1u2u3

= z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4,

ũ3 = yu1 + yu2 + yu3 + u1u2 + u1u3 + u2u3

= z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4,

(30)

and system (29) becomes

d2ũ1

dỹ2
= 0,

d2ũ2

dỹ2
= 0,

d2ũ3

dỹ2
= 0, (31)

which may be interpreted as the equations of one-dimensional motion of three free particles.

11 To simplify the notation we have replaced w2 with u2, w3 with u3, and w4 with u1. Note that equation (28) can be
easily integrated as soon as the general solution of system (29) is determined.
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We remark that without the help of Lie group analysis it would be quite impossible to find
out that the reduced system (29), which is even more complex than the ‘goldfish’ system
(14) in the case N = 3, is actually linearizable and also determine the transformation which
linearizes it.

2.4. Any N

It is now clear that to transform the ‘goldfish’ into a school of free particles, firstly we have to
reduce the N equation of second order (1) to an autonomous system of 2N equations of first
order by introducing the new dependent variables wk (k = 1, . . . , 2N) such that

z1 = w1, . . . , zN = wN, ż1 = wN+1, . . . , żN = w2N . (32)

If we follow the reduction method and introduce a new independent variable, say y = w1,
then we obtain the following non-autonomous system of 2N − 1 equations of first order

w′
2 = wN+2

wN+1

w′
3 = wN+3

wN+1

...

w′
N = w2N

wN+1

w′
N+1 = 2

N∑
m=2

wN+m

y − wm

(33)

w′
N+2 = 2

(
wN+2

w2 − y
+

N∑
m=3

wN+2wN+m

wN+1(w2 − wm)

)

w′
N+3 = 2


 wN+3

w3 − y
+

N∑
m=2,m�=3

wN+3wN+m

wN+1(w3 − wm)




...

w′
2N = 2

(
w2N

wN − y
+

N−1∑
m=2

w2NwN+m

wN+1(wN − wm)

)
,

where ′ denotes derivative by y. If we derive wN+2 from the first equation of system (33),
wN+3 from the second equation . . . , and w2N from the (N − 1)th equation, i.e.

wN+2 = w′
2wN+1, wN+3 = w′

3wN+1, . . . , w2N = w′
NwN+1,

then we obtain one (easy to integrate) equation of first order in wN+1, and a system of N − 1
equations of second order in uj = wN+1+j (j = 1, . . . , N − 1), which admits a Lie symmetry
algebra of dimension (N − 1)2 + 4(N − 1) + 3 = N(N + 2) isomorphic to sl(N + 1, R)

[5, 6], i.e. it is linearizable [4, 19] by means of the following point transformation:

ỹ = y + u1 + u2 + · · · + uN−1 =
N∑

n=1

zn

ũ1 = yu1u2 · · · uN−1 =
N∏

n=1

zn,

...



Calogero’s ‘goldfish’ is indeed a school of free particles 11399

ũN−2 = yu1u2 + yu1u3 + · · · + uN−3uN−2uN−1 =
N∑

n1,n2,n3=1
n1<n2<n3

zn1zn2zn3

ũN−1 = yu1 + yu2 + · · · + uN−2uN−1 =
N∑

n1,n2=1
n1<n2

zn1zn2

and system (1) becomes (3) which may be interpreted as the equations of one-dimensional
motion of N −1 free particles. We may also consider ỹ, ũj (j = 1, . . . , N −1) as the obvious
coefficients of the following polynomial of degree N in z:

N∏
n=1

(z − zn). (34)

Once the general solution of system (3) is trivially determined and substituted into the
polynomial (34), then its roots yield the general solution of system (1).

3. Some final remarks

The purpose of this paper was to exemplify once more the power of Lie group analysis. One
could know nothing about Calogero’s derivation of system (1) and still be able to unveil its nice
properties thanks to Lie’s method. We conjecture that other solvable many-body problems
could be ‘framed’ if the same technique that we have used in this paper is applied.

As Jacobi said in the introduction to his lectures on dynamics [8]:

· · · jeder Fortschritt in der Theorie der partiellen Differentialgleichungen auch einen
Fortschritt in der Mechanik herbeiführen muss12.

It is worth underlining the nature and extent of Jacobi’s influence upon Lie [7] especially as
this year is Jacobi’s bicentennial.

Finally, it is a remarkable happenstance that ‘the mathematical mermaid’, as the problem
of finding a third case of integrability of the problem of a heavy rigid body with a fixed point
was called [9], and Calogero’s ‘goldfish’, can each be ‘fished’ by using Lie group analysis as
we have shown in [12] and in this paper, respectively.
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