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S n m m a r y .  - -  The motion of the poles and zeros of special solutions of 
certain nonlinear and linear partial differential equations is shown to 
be interpretable in terms of equivalent many-body problems. Several 
solvable many-body models are thus introduced and discussed. The 
treatment is limited to problems involving a finite number of particles 
moving in one space dimension. 

1 .  - I n t r o d u c t i o n .  

The first idea to  inves t igate  the  t ime  evolut ion of the  positions of the  poles 
of special solutions of the Kor teweg-de  Vries (KdV) equat ion is due to  
KRUSKAL (1). This invest igat ion was pursued  b y  TtrrCKSTU~ (2), and  it  was 
grea t ly  advanced  b y  AXRAUL~, MoKEAN and  MosE~ (~), who uncovered  and  
discussed a r emarkab le  connection be tween  the  mot ion  of the  poles of ra t ional  
and  elliptic solutions of the  K d V  equat ion  and  the  t ime  evolut ion of cer tain 
one-dimensional  m a n y - b o d y  problems t h a t  h a d  been in t roduced some years  
ago in the  quanta l  con tex t  (4) and  whose integrable  charac ter  in the  classical 

(i) M.D.  KRUSKAL: T~evtures in Appl. Math., 15, Amer. Math. Soc. (1974), pp. 61-83. 
(2) W. R. THICKSTU~: Journ. Math. Anal. Appl., 55, 335 (1976). 
(3) H. AIRAULT, H. P. McK~.AN and J. MOS~R: Comm. Pure Appl. Math., 30, 95 (1977), 
hereafter referred to as AMM. 
(4) F. C~LOGV.RO: Journ. Math. Phys., 12, 419 (1971). 
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case had  been recent ly  demons t ra ted  (5), leading to the discovery of a number  
of r emarkab le  propert ies  and to the deve lopment  of various generalizations (6). 
AMM also invest igated,  in a similar manner ,  the Boussinesq equation.  Results  

analogous to and, iu certain respects,  more advnnced t h a n  those of AMM were 
obta ined  b y  the CttOOD.NOVSKY brothers ,  who moreover  inves t iga ted  the 
Burgers -Hopf  (BH) equat ion and the reby  considerably enlarged the scope 

of m a n y - b o d y  problems whose t ime  evolut ion can be shown to coincide with 
the t ime  evolut ion of the poles of (solvable) nonlinear par t ia l  differential equa- 

tions (7). I t  should also be ment ioned  t h a t  cer ta in equations,  suggestive, at  
least  in some special cases, of some of the  developments  studied in depths  b y  
AMM and CC, were previously given in a review pape r  by  DvBnowN,  MATVEEV 
and NovIKov  (8). 

The display of these relationships be tween finite-dimensional integrable 
dynamica l  sys tems and solvable nonlinear evolut ion equations ( that  m a y  
themselves  be considered infinitely dimensional  instances of integrable dynamica l  
systems,  as first po in ted  out by  FAm)E~V and ZA~HA~OV (9)) is of grea~ interest,  

especially in the light of the beaut i fu l  findings of AMM and CC; and no doubt  
much  remains  to be uncovered,  as emphasized by  AMM. Moreover,  these 
relationships m a y  be used to evince informat ion ou one type  of sys tem f rom 
the known propert ies  of the other.  In  p~rticular,  one m a y  discover in this 

w~y m~ny-body  problems t h a t  ~re (in some sense) solvable, being re la ted to  
par t ia l  differential equations whose t ime evolut ion is amenable  to amdysis.  
Le t  us recall  in this connection t h a t  the  number  of exact ly  solvable many-  
body  problems with pair  interact ions is, even  in one-dimensional  space, ex- 
t r emely  scarce; while their  interest  is clearly considerable, bo th  f rom a purely 
ma themat i ca l  point  of view and as a tool for the invest igat ion of physical  
applic,~tions. 

(5) J. Mos]~R: Adv. ~]Iath., 16, 197 (1975). 
(6) F. CALOGERO: Lett. Nuovo Cimento, 13, 411, 507 (1975); 16, 22, 35, 77 (1976); 
F. CALOGERO, C. ~[ARCHIOI~O and O. RAGNIS00: Lett. iVuovo Cimento, 13, 383 (1975); 
~I. A. 0LStIANETSKY and A. M. P~nnLOMOV: Lett. Nuovo Cimento, 16, 333 (1976); 
17, 97 (1976); Leg. ,]lath. Phys., 1, 187 (1976); Invent. Math., 37, 93 (1976); A.M. 
PERELO~IOV: Lett. Math. Phys., 1, 531 (1977); 1~[. ADLE~: Some ]inite.dimensional 
i~tegrable systems, in Proceedings o] the Co~t]erence on Solitons, Tucson, At., January 1976; 
T. KOTEnA and K. SAwADa: Journ. Phys. Soc. (Japan), 39, 1614 (1975); S. M. Woaci]~- 
CnOWSKI: Phys. Lett., 59 A, 84 (1976); .Lett. Nuovo Cimento, 18, 103 (1977); G. CASA~I 
and J. FonD: Jour~. Math. Phys., 17, 494 (1976); G. V. CHOODNOVSXu ~nd D. V. 
CHOODX-OVSKY: Lett. Xuovo Cimento, 291, 300 (1977). 
(7) D. V. CHOOD.~OVSKY and G. V. CHOOD:NOVSKu fVUOVO Cimento, 40 B, 339 (1977), 
hereafter referred r as CC. 
(s) B .A .  DUBgOWN, V. B. MATV~V and S. P. NovI~:ov: Usp. Math. ~Vauk, 31, 55 
(1976). 
(9) L. D. FADDEEV ~nd V. E. ZAKHAROV: F~tnk. Anal. Priloz, 5, 18 (1971). 
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In this respect, the problems discussed by AMM and CC are, however, not 
very useful. The many-body problems discussed by them are generally problems 
whose solvability had been demonstrated previously; indeed, this is one high- 
light of their findings. The relationship between the previously known many- 
body problems and the motion of the poles of special solutions of the nonlinear 
partial differential equations they consider is, however, sometimes not quite 
direct, so that  in some cases the motion of the poles does indeed provide novel 
examples of solvable many-body problems, l~or instance, CC have shown 
that  the poles x~(t) of an appropriate rational solution of the KdV equation 
evolve in time according to the equations of motion (10) 

(1.1)  ~ ( t )  = 2 ~' [:~(0- x~(t)] -" , j = 1,  2,  . . . ,  n ,  
/~,=1 

corresponding to n one-dimensional particles interacting via a pair potential 
inversely proportional to the fourth power of the interparticle distance. The 
solvability of this many-problem is a novel finding (11). However, it holds only 
in a very restricted subset of phase space, characterized by the 2n conditions (18) 

(1.2) ~' (x~-- x~) -a ~ 0, ~ ----- 1 ,2 ,  ..., n, 
k=l 

(1.3) ~;~ = ~ '  (~.__ ~)-2,  j = 1, 2, ..., n; 
/r 

a subset that  is nonvoid only for n----�89 q-1), p being a positive integer, 
and that ,  moreover, requires the x2s and ~ ' s  not to be all real. Clearly this 
last condition greatly reduces the relevance of this result to physics (13). 

The existence of constraints that  limit the co-ordinates xj (such as (1.2)) 
and[or the velocities ~ (such as {1.3)) is characteristic of the approaches of 
AMM and CC; indeed, as we discuss below, the presence of such constraints 
is an almost universal feature of the time evolution of the poles of nonlinear 
partial differential equations (the single exceptional case that  violates this 
rule is discussed in detail below); in fact, one advantage of the BH equation 
considered by CC is that  in that  case only a limitation on the velocities occurs, 
but no limitation on the pole positions; and the many-body problem being 

(lo) A prime appended to the symbol of summation always indicates that the singular 
term must be omitted. 
(11) This finding had also been derived from the results of AMM by CALOGV.RO and 
DEGASPERIS (unpublished). 
(13) Dots always indicate time differentiation. 
(18) One could, however, consider the time evolution of the real and imaginary parts 
of ~he pole positions. See, for instance, the third paper of ref. (8). 
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reproduced (7) is just t ha t  with a pair  potent ia l  proport ional  to the inverse 
square of the interparticle distance, namely the one tha t  has played a central  
role in these developments  (3-~). Also impor tan t  in this connection, i~deed 
most re levant  to the developments discussed in sect. 3 below, is the fact t ha t  
the B H  equat ion can be linearized by  a simple change of dependent  variable;  
it is, therefore,  substantial ly simpler than  the KdV or Boussinesq equations. 

The mailx focus of this paper  is on the derivat ion and discussion of many- 
body problems without constraints on the initial data, whose t ime evolution can 
be shown to coincide with the motion of the poles or zeros of (special) solutions 
of part ial  differential equations. Since these differential equations can generally 
be solved in ra ther  explicit form, it is the reby  generally possible to analyse 
in ra ther  explicit  detail  the corresponding ma, ny-body problems t h a t  we call, 
therefore,  <( solvable >>. 

In  sect. 2 we discuss the motion of poles of nonlinear part ial  differential 
equations, beginning from a simple ease (subsect. 2"1), extending it in various 
ways (subseet. 2"2, 2"3 and 2"4) and finally (subsect. 2"5) outlining a classi- 
fication of nonlinear equations tha t  implies tha t ,  in the f ramework of the ap- 
proach of ASIM and CC tha t  we also follow, no other  example besides our very  
simple (but ra ther  rich) one yields equivalent  many-body  problems without  
constraints,  and only the B H  equat ion t r ea ted  by  CC, as well as the higher- 
order B H  cases also considered by  CC, yield equivalent  many-body  problems 
without  any constraint  on the positions of the poles. 

In  sect. 3 we discuss mainly the motion of the zeros of linear part ial  differ- 
ential equations;  this investigation, suggested by  the results of CC for the B H  
equat ion and by  the results discussed in sect. 2, turns out to be very  fruitful  in 
the sense of generating several interesting examples of many-body  problems, 
of which only a few are discussed in detail. The t r ea tmen t  starts with a presen- 
ta t ion  of the basic formulae and procedure (subsect. 3"1); equations of motion 
of first order ( that  also yield many-body  models characterized by  equations 
of motion of second order, bu t  with constraints) are then  considered 
(snbsect. 3"2); finally, various models involving equations of motion of second 
order (without constraints) are t reated,  including cases with translation-in- 
var iant  forces (subsect. 3"3 and 3"4), with nontranslat ion-invariaut  interactions 
(subsect. 3"5) and with forces involving circular or hyperbolic  functions (sub- 
sect. 3"6). In  the discussion of the many-body  models of subseet. 3"5 an im- 
por tant  role is p layed by  the classical polynomials of Hermite ,  Laguerre and 
Jacobi;  indeed certain properties,  presumably new, of the zeros of these poly- 
nomials are also uncovered. 

Section 4 summarizes tersely the main results and mentions the directions 
of research tha t  ~re suggested by  these findings. I t  m ay  be a good idea to  
glance through this last section before delving into the body of the paper. 

The nota t ion is defined as the paper  unfolds; suffice here to note tha t  a 
variable (not an index !) appended as a subscript indicates par t ia l  differentiation, 
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and to  re i tera te  t ha t  the  dots indicate differentiation with respect  to  the  t ime 
variable t and t ha t  a prime appended to  the  symbol  of summat ion indicates 
t ha t  the  singular t e r m  in the  sum must  be omi t ted  (10,1~). 

2. - Mot ion  o f  poles  o f  n o n l i n e a r  ev o l u t i o n  equat ions  and related m a n y - b o d y  

problems.  

In  this section, t ha t  is divided in 5 subsections, we discuss the topic indicated 
in the  tit le.  Much of the  discussion is based on a simple example,  analysed 
in subsect. 2"1, and ex tended  in various directions in the  subsequent  3 sub- 
sections. This discussion originates several interest ing many-body  models, 
whose solutions are analysed in some detail. The last subsection discusses more 
general nonlinear par t ia l  differential equations and explains why it  should 
not  be expected  tha t  solvable many-body  problems wi thout  constraints be 
obtainable b y  these techniques used in connection with such equations. Thus 
for these equations the  s tudy of the  motion of the poles (of special solutions 
of the  k ind considered here, and previously b y  AMM, CC and others (1.3,7)) 
is not  a convenient  s tar t ing point  to generate many-body  problems t h a t  are 
bo th  interest ing and, in some sense, solvable. 

2"1. A s imple  example.  - Consider the  nonlinear par t ia l  differential equa- 
t ion (I') 

(2.1.1)  

I t  is immediate ly  solvable by  the  subst i tut ion ~----1/~p, since the  equat ion 
for ~ is the  l inear wave equat ion ~ -F ~ -  a~ ---- 1; thus  the solution of the 
initial-value problem for the nonlinear equat ion (2.1.1) is given by  the  explicit  
formula 

(2.1.2)  ~(x ,  t) = exp [ -  at] ~o(X- t)/{1 + ~o(X- t)[1 - exp [ -  ~]]/a}, 

where, of course, 

(2.1.3) qo(x) : ~(x, 0) .  

(14) Of course arbitrary constants can be inserted in front of each term of this equation; 
this corresponds to an appropriate rescaling of x, t and/or ~ itself. The arbitrariness 
implied by the possibility to rescale variables is generally used in the following in order 
to write equations as simply as possible; it is obvious how it could he exploited in each 
case to get more general formulae. Here we have kept the constant ~ for convenience 
(see below). 
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Consider now a special solution of eq. (2.1.1) having the form 

(2.1.4) q~(x, t) = ~ [x--  x;( t )]-~rj( t ) ,  

so tha t  7(x, t) is a rat ional  function of x, the qua.nti~ies xj(t)  and rj(t) being its 
poles and residues. 

The following formulae are immediate  consequences of (2.1.4): 

(2 .1 .5 )  cf~(x, t) = -- ~ [ x - -  x~(t)]-~rj(t),  
j=l .  

(2.1.6) 

(2 .1 .7 )  

n 

q~t(x, t) ---- ~ {[x-- x~(t)]-~r~(t)2j(t) -F I x - -  xj(t)]-~i ' j( t)},  
j = l  

~ ( x ,  t) = ~_, {[x -- xj(t)]-2r~(t) Jr- I x - -  xj(t)] -~ 2rj(t) ~ '  rk(t)/[xj(t) - -  xk(t)]}. 
j=l k ~ l  

Thus (2.1.4) satisfies (2.1.1) if and only if the following equations, t ha t  
obtain from the requirement  t ha t  the coefficients of the poles of first and second 
order vanish, hold: 

(2.1.8) 

(2.1.9) 

They imply 

(2.1.10) 

r~(t) = 1 -- ~j(t), 

i,j(t) ---- - -  ~ r ~ ( t ) -  2rj(t) ~ '  r k ( t ) / [ x f l ) -  x~(t)], 
k = l  

j = 1, 2, ..., n, 

j = 1, 2 , . . . ,  n. 

:~j(t) = ~ [ 1  - -  2~(t)] + 211 - -  2~(t)] i '  [1 - -  2k( t ) ] / [x~( t ) -  x~( t ) ] ,  
k = l  

j = 1, 2, ..., n.  

Note tha t  (2.1.10) in its tu rn  implies, for the (( centre-of-mass )) co-ordinate, 

n 

(2.1.11) X ( t )  = n -~ ~ ,  xj(t), 
1=1 

the simple equation 

(2.1.12) 2( t )  = a l l -  X(t)] ,  

t ha t  can be immediately integrated to yield 

(2.1.13) x ( t )  = x ( o )  + t + IX(o)- 1] [1  - exp [ -  ~t]]/~. 

F rom (2.1.2)-(2.1.4) we conclude tha t  the co-ordinates xj(t) are the n 
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solutions of the  algebraic equat ion in x 

(2.1.14) i [1 --  2~(O)]/[x-- t -- xj(O)] = --  a/[1 -- exp [-- at]] .  
3=1 

Thus, given x~(0) and &j(0), the  solution of the  (( equations of m o t i o n ,  (2.1.10) 
is reduced to  the determinat ion of the  zeros of an explicit ly given polynomial  

of degree n (15). 
Le t  us now in terpre t  (2.1.10) as the  equations of mot ion defining a many-  

body  problem. 
Consider first the  2-body case with ~ ~ 0. Then, set t ing x : x l - -  x2 and 

noting t ha t  (2.1.13) with ~ = 0 yields X(t) ---- X(0) 4- ~ (0 ) t ,  we get 

(2.1.15) 2( t )  = {411 - X ( o ) ] ~ -  [2(t)]~}/x(t), 

t ha t  can be immediate ly  in tegrated to  yield 

(2.1.16) 
{ [2(t)] ~ + K[x(t)] -~ = 411 -- X(0)] ~ , 

K = [x(0)]~{4[1- .~(0)] ~ -  [~(0)]~}. 

Thus in this ease the  t ime evolution of the  relat ive co-ordinate x is just  the 
same as for the  two-body problem with the  inverse-square potent ia l !  Explici t  
integrat ion yields 

(2.1.17) x(t) = {4t~[1-  X(O)] 2 -F 2tx(O)~(0) -4- x~(o)} t .  

A condition necessary and sufficient to  exclude vanishing of x(t) for  any  t is 

(2.1.18a) 

or equivalent ly  

(2.1.18b) 

211-X(o)1>1~(o)1,  

O - ~(o)] O -  ~(o)] > o.  

I ts  significance is clear; see also below. 
Le t  us now discuss the  n-body problem (2.1.10) for  a rb i t ra ry  n. I t  is t rans- 

lat ion invariant ,  bu t  nei ther  Galilei invariant ,  nor  (evidently) Hamil tonian.  
I t  becomes approximate ly  Galilei invar iant  and (evidently) t tamfl tonian  to  

(15) Let us recall in this connection that 0 L S H A N E T S K Y  and PEEELOMOV have also 
reduced the solution of the one-dimensional n-body problem with pair potential propor- 
tional to the inverse square of the interpar~icle distance to the search of the zeros of 
a polynomial of degree n, given explicitly in terms of t and of the initial data; see their 
papers listed in ref. (6). 
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the exten~ tha t  the  conditions 

(2.1.19) 12~(t)I << 1,  j = 1, 2, ..., n ,  

hold, in which ease the  ve loc i ty-dependent  t e rms  on the  r.h.s, of (2.1.10) can 
be dropped.  But ,  as we now show, this condition cannot  remain  val id for 

all t ime.  
To fur ther  discuss the m a n y - b o d y  problem (2.1.10), it is convenient  to go 

over  to the variables  

(2.1.20) y j ( t )  = x f f t )  - -  t ,  j = 1,  2 ,  . . . ,  n ;  

let us assume hereaf ter  t ha t  these are the  var iables  t ha t  represent  the  particle 
positions. This change of variables corresponds of course to a (Galilei) t rans-  

fo rmat ion  to a f rame  moving with unit  speed. 
In  the new variables  the  equations of mot ion  read  

(2.1.21) ~/~(t) = - -  @j(t) 4- 2y~(t) ~ '  ~ h ( t ) / [ y j ( t )  - -  yk(t)], j = 1, 2, ..., ~. 
k=l  

These equat ions of mot ion imply  t h a t  the  speeds yj(t) cannot  change sign 
th roughout  the motion.  Moreover,  the second t e rm  on the r.h.s, represents  
a two-body interact ion t ha t  is singular at  zero interpart iele  separat ion and tha t  

is a t t r ac t ive  or repulsive depending on whether  the two particles have  speeds 
of opposite or equal  signs. Thus,  if init ially the speeds do not all have  the  
same sign, adjacent  part icles with speeds of different signs approach  each 
other  and  m a y  eventual ly  collide, producing at  a finite t ime a singulari ty 
((~ collapse @; the na tura l  cont inuat ion of the  solutions beyond  the t ime of 
encounter  yields complex conjugate  values for the  corresponding part icle 

eo-ordina.tes. I f  ins tead the part icles all have  velocities of the  same sign, no 
collapse occurs and of course the  ordering of the  particles on the line does not  
change th roughout  the  motion.  Since this l a t t e r  ease allows a more straight-  
forward physical  in terpreta t ion,  we begin the  following discussion f rom this 

e a s e .  

Assume, therefore,  tha t ,  say (~s), 

(2.1.22) ~ j >  0 ,  j = 1, 2, ..., n ,  

and, moreover,  for definiteness, t h a t  

(2.1.23) Yi < YJ+I, j : 1, 2, ..., n - -  1 

(t6) A particle with vanishing velocity has no interaction; thus it remains seated at 
his phee and it can simply be ignored. 
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(note t ha t  what  was just  wri t ten implies t h a t  both these conditions, if valid 
at  t = 0, remain valid at  all (finite) times). 

The previous analysis implies tha t ,  for given initial conditions yj(O), ~)j(O), 
the solutions yr of the equations of motion (2.1.21) are the n solutions of the 
equation in y 

(2.1.24) ~ ~)~(0)/[y-- y,(0)] = a / [1--  exp [-- at]] .  
]=1 

A convenient and, i l luminating point of view to discuss this equation is 
based on the graphical representation of the 1.h.s. as a function of y (note t ha t  
this function has poles, with positive residues, for y = y~.(0), and tha t  i t  de- 
creases everywhere). I t  is then  easy to read off graphically the t ime evolution 
of the co-ordinates y~(t); and in particular one gets the following asymptot ic  
behaviours: 

(2.1.25) lira [y~(t)] = bj(oO, j : 1, 2, ..., n ,  
$-..+r 

(2.1.26a) lira [y~(t)] ----- a~_~, j =- 2, 3, ..., n ,  

n 

(2.1.26b) yl(t) = - ~-~ exp [ -  at] [ ~ y~(0)] {1 + 0 [exp  [at]]}, ~ -~ - -  ~ ,  
9=1 

where the quantities b~(a) are the n solutions, ordered so t ha t  bj+l(~)> bj(cr 
of the algebraic equation in b 

(2.1.27) ~ ?~a(O)/[b-- yj(O)] = or, 

while the quantities at are the n -- 1 (finite) solutions, ordered so t ha t  aj+~ > ar 
of the same equation with a---- O, namely of the algebraic equation in a 

(2.1.28) ~ ?~r yj(0)] : O. 

These results hold for a > 0 ;  if instead a < 0 ,  the same results obtain,  
except for the exchange of t with -- t. 

For  ~ = 0 one gets instead, for t -->--  cr 

(2.1.29a) 

2.1.29b) 

and, for t --> -4- c~, 

(2.1.30a) 

(2.1.30b) 

yl(t) = vt + ao + 0 @ - 9 ,  

y,(t) = a~_, + o(I t l -q ,  

yr ---- aj -~ OCt-l), 

y . ( t )  ---- vt -{- ao -4- O(t-1) , 

j : 2, 3, ...~ n,  

j = 1, 2, . . . ,  n - -  1, 
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where 

n 
(2.1.31) v = }~j (O) ,  

J=l  

(2.1.32) ao = ~ ( 0 ) y j ( O ) / v ,  
j = l  

and the aj, j = 1, 2, ..., n - - 1 ,  are defined as above,  namely  as the roots, 
ordered in increasing order, of eq. (2.1.28). 

This la t ter  example  with a ~ 0 is par t icular ly  amusing;  it corresponds to 

a m a n y - b o d y  problem with only interpart ic le  forces (see (2.1.21)), whose 
(, centre of mass ~) 

n 
(2.1.33) Y(t) ---- ),~--1 ~ yj(t) 

t = l  

moves freely with speed I 7 = v/n: 

(2.1.34) I~(t) = ( v / , ) t  4- I7(o); 

in the remote  pas t ,  it sees n - -  1 particles (almost) (16) at  rest  at  the  positions 
aj and one particle coming in (say, f rom the far  left) with veloci ty v; a t  any  
in termedia te  t ime,  it sees all the particles moving  towards  the  r ight ;  in the 
remote  future,  it sees again n - -  1 particles (almost) at  rest  exact ly  in the  same 
positions as in the renmte  pas t  except  for the fact  t ha t  each particle has moved  
one p]aee to the right,  the first part icle sett l ing down in the first location al,  
while the last  is escaping to the r ight  along the  same t ra jec tory  t h a t  %he 
particle coming initially f rom the left would have  followed had  it  been free 

to move  through the  others (as it would have  been the ease if the other  n - -  1 
particles had  been exactly at  rest  initially). 

Le t  us now discuss tersely the  case in which the  (initial) condition (2.1.22) 
does not hold. The t ime evolution of the co-ordinates yj(t) is still de termiued 
by  (2.1.2~), and a graphical  representa t ion  of the 1.h.s. of this equat ion as a 
funct ion of y is still the  best  approach for the analysis.  Given the initial  con- 

ditions y~(0), ~j(0), now there are two possibilities for the future  evolution of 
the  sys tem:  either no collapse occurs, and in such a case the  a sympto t i c  be- 
haviour  of the sys tem is the same as tha t  described above by  eqs. (2.1.25), 
(2.1.27), (2.1.28), (2.1.30), (2.1.31) and (2.1.32) ; or, at  a finite t ime,  two particles 
collide, disappearing af ter  tha t  into the complex plane (whence they  might  
even re-emerge,  at  a different location, at  a la ter  t ime!) .  Which one of these 
two possibilities prevails,  and, in the second ease, when and where the  collapse 
occurs is immedia te ly  evident  f rom the graph  of the 1.h.s. of (2.1.24) and f rom 
the (very simple) funct ion of t ime  t h a t  appears  on the r.h.s, of this equat ion;  
thus we shall not  e laborate  this point  any  further .  Clearly, for given initial 
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conditions y~(O), ~,(0), it  is always possible to chose a sufficiently large (positive) 
value of a to exclude the occurrence of collapse; since the presence of the a-term 
(with ~ > O) has the  effect to  slow down every particle, this  fact has a very  
clear physical meaning. In  a similar manner  i t  is possible to analyse the past 
behaviour of the system, and/or the case with a <  O. 

Let  us emphasize tha t  the many-body problems we have discussed, peculiar 
as they  are due to the presence of velocity-dependent forces and trivial as they  
are due to the simplicity of their  solution, do not  involve any  constraint on 
the positions or velocities at  the initial t ime t = 0 (other than  some inequalities, 
such as (2.1.22), to exclude collapse). 

Note finally tha t  introduction of novel co-ordinates z~(t) through the position 

(2.1.35) y,(t) ---- exp [zr j = 1, 2, ..., n ,  

transforms (2.1.21) into 

(2.1.36) ~j(t) = -- $~(t)[~($) ~- a] -]- 2$j(t) ~ '  $~(~)/(exp [z~($) -- z~(t)] -- 1}, 

j = 1, 2, ..., n.  

Thus the many-body model characterized by  these (translation invariant) 
equations of motion is also solvable (for a more general version of this model, 
and a more detailed discussion, see subseet. 3"4). 

2"2. An extension: non-translation-invariant problems. - More general sol- 
vable many-body models can be generated by  noting t h a t  (2.1.4) implies, 
besides (2.1.5)-(2.1.7), the equations 

(2.2.1) x~ = ~ { [ ~ -  

(2.2.2) x~o~ = -  ~ { [~ -  

(2.2.3) ~ , ~ o , = -  ~;ff~- 

(2.2.4) x~, = ~ { [ ~ -  

(2.2.5) 

(2.2,) 

m,]-*m,", + r,}, 

x,]-'o~,r, + [ x -  oo~]-'r~}, 

x,]-'~r, + Ix -  x,]-12x, r, + rJ , 

x~]-'&xjrj + [ x -  xj]-l(~rj + x ~ )  + ~j}, 

k , , , 1  

�9 - - 2  2 2 oo,] x,r, + 

/e=l ~1 
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Thus to the nonlinear part ial  differential equat ion 

(2.2.7) (Ao + A~x)~ § (Bo § B,x)~ § 

~- (Co + C~x ~- C~x~)q~ q- (Do ~- D~x + D:x~)cf ~ ~- 0 

there corresponds for the poles x~(t) nnd residues r~(t) the  2n ~ 1 equations 

(22.s) 

(2.2.9) 

n 
o 2 / 

~- (D~ -- 2D2x~)r; +2(Do  @ D~xj @ D2xj)rj ~ rd(xj-- xk) = O, 

n n n 

(2.2.10) A~2~j~-[B~--C~-~D. ,~r~]~_r~=O. 
: i = l  ~i j = l  

r~ ---- [Co ~- C~xr ~- C2x~ -- ~j(Ao -~ A~x~)]/(Do ~- D~x~ -~ D~x2~), 

j ~ 1~ 2,..., n, 

(Ao§ A~2jrj§ [Bo-- G -b ( B ~ - 2 G ) x 3 r j §  

j ~ 1, 2, ..., n, 

We have omit ted for notat ional  simplicity to indicate explicitly the t ime de- 
pendence;  note tha t  there is no a priori need to exclude tha t  also the coef- 
ficients A ,  B~, C~ and D~ be t ime dependent .  

Subst i tut ing (2.2.8) in (2.2.9)~ one gets n (~ equations of motion ~> for the n 
quantit ies xj, tha t  are, however,  generally not  t ranslat ion invariant  (and also 
not very  appealing); while care can be t aken  of the constraint  (2.2.10) by  an 
appropriate (if need be, t ime dependent)  choice of A~, B~, C2 and D2, the simpler 
possibility is of com'se the choice A~ = D2 ---- 0, B1 = C,. 

On the other hand,  the nonlinear part ial  differential equat ion (2.2.7) can 
be reduced, by the simple change of dependent  variable 

(2.2.11) 

to the linear equat ion 

q~(x, t) = 1/w(x, t),  

(2.2.12) (Ao § Alx) y~,- (Bo § B~x) ~ + 

+ (Co + G x  § Gx  ~) ~ = Do q- D~x § D~x. 

The corresponding initial eonditioi1 is clearly 

n 

(2.2.13) w(x, o) = 1/~:  I x -  x~(o)]-~ r~(o). 
j = 0  

Thus the function ~o is completely determined,  at the initial t ime t ~ 0, 
by  the initial positions x~(0) and velocities 2j(0) ( through (2.2.13) and (2.2.8)) ; 
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its subsequent time evolution is provided by the linear first-order partial dif- 
ferential equation (2.2.12); and the positions of its zeros x~(t) coincide, as im- 
plied by (2.2.11) and (2.1.4), with the solutions xj(t) of the (~ many-body problem ~ 
that  obtains from (2.2.8) and (2.2.9). 

~ote  finally tha t  the same approach could also be extended to equations 
for ~ analogous to (2.2.7), but  involving higher powers of x; and transformations 
of the (( particle variables,  analogous to (2.1.20) and/or (2.1.35) could also be 
used to enlarge the scope of many-body problems solvable by this technique. 

2"3. Another extension: periodiv and hyperbolic/orees. - In this section we 
apply first of all an extension technique that  is often used in the context of 
this type of problems, and in this manner we obtain novel solvable many-body 
problems with periodic and hyperbolic potentials. But these results, obtained 
by a cavalier procedure involving infinite series, are in fact incorrect. They 
are however suggestive; and we the~ proceed to a more careful derivation, 
thereby obtaining the correct version of these results. 

The starting point of the more cavalier analysis is the many-body prob- 
lem (2.1.21), where we now assume that  there exist an infinite number of 
particles, arranged according to the following configuration: to every one of 
the n co-ordinates yj an infinity of other particles is associated, whose co-ordinates 
zj, are related to yj by the formula 

(2.3.1) zj~ = yr + ~s/~, s = • 1, ~: 2, .... 

I t  is reasonable to assume, for symmetry reasons, that  such a configuration 
is maintained throughout the time evolution, provided the initial velocities 
of all these particles coincide, namely 

(2.3.2) ~js(o) = ~ ( o ) ,  j =  l ,  2, . . . ,  n, s =  •  •  . . . .  

We therefore focus in the following only on the time evolution of the y/s ,  
interpreting these quantities as the co-ordinates of n particles. 

By using the well-known formula 

(2.3.3) ( ~ _  ~)-1 _ I~-' + 2t~ ]~ (t~ ~ -  8~)-~ = ~ ctg ~t~, 

and by ignoring any convergence problem, it is then easy to derive from (2.1.21) 
the equations of motion 

(2.3.4) ~(t) = ~ cr -~- 2fl~j(t) ~ '  ~(t) c tg f l [y j ( t ) -  y~(t)], j = 1, 2, ..., n, 
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tha t  now characterize a new n-body model, similar to (2.2.1) except  for the 
replacement  of the two-body force ~)~?)~/(yj--Yk) by the periodic interact ion 

flY~ Yk etg [f l(yj-  y~)]. 
The same approach applied to (2.1.24) would imply tha t  the solutions 

yj(t) of the equations of motion (2.3.4) coincide with the solutions of the equa- 
t ion in y 

n 

(2.3.5) fl ~ ~)j(0) ctg fl[y -- y~(0)] = a/[1 -- exp [-- gt]] .  

But ,  as we have indicated at  the  beginning of this section, these results 
are in fact  incorrect. Ra ther  than  pinpointing the source of the error, now we 
provide a derivation tha t  by-passes any handling of infinite series. This we 
do, taking as s tar t ing point ~ new ausatz for ~(x, t) to replace (2.1.4), namely 

(2.3.6) 
n 

of(x, t) = fig(t) ~- fl ~ rr ctgf l [x- -  xj(t)]. 

This is of course suggested by  the previous considerations, see in part icular  
(2.1.4) and (2.3.3); note,  however,  the addit ional  presence of the t e rm pro- 
port ional  to ~(t). 

Le t  us now parallel the t r ea tmen t  of subsect. 2"1. In  place of (2.1.5), (2.1.6) 
and (2.1.7) we now have 

O, r', (..3.,) 

(2.3.s)  

~ ( x ,  t) = - fl~ Z ~'~(t)/sin~ f l [x-  x~(t)],  
#~1  

9~(x, t) = fib(t) + fl ~ [flr~(t)2~(t)/sin ~ fl[x-- xi(t)] -~- 
J : l  

+ ~(t) etg #Ix- xAt)]], 

(2.3.9) ~2(x, t) = f12[~2(t)- R~(t) 4- ~r~(t)/sin2fl[x - xj(t)] q- 
J = l  

-~ 2 ~ rj(t) ctg •[x-- x~(t)](Q(t) -~ ~'rk(t)  ctg fl[x~(t)- x~(t)])] . 
~i k = l  

To write the last formula we have t aken  ~dvantage of the  tr igonometric ident i ty  

(2.3.10) ctg A ctg B --- -- 1 -- (ctg A -- ctg B) ctg (A -- B) ,  

and we have introduced the quant i ty  

(2.3.11) R(t) = ~rAt) .  
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I t  is thus  seen tha t  now the requirement  tha t  ~(x, t) satisfies (2.1.1) yields 
the following 2n ~ 1 equations:  

(2.3.12) ~ -4- r -~- 8(e 2 -  R ~) ----- 0 ,  

(2.3.13) r+ -~ 1 - -  ~j,  j ----- 1, 2, ..., n,  

(2.3.1~) ,~, + ~,', + 28r,{e + ~' ..., r~ etg [8(xj-- x~)]} = O, j ~-- 1, 2, n.  

Here,  and occasionally below, we omit to  indicate explicitly the  t-4ependenee. 
Summing (2.3.14) over j,  we also get 

(2.3.15) R -4- aR + 28R ~ --~ O. 

We then note tha t  (2.3.12) and (2.3.15) imply tha t  

(2.3.16) (Q • iR)t + ~(~ -4- JR) + 8(~ -4- JR) ~ = O, 

which is easily solved, yielding 

(2.3.17) ~(t) = --21-a{[8 + y+exp  [ a t ] ] - ' +  [8 + y_exp  [at]]-,}, 

R(t) = ~ ~ {[8 + y+ exp [~ ] ] - '  - [8 § r -  exp (2.3.18) [at]]-~}. 

The constants ~+ t h a t  appear in this formula could be  easily determined in 
terms of ~(0) and RIO). 

On the other hand, from (2.3.13) and (2.3.14) we get the  (~equations of 
motion ,> 

( 2 . 3 . 1 9 )  5~j(t) ---- a [1  - -  &j(t)] -F 

+ 28E1- ~,+1 [~(t) + ~' ~1- ~(m otgS~,(~)- =~(,)1], ~ = 1 , 2 ,  , , .  

Before discussing this ~ many-body  problem ~) and its solutions, we go over, 
as in subsect. 2"1, to the  variables 

(2.3.20) ygt) = x r  t ,  j ---- 1, 2, ..., n ,  

tha t  are hereafter  in terpreted as particle co-ordinates. Thus now the many- 
body  problem is characterized b y  the equations of motion 

(2.3.21) ~,(t) = -  ~,(t) + 28~,(t)[- ~(t) + ~' ~(t)etgSm,(t)- y~(o~], 
k-'~-'-- 1 

j = i ,  2, ..., n, 
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with Q(t) given by (2.3.17) and the two constants ~+ and ~_ constrained, in 
terms of the initial conditions, by the requirement 

(2.3.22) a[(fl @ ?,+)-'-- (13 @ ~, )-~] = 2 in~(O) ,  

where we have again introduced the centre-of-mass co-ordinate 

n 

(2.3.23) Y ( t )  = n -~ ~. y j ( t )  , 
1 = 1  

whose time evolution is given by the explicit formula 

(2.3.24) 
i 

y(t) = r(0)  + 2-n~" 

�9 [ln {[y+ ~- fi exp [-- atJ]/(y+ +/9)} --In {Jr- + / 3  exp [-- ~t]]/(y_ + fi)}]. 

The solutions y Jr )  of this many-body problem are the roots of the explicit 
equation in y 

(2.3.25) fi i ~ j (0 )  ctg fl[y-- yJ0)] = rio(0) ~- c~/[1 -- exp [-- at]],  

as implied by the ansatz (2.3.6), by the position (2.3.20) and by the explicit 
form (2.1.2) of the solution of (2.1.1). 

Of course for fl = 0 one merely recovers the results of subsect. 2"1; thus 
we hereafter  assume fl r O, keeping open the option to choose fl real or 
imaginary. 

The ma.ny-body problem characterized by the equations of motion (2.3.21) 
is ma.rred by the presence of the explicitly t ime-dependent term involving 
~(t), and by the constraint (2.3.22). We, therefore, focus at tent ion on speeiM 
choices of the constants y+ and ?~ tha t  eliminate (totally or partially) these 
shortcomings. 

The first choice we consider is y+ = y_ = 0; note tha t  (2.3.17) then implies 
0 = -  a/ f t .  Thus the many-body problem corresponding to this choice is 
characterized by the equations of motion 

(2.3.26) ~/~(t) = @j(t) § 2flgj(t) ~ y~(t) ctg f l [ y J t ) - -  y~( t ) ] ,  
k = l  

j = 1, 2, . . . ,  n, 

with the constraint oll the initial eotlditions 

(2.3.27) Y(O) = O, 
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t h a t  also implies in this case 

(2.3.28) l~(t) ----- O, :Y(t) ----- Y(O). 

I ts  solutions are the  roots of the  explicit  equat ion in y 

(2.3.29) 
n 

/(y) - -  fl ~ ?)j(0) ctg fl[y-- yj(0)] ----- a / [exp [at] -- 1 ] .  
t--1 

Note  t h a t  now, for fl = 0, one would recover  the  system discussed in sub- 
sect. 2"1, bu t  with the  sign of a reversed. 

To discuss the t ime evolution of the  solutions y~(t) it is again very  convenient  
to display graphically the 1.h.s. of (2.3.39), /(y),  as a funct ion of y. For  real  
fl, namely  in the periodic case, it  is sufficient to  focus a t ten t ion  only on an 
in terval  of length zt/fl, since any  part icle can be t ransferred inside such an 
in terval  shifting its co-ordinates by  an integral  multiple of zt/fl, such shifts 
having no dynamical  effect. For  imaginary fl, fl : i?, t ha t  still yields a real 
problem since 

(2.3.30) @ ctg iyz  - -  ? ctgh ~z, 

one should instead consider /(y) in the  whole in terval  (-- cr -~- r Note 
tha t  the  condition (2.3.27) implies t ha t  not  all the  residues of the  poles tha t  
occur for y = yr can have the same sign; moreover,  for imaginary fl, this 
condition also implies 

(2.3.31) ](-4- oo) ~-- O. 

The phenomenology t ha t  results f rom the assignment of different initial 
positions y~(0) and velocities %0) ,  for the different possible choices of the 
values of a and fl, is ra ther  r ich;  ye t  in all cases it  is ve ry  easily obtainable 
by  the  technique just  described. A detailed description need, therefore,  not  
be given here,  since the reader  m a y  provide it  easily b y  himself if he is inter- 
ested. We merely  ment ion t ha t  generally, for real  fl (periodic case), ei ther 
collapse occurs, or as $ -> 4- oo the  particles t en d  to an equil ibrium position, 
whose configuration is of course always provided  b y  the  solutions of (2.3.29) 
with --  a or 0 on the  r.h.s, depending on whether  the  produc t  ~ diverges to  
-- c~ or to  + c~. For  imaginary fl, the  same asymptot ic  beha~iour occurs for 
t--> + c~ if 91(0)> 0 and ?~ (0 )<  0 (we are assuming as usual the  part icle 
co-ordinates to  be ordered so t ha t  y~ < Y~'+I); if instead @1(0)< 0 and/or  
9~(0) > 0, the  ext remal  particles escape towards infinity, b u t  t hey  go all the  
way only if a~>0 (the physical  reason is clear f rom (2.3.26)). We also note  
tha t ,  for any  given initial da ta  y~(0), 9~{0), j : 1, 2, ..., n, there  always is a 
(possibly negative) value a such tha t ,  for any  a < a, no collapse occurs for 

13 - I I  Nuovo  Cimento B. 
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t > 0; again a fact  of obvious signifie~mee, since the presence of a negat ive  
~- term in the  equat ions of mot ion  (2.3.26) acts as a b rake  t ha t  damps  the  mot ion  
of each particle (indeed (2.3.29) implies tha t ,  in the limit c~ -> --  c~, y ~ ( t )  ~ y j ( O )  

for t > 0). 

A second possible choice of the constants  ?+ and )J_ t ha t  el iminates the 
explicit t -dependence in (2.3.21) is )% = y_ = oc; but  it is easily seen t h a t  

this choice reproduces the case we have  jus t  discussed, except  for the replace- 
men t  of ~ by  - - ~ .  

A th i rd  possible choice of the constants  y+ and  y_, t ha t  also el iminates  the  

explicit  t -dependence in (2.3.21) and,  moreover ,  yields a ma.ny-body p rob lem 
with only interpart iele  forces and no constra int  on the  initial centre-of-mass 

velocity,  is y+ = c~, ?_ = 0 (the complementa ry  choice, 7+ = 0, ?_ = oo, 
yields the same model  and, therefore,  need not  be considered). Le t  us thus 
proceed to  the  analysis  of this very  interest ing case. 

As implied by  (2.3.17) and (2.3.18), in this ease Q ~ -  - -  �89  R ~ -  - -  h i /  = i@,  

so t ha t  the  equat ions of mot ion (2.3.21) become 

(2.3.32) ~5(t) = 2fl~j(t) ~ '  ?~(t) e t g f l [ y ~ ( t ) -  yk(t)] ,  j = 1, 2, ..., n ,  
k = l  

while the constraint  (2.3.18) yields 

(2.3.33) o~ = - -  2 i f l n  ~ . 

Thus in this case the constant  g has d isappeared f rom the equations of motion,  
and  there  is no constra int  on the centre-of-mass veloci ty  l;', since now (2.3.33) 
can be viewed as the  definition of c~. Note  t h a t  in this ease, as implied b y  the  

equat ions of mot ion  (2.3.32), the veloci ty  of the  centre-of-mass remains  con- 
s t an t  even if i t  is not  zero, 

(2.3.34) ~'(t) = Y(O) =~ v l n .  

The solutions of the equations of mot ion  (2.3.32) are the roots of the equa- 
t ion in y 

(_'~.3.3o) ... 9~(o) c t g  ~[y - y~(o)] = v e~g ~v t ,  

t h a t  obtains f rom (3.2.25) for ~ = -  �89 ~ given by  (2.3.33) and  v defined 

b y  (2.3.34). 

Let  us re-emphasize t ha t  this formula  provides the solution of the many-  
body  problem character ized b y  the equat ions of mot ion  (2.3.32), for any  set 
of initial  da ta  y~(O), ~j(O), j = 1, 2, ..., n;  the  (initial) centre-of-mass speed 
I"7(0) is of eom'se re la ted  to the  initial  speeds yj(O) as implied by  (2.3.23). 
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As repea tedly  ment ioned above,  the  behaviour  of the  solutions of the 
system (2.3.32) is be t t e r  discussed by  a graphical analysis of (2.3.35). We 
discuss here only the  case characterized by  the initial conditions 

(2.3.36) ?)~(0) > O, 

when no collapse can occur. In  this case of course the centre of mass of the 
system moves towards the right with the  constant  positive speed :F(O) -= v/n. 

Let  us consider first the periodic case, with real  8. We then  assume of course 
tha t  all n particles are initially within an in terval  of length z /B , 

(2.3.37) y~(O) --  y~(O) < ~/fl (yj+~ > yj).  

I t  is t he n  easily seen (~) tha t ,  as t ime proceeds, all particles move to the r ight ;  
a t  the  t ime tl----~, where 

(2.3.38) 

(2.3.39a) 

(2.3.39b) 

at  the t ime t~----2~, 

(2.3.40a) 

(2.3.40b) 

(2.3.40c) 

y.(t,) = yl(o) § ~/fl, 

y~(tl) -~ yj+l(O) , 

y,(t~) = y~(O) § zt/fl, 

yr : yj+~(O), 

j = 1, 2 , . . . ,  n - -  1; 

j : 1 ,  2 , . . . ,  n - -  2,  

and  so on. At the  t ime t . - ~  n~, 

(2.3.41) y~(t.) = y,(0) + z / B ,  j = 1, 2, . . . ,  n ,  

namely  the  system has recovered exact ly  the  initial structure,  having moved  
collectively towards the  right a distance z/ft.  Thereaf ter  the process is re- 
peated.  Thus the  system has an internal  s t ructure  t h a t  oscillates periodically, 
with period 

(2.3.42) T ---- n(~ ~- rl]fl :~(O) , 

while i t  travels collectively with the  constant  speed ~(0) of its centre of mass 
(so t h a t  indeed in the  t ime T it  moves the  distance z/fl).  Of course for special 

(1~) The 1.h.s. of (2.3.35) is in this case an everywhere decreasing function of y, having n 
poles at y = gj(0) and being periodic with period z:/fl. 
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initial conditions the period of the internal motion might be u fraction of T; 
for instance, if initially the particles are equally spaced with mesh ~/nfl,  

clearly they  acquire the same spatial configm'ation at  the times t~, t~, etc.; 
and if, moreover, their  initial speeds are all equal, then they  continue to move 
with constant  speed, namely in this special case there is no internal motion 
at  all (see below). 

Clearly to discuss this system it is convenient to go over to the variables 

(2.3.43) 

where we set 

(2.3.44) 

z~(t) = y~(t)--  Vt  , 

v = Y(0 ) .  

Then the equations of motion read 

(2.3.45) ~(t)  ~- 2 f l [V  + 2j(t)] ~ '  [V + 2k(t)] ctg fl[zj(t) - -  zk(t)], 
k = l  

j ~ 1, 2 , . . . ,  n,  

and, for these variables, the centre of mass 

(2.3.46) 

must  be chosen at rest: 

(2.3.47) 

z ( t )  = n - 1 Z z ~ ( t )  

z(o) = o ,  z ( t )  = z ( o )  . 

The solutions zj(t) are the roots of the equation in z 

(2.3.48) ~ [V -~ 2~(0)] ctg fl[z ~ V t  --  z~(0)] -~ n V  ctg f i nV t  ; 
5=1 

as implied by the previous analysis, they  are all real, provided tha t  

(2.3.49) 12j(O)[ < V ,  

and they oscillate with period T, see (2.3.42), around the equilibrium positions 

(2.3.50) ~j = zo q - j n / f l n ,  j = 1, 2, ..., n, 

where zo is arbi trary (corresponding to the translution-invariant nature of 
the model). 
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Note  tha t  the many-body  system (2.3.31) approximates ,  provided t h a t  

(2.3.51) [~j(t)l << V,  

the Hamil tonian  sys tem of n unit-mass particles interact ing via the  two-body 
periodic potent ia l  

(2.3.52) W(z)  = - -  2 V ~ In Isin/~zl, 

namely  the  n-body system character ized by  the  Hamil tonian 

(2.3.53) = I s i n  fl(q~-- ~lk) l 
.~=1 i--1 g',,=,l 

Condition (2.3.51) can of course be satisfied, provided the  initial configuration 
of the  system is sufficiently close to  the equilibrium configuration. 

Le t  us finally consider the  behaviour  of the  system (2.3.32) for  imaginary 
fl----i~, ~ real. 1~ow the  equations of mot ion read 

n 

(2.3.54) #AO = 2r~(t) Z' ~(t) ctgh r[Y~(O-- V~(O], j = 1, 2, ..., n, 
/e=l 

and the  solutions yj( t )  are the roots of the equat ion in y 

(2.3.55) Z ~ ( o )  ctgh r [ y -  yj(0)] = nY(o) ctgh [7n/~(O)t]. 
/,=1 

L e t  us recall  t ha t  the  centre of mass X moves with the constant  veloci ty  1~(0) 
and t ha t  there  is no constraint  on the  initial positions y~(0) or velocities #~(0), 
a l though we restr ict  for  simplicity the  analysis to  the case characterized by  the 
inequalities (2.3.36), t h a t  are sufficient to  exclude the  occurrence of collapse. 

The usual  analysis (is) implies then  the  following asymptot ic  behaviour  
for this sys tem:  

(2.3.56a) yl(t) : v$ § a(o -) + O[exp [2~,t]], t -->-- 0% 

(2.3.56b) lira [y~(t)] = a ~-~ ,--,-,o ~-1' j = 2, 3, ..., n ,  

(2.3.57a) lim [y~(t)] ---- a~ +~ ,-,+~ , j ----- 1 ,  2 ,  . . . ,  n - -  1 ,  

- ' + '  + O[exp [ -  2 # ] ] ,  z -~ + o0. (2.3.57b) y , ( t )  = vt § (% 

(18) The 1.h.s. of (2.3.55) is in this case an everywhere decreasing function of y, with 
poles at y = y~-(0), and with the asymptotic values ,nl~(0) as et-~ + c~, where e = ~: 1 
(for r > 0). 
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Here  

(2.3.58) v n ]?(0) X y / ) )  

n 

% = z~ (2y)-~ln ~ j ( 0 )  exp [~= 2yy~(O ) /v , 

and  a (*) (*) < ~ of the  equa t ion  j arc the  n - -  1 real  solutions,  o rdered  so t h a t  a~ aj+~, 
ill a ~e) 

n 

(2.3.60) ~?)j(0) c t g h y [ a  (~)- yj(0)] = sv ,  
i = 1  

where e s tands  for + 1 or --  1. I n  this analysis  we have  a s sumed  y > 0; for 

< 0, t he  behav iou r  as t -+ + c~ is e x c h a n g e d  wi th  t h a t  for  t - > - -  ~ ,  and  

vice versa. Thus  the  behav iou r  of the  m a n y - b o d y  sys t em charac te r i zed  b y  the  

equa t ions  of m o t i o n  (2.3.54) can  be descr ibed as follows: in the  r e m o t e  pas t ,  

one ])article comes in f rom the  ex t r eme  left wi th  the  (positive) ve loc i ty  v, 

and  the  o ther  n - - 1  part icles  are a lmos t  (~e) at  rest  at  the  posi t ions a c-)" at  j , 

i n t e rmed ia te  times~ all part icles  move  to  the  r igh t ;  in the  ex t reme  future ,  

, ~ -  1 par t ic les  are (ahnost)  a t  rest  a t  the  posi t ions aCj +), while the  r i gh tmos t  

par t ic le  escapes to  infini ty wi th  speed v. To assess the  overal l  effect of the  

in t e rac t ion  note  t h a t  the  analysis  ou t l ined  above  implies 

(2.3.61) a (+)~ _< a (-)~ <.~ a (+)i+~ 

and,  moreover ,  

n 

so t h a t  %"(+) - -  a o(-~ is clearly~ t r ans l a t ion  i nva r i an t  and  posi t ive  (we are a lways  
as suming  y > 0). 

I n  subsect .  3"6 we show t h a t  models  similar  to  those  discussed here,  b u t  

cons iderab ly  more  general ,  can  also be solved. 

2"4. Miscella~eous extensions: particles of two dif[erent types, symmetrical 
con/igurations, two-dimensional models. - I n  th is  subsec t ion  we discuss te rse ly  

var ious  ex tens ions  of the  models  discussed above,  t h a t  can  be o b t a i n e d  b y  

using cer ta in  t r icks  t h a t  were p rev ious ly  used in the  l i te ra ture  in analogous  
contexts .  

The  first t r ick  leads to  the  i n t roduc t i on  of two  t y p e s  of par t ic les  and  is 
pe r fo rmed  b y  a simple shift  of some of the  par~iOe co-ord ina tes  (19). W e  app ly  

(19) This trick was introduced in the first paper of ref. (6). 
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it only to the las~ models considered in the previous subsect. 2"3; its application 
to the other many-body problems discussed in the preceding section is left 
as an exercise for the interested reader. 

Consider first the n-body model characterized by the equations of motion 
(2.3.32). Let us divide the n co-ordinates y~ into two groups, shifting by the 
amount �89 the co-ordinates of the second group. This we do ieplacing the 
co-ordinates yj, for j = n ~ + l ,  n~+2,..., n=n~+n~, by the shifted co- 
ordinates u~, defined as follows: 

(2.4.1) uj=y,,,+~+�89 j = l ,  2, . . . ,n~=n--nl.  

In the new co-ordinates the equations of motion read 

9'11 "n  I 

(2.4.2a) ~]~=2fl?)~(~l~etgfl(y~--y~)--~4~tgfl(yj--u~)}, j----l, 2,. . . ,  nl, 
1r k ~ l  

(2.4.2b) ~j =2fli~,{~4~ctgfl(u,-- u~)-- ~l~tgfl(u,-- y~)}, j = 1 ,  2, ..., n,, 
k ~ l  k-~l 

Here and often below we omit for simplicity to indicate explicitly the time 
dependence. 

If now we consider the y2s, j = 1, 2, ..., nl, and the u2s, j = 1, 2, ..., n~, 
as particle co-ordinates, we must interpret the equations of motion (2.4.2) 
as describing a many-body system composed of particles of two kinds labelled 
respectively by the co-ordinates yj and uj, with the force 2f12~& ctg fl(z~-- z~) 
acting between equal particles and the force --2fl2~$~ tg fl(zj- z~) acting 
between different particles (here z; stands for y~ or uj, whichever the ease may be). 
)Tote that  the interaction between different particles is nonsingular~ indeed it 
vanishes at zero separation, so that  different particles can go through each 
other. 

The solution of this many-body problem need not be discussed here, since 
it is trivially related to the solution of the many-body problem (2.3.32) by the 
change of variable (2.4.1). 

There is, however, an amusing observation tha t  is worth reporting. Since 
the force acting between unequal particles vanishes at  zero interparticle 
separation, there clearly exists an equilibrium configuration of the two-body 
problem with two different particles located exactly at the same position and 
moving exactly with the same speed. Let us call such a two-body configuration 
a (( molecule ,>. I t  is then also possible to consider the n-molecule problem," 
since such a configuration is compatible with the equations of motion, namely, 
if given initially, it is maintained throughout the motion. I t  appears thus 
that  one is generating in this manner a novel solvable many-body problem. 
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But  an e lementary  computa t ion  and the use of the t r igonometr ic  ident i ty  

(2.4.3) ctg A -- tg A = 2 ctg 2A 

imply t ha t  this novel model coincides exact ly  with the original one, except  
for a scaling of the particle variables by  a factor  of two!  (20) 

Le t  us also note tha t ,  although, as we just  po in ted  out, the many-body  
problem (2.4.2) is t r ivial ly re la ted to the model (2.3.2), the remarkable  richness 
of its dynamica.1 evolution suggests an ample scope for applications, l~otable 
in this connection is the existence of configurations containing <~ quasi-mol- 
ecules )); indeed the form of the interact ion indicates tha t  two different particles 
moving with almost equal speeds and located close to one another  form a ra ther  
stable compound.  Of course one also has the possibility to perform an ad- 
ditional change of variables analogous to (2.3.43); indeed this may  yield the 
most  interesting models for applications in solid-state physics. 

The tr ick described above to generate a model with two kinds of particles 
can of course be applied also in the hyperbolic  case, namely for fl = iy, y real. 
Then in place of (2.3.54) one has the equat ions of motion 

(2.4.4a) 
k = l  k = l  

j = 1, 2, ..., nl ,  

(2.4.4b) = G ctgh y(u~--  u~) if- 2 ~/~ tgh y(u~ Yk)}, 
k ~ l  k ~ l  

j = 1, 2, . . . ,  n2, 

also to  be in terpre ted  as describing a sys tem composed of nl particles of one 
kind and n2 particles of another  with the (singular) force 2y2~G ctgh y(zj--  z~) 
acting between equal particles and the  (nonsingular) force 2y2jG tgh y(z~-- zk) 
acting between different particles, where again z~ stands here for yj or us, which- 
ever the ease may  be. 

The solutions of this system are now related to the solutions of (2.3.54) 
less tr ivial ly than  in the previous case, since now an imaginary  shift of n2 co- 
ordinates has been performed. The prescription to find these solutions is thus 
the  following one: the co-ordinates yj, j = 1, 2, ..., n~, of the particles of the  
first kind are the solutions of the equat ion in y 

(2.4.5a) 
nl n2 

~ 1)~(0) etgh •[y -- y~(0)] + 2 G(0) tgh 7[Y -- us(0)] = v ctgh },vt, 
J=l  J~ l  

(20) A similar phenomenon occurs in other recently discovered exactly solvable many- 
body problems; see the third paper of ref. (~). 
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while the co-ordinates u,,  j ---- 1, 2, ..., n~, of the particles of the second kind 
are the solution of the equation in u 

(2A.5b) ~ e,(0) etgh r [ u -  u,(0)] -t- ~ , ( 0 )  tgh y[u--  y,(0)] ---- v ctgh yvt. 
$~1 J--1 

Here of course y,(O), ),(0), j = l ,  2 , . . . , n , ,  respectively u,(O), ~(0), 
j ~  1, 2, ..., n~, are the initial positions and velocities of the particles of the 
first, respectively, second kind, while v]n is the (constant) velocity of the centre 
of mass of the whole system: 

(2.4.6) v = ~ 9,(0) + Y,~,(o) = y 9,(t) + ~,~,(t). 
I=1 I= I  ,--I i = l  

As usual, if the number of real solutions of these equations is smaller than 
the corresponding number of particles, collapse has occurred. A sufficient 
condition to exclude this possibility is that  all the particles of the same kind 
have initially (and, therefore, throughout the motion) speeds of the same 
sign, say 

(2.4.7a) ?)j(O) > O, j = 1, 2, ..., nl, 

and either 

(2.4.7b) 4,(0) > 0, j = 1, 2, ..., n~, 

o r  

(2.4.7e) 4j(0) < 0, j = 1, 2, ..., n2. 

Hereafter we limit, for simplicity, our consideration to these cases. ~ote  that,  
while the ordering of particles of the same kind cannot change throughout the 
motion (so that  we assume hereafter, for definiteness, Y,+I > YJ and U,+l > uj), 
particles of different kind can go through each other. 

A discussion of the solution of (2.4.5) (and, therefore, also (2.4.4)) can be 
easily performed by  the usual graphical technique. We report here only the 
results for the asymptotic behaviour of the (extremal) particles that  escape, in 
the remote past or future. They have been obtained by  using the well-known 
asymptotic expansions 

(2.4.8a) tgh x - :  e{1-- 2[exp [-- 2ex] -- exp [-- 4ex] -~ exp [-- 6ex] ~- ...]}, 

(2.4.85) ctgh x = e(1 ~- 2[exp [-- 2ex] + exp [-- 4ex] -t- exp [-- 6ex] + ...]}, 

valid as ex -+ ~ c~, e ---- ~- 1. They imply an essential dependence on the sign 
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of v and on the relative ma.g~fitude of the qua.~ltities 

(2.4.9a) Ym(7) = ~ ~)~(0) exp [2mTyj(O)], 

(2.4.9b) U,,(7) = ~ ~ij(0) exp [2mTuj(0)] , 

m = O, 1, 2, . . . ,  

m - - ~  O, :1, 2 .  �9 o,*~ 

as  iltdicuted by the following equations. ~Note tha t  these definitions of Y,~(7) 

and U.,(7 ) imply tha t  Yo and Uo are independent  of 7 and that  

(2.4.~o) Yo + Uo = v - ,_ 9~(o) + ~ ~ ( o ) .  

We assume throughout  ~, > 0. 
])'or t - - > -  

(2.4.11a) 

(2.4.11b) 

(2.4.11c) 

(2.4.11d) 

(2.4.11e) 

y~ ~ vt - -  (2r)-~ hi {[Ya(-- ~)--  UI(-- y)]lv}, 

if v >  0 ~nd Y~(--7) > U~(--7), 

ul  ~ vt  - (2y)-~ lr~ { [ ( U l ( -  r )  - Y , ( -  ~,)]/v}, 

if v > 0  ~nd U~(--7) > Y 1 ( - - 7 ) ,  

yl ~ u~ ~ l v t - -  (47)-1 in {[Y2(-- 7) § U2(-- 7)l/v}, 

if v > o a.nd Yl ( - -  y) = U~(-- ~), 

u , .  ~ vt § (27)-~ in {[Y1(7) -- U~(7)]/Ivt} ,  if v < O, 

YI ~ - -  (2~'r) -11n {2rltl[~Zl(-- r ) -  U~(-- r ) ]} ,  if v = O, 

u ~ (27)-11n {27]tl[Ya(7 ) -  U~(7)]}, if v = O. 

For t ~ + +  

(2.4.12a) 

(2.4.12b) 

(2.4.12c) 

Ynl '~' vt _3{_ (~2) - -1  l l l  { [ ~ f l ( ~ ) -  UI(~2)] /L  ~} , 

if v > 0  and Y I ( 7 ) >  Ul(y), 

u~, ~ vt + (27) -1 in {[U1(7) - Y~(7)J/v}, 

if v > O  ~n4 U1(7) > Y~(7), 

if v > O  and Y~(7)= UI(r), 
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(2.4.12d) 

(2.4.12e) 

u,  ~ vt - ( 2 7 ) - '  1- { r ~ ( -  7 : } -  ~ , ( -  r)]/Ivl}, 

{ y.~ ~ (2r) -~ In { 2 r t [ ~ ( r ) -  v~(r)]}, 

u,  ~ - (27)-~ in {2r t [y ,  ( -  r:} - Y~(-  r ) ]} ,  

if v < O ,  

if v = O ,  

if v -~O .  

These cases cover all possibilities (recall t ha t  the val id i ty  of the inequalities 
(2.7:} is assumed). We emphasize t h a t  in each case all the  particles whose asymp- 
to t ic  behaviour  is not  given explicit ly by  these formulae have  asymptot ical ly  
vanishing velocities; the i r  asymptot ic  positions are given by  the  solutions of 
the  equations obtained f rom (2.4.5) by  replacing the  t e rm  on the r.h.s, b y  its 

asymptot ic  value,  namely  ivl for t --> ~- ~ and --  Ivl for t -->-- c~. 
At tent ion  should be called on the  ra ther  intriguing na ture  of the  asymptot ic  

results explicit ly displayed by  eqs. (2.4.11) and (2.4.12). I~ote in par t icular  

the possibility t ha t  a <( molecule ~) emerge (see (2.4.12v:}). 
Le t  us t e rmina te  here  the  discussion of models involving two kinds of par- 

ticles. Of course the  technique we have  discussed could be used in other  cases 
besides the  examples t r ea ted  above. 

Le t  us now re tu rn  to  the  many-body  model  of subsect. 2"1, fixing our at- 
t en t ion  on the  equations of mot ion (2.1.21), b u t  considering a special sym- 
metr ical  configuration t h a t  is mainta ined th roughout  the motion. The only 
such configuration occurs for even n ,  n ~ -  2 m  (2~), and is of the following t y p e :  

(2.4.13) y j ( t )  = Up + uj(t),  yr = U p - -  u~(t), j = 1, 2, ..., m,  

where % is an arb i t rary  constant .  Clearly, if this configuration of the  2m co- 
ordinates yj is given initially, namely  if (2.4.13) holds a t  t ---- 0 and if, moreover,  

(2 .4 .14 )  9~(o) - -  - 9 ~ + ~ ( o ) ,  j = 1,  2 ,  . . . ,  m ,  

the  configuration (2.4.13) is mainta ined at  all times. One can then  consider 
only the  t ime evolution of the co-ordinates us(t), j ---- 1, 2, ..., m; and inter- 
pret ing these quantit ies as part icle co-ordinates, one obtains the reby  a novel  
many-body  problem, character ized by  the  equations of mot ion (22) 

(2.4.15:} ~j -~ --  ~ ;  ~ 2 ~  "~J(.uj--  %:}-- 2 ~  ~ ~/(u~ "-F- u,~), j ~ 1, 2, ..., m. 
k,=.1 b=,,1 

(3,) The symmetrical configuration with an odd number of particles has the central 
particle at rest; but then such a particle has no interaction and can be, therefore, 
ignored. 
(22) This procedure, applied to the integrable many-body models of ref. (4.6), yields 
just those integrable Hamiltonian systems that have been introduced by OLS~AN~.TSKY 
and Pv.P.~LOMOV in connection with semi-simple Lie algebras; see, in particular, the 
second and the third of their papers listed in ref. (6). 
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This appears  as ~ novel  solvable m a n y - b o d y  problem,  whose physical  inter-  
p re ta t ion  is, however,  mar red  by  the  non- t rans la t ion- invar ian t  character  of 
the last  t e r m  on the  r.h.s. Bu t  as we show, it can be reduced back  to the original 
model.  Indeed  the  posit ion 

2 (2A.16) zj = u, 

implies, a f te r  some tr ivial  algebra., r following equat ions of moti(m for zj: 

(2.4.17) zs ~ --  o~2j + 22j ~ '  2k/(z+- zk), j = 1, 2, ..., m;  
k = l  

aud these equations are identical,  except  for the  rep lacement  of n by m, to 
(2.1.21). 

This intr iguing result  implies t ha t  the co-ordinates of the 2m-body problem 
(2.1.21), character ized by  the initial conditions t h a t  cmwespoud to the  special 
configuration (2.4.13), coincide exact ly  with the square roots of the  co-ordinates 
of a corresponding m-body  problem,  obta ined  by  el iminating one-half of the 
particles ! 

The same kind of tr ick can be applied to the models of subsect.  2"3; and  
in this case again a ra ther  ex t raord inary  event  occurs. Le t  us focus a t t en t ion  

for simplici ty just  on the specific model  character ized by  the equat ions of 
mot ion (2.3.26), t h a t  we prefer  to write here with the sign of ~ reversed (28): 

(2.4.18) ~j = --  @~ + 2fl#j ~ '  9k ctgfl(y+-- YD, j = 1 .2 ,  ..., n.  
k = l  

Let  again n : -  2m and consider the symmet r ica l  configuration (2.4.13) of this 
system. Then for the m co-ordinates us the  equations of mot ion read  

(2.4.19) 
k = l  k = l  

j = 1, 2 , . . . ,  m. 

Now set 

(2.4.20) z+ = cos 2flu+. 

Then a little a lgebra reproduces for the  co-ordinates z~ exact ly  the  equat ions 
of mot ion (2.4.17). 

We may ,  therefore,  assert  t ha t  the solutions of the 2m-body  problem (2.4.18) 
corresponding to  the symmet r ica l  configuration (2.4.13) are given, via (2.4.20), 
by  the  solutions of the m-body  problem (2.4.17)! 

(23) Note that the requirement (2.3.27) that the centre of mass does not move is con- 
sistent with the symmetrical configuration considered below. 
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These results are of course valid for real, as well as for imaginary, fl; and 
they are immediately extendible also to the other models of subsect. 2"3. 

The last topic that  we take up in this subsection is the possibility of gener- 
ating two-dimensional models by complexifieation (~4). We merely report the 
form that  takes such a model, obtained by writing (2.1.21) with yr replaced 
by zr and then by setting zr = xr ~- iy j :  

n 
(2.4.21a) ~ ---- -- a~. ~- 2 ~ '  [ x j ~ ( ~ - -  ~t~Y~) + Yr ~- y~x~)]/" " r 2,~, 

k=l 

j = 1, 2, ..., n, 

k-=--i 

j = i ,  2,. . . ,  n. 

H e r e  w e  have used the synthetic notation 

(2.4.22) r2 ~ 2 

The equations of motion (2.4.21) can be interpreted as describing a two- 
dimensional n-body problem, although one with non-spherically-symmetrical 
forces (~4). We shall not discuss here the detailed behaviour of the solutions 
of such a system, that  are of course obtainable by its simple relation to the 
many-body problem (2.1.21), whose solution has been discussed in subseet. 2"1. 
We merely mention that ,  in spite of the simplicity of this connection, the be- 
haviour of the solutions of the system (2.4.21) is considerably richer in com- 
plexity than the behaviour of the solutions of (2.1.21), as implied by the avail- 
ability of an extra dimension, and by the correspondingly more complicated 
phenomenology resulting from the consideration of the r.h.s, of (2.1.24) as 
a function of a complex, rather than a real, variable. 

2"5. Move general partial differential equations. - We have discussed in 
subsect. 2'1 the solvable many-body problems that  correspond to the motion 
of the poles of rational solutions, of type (2.1.4), of the very simple nonlinear 
partial differential equation (2.1.1), or of its variant (2.2.7); and in the sub- 
sequent subsect. 2"2-2"4 we have considered various extensions tha t  give rise 
to other solvable many-body problems. A natural question suggested by these 
results, as well as by the original findings of AMM and CC, is: can the same 
approach be applied to other nonlinear partial differential equations, and in 
particular to nonlinear partial differential equations, that  can be solved by 
some analytical technique? 

(~4) See the fourth paper of ref. (e). 
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To discuss this question it is convenient  to rewrite here the ansatz (2.1.4)7 

(2.5.1) q~(x, t) = ~.  [ x - -  x j ( t ) ] -~r j ( t )  , 

and to construct  from it table I,  tha t  displays the contributions R~) tha t  ap- 
pear  in the formula 

(2.5.2) F[cf ,  q~,  qJt, c f ~ ,  q~,.t, of ,]  = ~.  [ x - -  x j ( t ) ] - ' R , ~ ( t )  
i = 1  s ~ l  

for ~11 the choices of the fmlction F tha t  are compatible with (2.5.1) aI~d (2.5.2). 

TABLE I .  -- Coef/icients of eq. (2.5.2). 

F R~j R2j R3j 

qJ rj 0 0 

q;~ 0 - -  r~ 0 

q~ ,~j ~,.rj o 

~ 0 0 2rj 

q~t 0 - -  i'j - -  2~j r~ 

~tt ~:i 2Xj']'~ + ~jVj 5C~ r s 

n 

r 2,., ~' ~,~/(~- x~) ~ o 
k = l  

n 

qp:cf 0 - -  rj ~_' r~,/(xj - -  xk) - -  r~ 

n n 

k = l  ~ I  

n 

~, - 3r~ ~ '  ~./(x~- x,y  + 
k = l  

n n n 

k = l  / = 1  ] ~ i  

From table I o~le can immediate ly  read the relationship between many- 
body problems and nonlinear par t ia l  differentiul equations, t ha t  are induced 
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by the ansatz (2.5.1); for instance, one sees that  to the Burgers-Hopf (BH) 
equation 

(2.5.3) 

there corresponds the 3n equations 

(2.5.4) 

(2.5.5) 

(2.5.6) 

or, equivalently (7), 

(2.5.7) 

?j ~ 0 ,  j = l ,  2, ._ ,  n ,  

~j ~- ~ '  r~/(x~-- x~) ,  j = 1, 2, . . . ,  n ,  
1:,=1 

r~ : 2 ,  j : 1, 2, .. . ,  n ,  

~5 = 2 ~ '  ( x ~ -  x~) -~ , 

An important remark is that  generally to a nonlinear partial differential 
equation for ~(x, t) obtained equating to zero a linear combination of the terms 
appearing in the first column of table I there correspond 3n equations, to be 
satisfied by the 2n quantities xj(t) and rat  ). Thus, generally, after the rj's are 
eliminated, there obtain for the x~'s n constraints in addition to n (~ equations 
of motion ~. 

The only possibilities of avoiding the presence of constraints in addition 
to the equations of motion is either to take advantage of the occurrence of 
vanishing entries in table I to construct nonlinear partial differential equations 
for ~ that  give rise only to 2n equations for the x/s  and r/s ,  or to combine the 
terms appearing in the first cohlmn of table I, so that  of the corresponding 3n 
equations, that  must be satisfied by the x/s  and r / s ,  ~ equations are auto- 
matically implied by the remaining 2n equations. But, as is immediately seen, 
the first possibility corresponds only to the nonlinear partial differential equa- 
tion (2.1.1), tha t  has been discussed in subsect. 2"1; while, as regards the second 
possibility, the only nontrivial instance is the BH case mentioned above and 
treated in detail by CC. 

One may, therefore, conclude tha t  the only many-body problems without 
constraints that  can be treated on the basis of the ansatz (2.5.1) are those 
described in the previous sections. This conclusion is not modified by the con- 
sideration of equations involving higher derivatives, or higher powers, of 
than those reported in the first cohlmn of table I, and a correspondingly more 
general ansatz for the function r t), namely 

(2.5.8) 
s--X t--1 
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t h a t  const i tutes  the  na tu ra l  extension of (2.5.1). We omit  to repor t  here a 
fo rmal  proof  of this assert ion;  every  regder can easily convince himself  of its 

va l id i ty  b y  the  consideration of simple examples  and by  the recognit ion t h a t  
the number  of equations to be satisfied general ly increases fas ter  t i tan the 
number  of variables  to be determined.  Thus,  even though  an effect such as 
t h a t  exemplified above in the B H  case b y  the fact  t h a t  (2.5.4) are implied b y  

(2.5.6) can occur in other instances,  it is not  enough to el iminate all constraints :  
for instance in the K d V  case the  ansatz  (2.5.8) with S ---- 2 introduces the 3n 
variables  xj ,  r~j and  r2j, j ---- 1, 2, ..., n, bu t  poles of up to 5th order appear ,  
so t h a t  the n u m b e r  of equat ions ob ta ined  by  imposing t ha t  their  coefficients 
vanish is 5n; thus,  a l though n equations can be el iminated,  in analogy to the  
B H  case, since they  tu ru  out not to be independent  of the  others,  there  
still r emain  the n constraints  (1.2), in addi t ion to the n first-order equat ions 
of mot ion  (1.3) (see ASISI and  CC). 

I t  should of course also be no ted  t h a t  ~ first-order equat ion for the  x / s ,  
even  when it yields second-order equat ions in terpre table  as a m~ny-body  
model  wi th  one- and two-body  forces, implies t ha t  the (initial) velocities are 

de termined by  the (initial) positions, namely  in these eases there  always are 
constraints .  This r em ark  is of course re la ted  to our previous assertion, i~ the  
introduct ion,  s ta t ing t ha t  the  n-body problem associated to the  B H  equat ion 
is res t r ic ted b y  n constraints,  and t ha t  associated with the K d V  equat ion b y  
2n constraints.  

I t  is also clear t h a t  the above consider,ttions are essentiMly unmodified 
by  extensions such as t ha t  discussed in subseet. 2"2, involving nonautonomous  
par t ia l  differential equations and leading to non- t rans la t ion- invar ian t  models. 
Such an extension does, however,  yield cer tain nontr ivia l  results, such as the 
association of the nonlinear par t ia l  differential equat ion 

(2.5.9) 

to the  first-order equat ions of mot ion 

(2.5.10) 2~ = o)x, § 2 ~ '  (x~-- x~) -~ , j =  1, 2, ..., n ,  
k = l  

t h a t  also imply  (7) the  second-order equations of mot ion  

(2.5.11) 5!j = oj ~,r~ -- 4 ~ '  (x 5 -  xz) 3, j = 1, 2, ..., n .  

But ,  since these results can also be obta ined  by  the  (simpler) technique of the  
following section, we do not  e laborate  on t h e m  here ally fur ther  (see subseet.  3"2). 
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The extent to which the extensions discussed in subsect. 2"3 and 2"4 are 
also applicable in the context discussed in this subsection should also be suf- 
ficiently self-evident not to require any additional elaboration. 

3 . -  Motion of zeros of linear evolution equations and related many.body 
problems. 

Much of the discussion of the previous section was based on the analysis 
of the motion of the poles of special solutions of a (very simple) nonlinear 
partial differential equation. The simplicity of this equation was related to the 
possibility of transforming it by a simple change of dependent variable into a 
linear equation; the poles of solutions of the nonlinear equation coincide then 
with the zeros of solutions of the linear equation. Thus the above analysis 
could have been just as well based on the study of the zeros of (special) solutions 
of linear partial differential equations, although the special solutions discussed 
in the previous section were more naturally suggested, and more easily handled, 
in the nonlinear framework. 

I t  is, therefore, natural to proceed to a direct study of the motion of the 
zeros of solutions of linear partial differential equations. This we do in the 
6 subsections of this section. We consider mainly special solutions of poly- 
nomial type, or natural generalizations of such solut ions; they are clearly sug- 
gested by our aim to generate by this approach solvable many-body problems. 
Several such models are indeed exhibited, and some of them are discussed; 
they are analogous to, and more general than, those of the previous section; 
indeed the two approaches, although not identical, are quite similar. 

3"1. B a s i c  a n s a t z  a n d  / o r m u l a e .  - Let us consider a polynomial of degree 
n in x, with n zeros at the positions x~(t): 

(3.1.1) ~(x, t) ~ h [x-- x~(t)]. 
4=1 

This representation immediately implies the following formulae: 

(3.1.2) = ( x -  x , ) - l ,  

(3.1.3) ~, =--~(x--xj)-1~,, 
J--I 

n 

(3.1.4) (x,- 
~=I k=l 

1 4 -  I I  N u o v o  Cimenlo  B .  
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(3.~.5) v,~, = - ~ ( x -  x;)- i  ~ '  (& + s~) / ( . , ,_  x , j ,  
r  k- -1  

n 

[ , ] (3.1.6) Vt, = F 2 (x-- xs) -1 -- 2: + 2x~ ~ 2~/(xj-- xe) , 

(3.1.7) xv~-- n ~ =  V ~ ( x - - x ~ ) - ~ x j ,  
1 = I  

(3.1.8) x%~-= 2~ ~, (x--  x;)-lxj  (xj--  zk) -1 , 
j~l k=l 

(3.1.9) x~** = -- ~ (x--  xj)-~xi ~ '  (2j -Jr- &~)/(x,- x~), 
j ~ l  k ~ l  

:= : ~' ( x j -  x k )  - 1  , (3.1.10) x2V~,,-- n (n- -  1) ~o 2 V ~ (x--  x~)-~x~ 

(3.1.11) x[o~- ~ , ~ -  2 ( ~ -  1 ) x ~  + ~ ( , ~ -  1) ~] = 2~ ~ (x - x ~-~ x ~" ~ '  x~/(x, - x~) j , '  at 

~=I k=l 

(3.1.12) xE.~,F~t-- (n--  1) ~] -- -- ~ ~ (x--  x;)-~x~ ~ '  (2;x~ -F 2,,x~)/(x~-- x~) . 

In all these equa,tions of eom'se V ~ ~(x, t) and x~ ~ x~(t). 
Now the procedure to relate many-body problems to linear partial  dif- 

ferential equations is quite straightforward; indeed the assumption tha t  a 
linear combination of the left-hand sides of eqs. (3.1.2)-(3.1.12) vanishes corre- 
sponds to the requirement tha t  the V satisfies a linear partial  differential equa- 
t ion (whose consistency with the original ansatz (3.1.1) must be ascertained); 
while the requirement tha t  the same linear combination of the r ight-hand 
sides of these equations vanishes yields generally a set of << equations of motion )) 
for the quantities x~(t), i.e. a many-body problem if these quantities (o~ others 
simply related to them;  see below) are interpreted as particle co-ordinates. 
The most gener%l many-body problem obtainable in this manner is clearly 

(3.1,13) C2~ -}- Ei'~ := Bo @ B~ x~ -}- ~ '  ( x , -  oo~,) -~" 

�9 [e(Ao + & x ,  + A~x~ + &x~x,=) + 2O~c,a:~:- 

- (a:,~ + 20(9~ § D~x~)- D~x,(2,a~ + &xo], j = 1, 2, ..., n, 

corresponding to the linear partial differential equation 

(3.1.14) [A~ @ A l x  @ A2x ~ + Aaxq V~x -b 

@ [Do -F D~x @ D~x ~] %,t-- [n(n-- 1)(A2-- Aax) -}- nB~] F =- O. 
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I t  is easy to verify that  a polynomial sohition of type (3.1.1) is indeed consistent 
with this differential equation. 

The initial conditions for the equations of motion (3.1.13) prescribe the initial 
values xr &j(O), j ---- 1, 2, . . . ,  n,  for the (~ co-ordinates ~ x~(t) and the (( ve- 
locities ~) ~j(t). These data also specify the initial conditions for the linear dif- 
ferential equation (3.1.14), since (3.1.1) and {3.1.3) imply 

(3.1.15a) 

(3.1.15b) 

n 

~(x, 0) = I I  [ x -  xA0)], 

V,,(x, o) = - V,(x, o) :~ 
t=1 

I t  is thus seen that  the solutions xj(t) 
by the equations of motion (3.1.13) and 

I x -  xAO)]-'~-(o).  

of the n-body problem characterized 
by the initial conditions xA0), &~(0), 

j = 1, 2, ..., n, coincide with the n zeros of the solution of the linear partial 
differential equation (3.1.14) with initial conditions (3.1.15), a solution that  
has exactly n zeros, since it is indeed just a polynomial of degree n in x. Note 
that  there is no constraint on the initial data (3.1.15), except possibly some 
inequality to guarantee that  the zeros of the polynomial v/(x , t) remain always 
real, or equivalently to avoid the occurrence of collapse in the many-body 
problem (3.1.13) (see below). 

The many-body problem (3.1.13), and the differential equation (3.1.14) 
related to it, are too general to yield a transparent physical picture; more 
interesting cases obtain by special choices of the quantities A ,  B ,  G, D, and E, 
as discussed in subsequent subsections. Yet it is even possible to obtain more 
general models. Indeed the following formulae are also implied by the an- 
satz (3.1.1) : 

(31161 =  [nX + 
:[=1 

= -  + 

t = ,  

~=I k'~--I 

(3.1.19) x ~ [ x ~ -  2 ( n -  1 ) x ~ ,  + n ( n -  1) ~] = 

~ 1  k'~l 

(3.1.26} ~ [ x ~ , , -  ( n -  1) ~,] = - ~[~Gx + �89 + 

~ 1  k-~-~l 
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they  involve the collective co-ordinates 

\ 
(3.1.21) X ( t )  = ~-~ ~ x j ( t ) ,  

n 

(3.1.22) X~(t) = n -~ ~ x~( t ) .  
j = l  

Thus the procedure indicated above can be applied by using formulae (3.1.16)- 
(3.1.20) in addit ion to (3.1.1)-(3.1.12). In  this manner,  one relates a linear 
par t ia l  differential equat ion more general than  (3.1.14) to a many-body  problem 
characterized by equations of motion more general than  (3.1.13) and by  one 
addit ional  equat ion involving the collective co-ordinates X, X2, whose con- 
sistency with the equations of motion for the co-ordinates x~ is a necessary 
requirement  for the val idi ty of the scheme. This conditio~ must  be verified 
in each case and, when it can be satisfied, it generally implies some constraint  
on the initial values of the collective co-ordinates and/or  on their  initial ve- 
locities. 5Ierely to prove tha t  such models do exist, we t rea t  here tersely one 
such example. I t  is characterized by the equations of motion 

(3.1.23) 

and by the constraint 

(3.1.24) 

2~ o~jx; + 22j 2~./(x~- xD 
k = l  

X ( t )  = o .  

This constraint  is compatible with the equations of motion (3.1.23), provided 
the initial da ta  are such tha t  

(3.L25) x(0)  = o ,  X~(o) = o .  

In fact,  it is easily seen tha t  (3.1.23) imply 

(3.126) 2 = }~2.~, 

(3.1.27) 2~ ~- aS2. 

Tile first of these two equations follows immediate ly  by  summing (3.1.23) 
over j ;  the second obtains with ;~ little algebra by mult iplying (3.1.23) by  xj 
and then by summing over j .  Clearly, together  with (3.1.25), they imply (3.1.24). 

Thus, provided the initial da ta  are constrained by (3.1.25), the many-  
body model characterized by  the equations of motion (3.1.23) is solvable via 
the linear part ial  differential equat ion 

(3.1.28) ~t t  -~ ~2C~)t = 0 
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that  clearly corresponds through (3.1.6) and (3.1.17) to (3.1.23) and (3.1.24). 
In fact, using the explicit solution of this equation 

(3.1.29) v,(x, t) = v,(x, o) + ,/,,(x, o ) [ 1 -  exp [ -  <~t]]/~ 

and (3.1.3), one immediately concludes that  the solutions x~(t) of (3.1.23) corre- 
sponding to the initial data xj(0), &~(0) (such tha t  (3.1.25) hold) coincide with 
the roots of the transcendental equation in x 

(3.1.30) [,~- x,(o)]-,~,(o) = ~ / [ 1 -  exp [ -  ~ t ] ] .  
i l l  

In this manner the many-body problem has been reduced to the solution of a 
single nondifferential equation. But it is not here the place to pursue the 
analysis of this model. 

Yet other formulae may be obtained by multiplying by x those given above; 
for instance, from (3.1.16)-(3.1.18) it follows that  

(3.1.31) 

(3.1.32) 

(3.1.33) 

n 

= -  + + 

x2y~t, = --  y~{xnX--  (nf~) ~ § lnj~2 § 

J=l k=l 

Using these formulae one may obtain still more general models, but the number 
of constraints to be satisfied also tends to increase. 

Another possible extension of the approach is via the consideration of higher 
derivatives of % for instance 

(3.1.34) ~. , .  --- 2~ ~: ( x -  xj)-i '(x~- x,)-i Z' [(x~- x,)-i § (x~-  9,)-1]. 
~=I k=l ~=1 

But the presence of a triple sum on the r.h.s, of this equation yields, through 
the procedure indicated above, equations of motion that,  when interpreted 
as representing a many-body problem, involve the presence of three-body 
forces; an4 clearly the inclusion of a derivative of ~ of order m leads to m-body 
forces. Since we want to limit our consideration to many-body models with 
external potentials (one-body forces) and two-body forces, we do not consider 
these cases in the following. 
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I t  should be emphasized t ha t  there  is no a priori requirement  t h a t  the 
quanti t ies A~, B~, C, D, or E be t ime independent ,  although i~ most  of the 
following this shall for simplicity be assumed. 

We finally meni:ion an extension of the ansatz (3.1.1) t ha t  leads to  a. fur ther  
enlargement  of the class of many-body  problems solva.ble by these techniques. 
This is the position 

(3.1.35) 
t 

t o t : 1  

implying the formulae 

(3.1.36) 

(3.1.37) 

(3.1.38) 

(3.1.39) 

(3.1.40) 

(3.:t.41i 

(3.1.42) 

(3.1.43) 

n 

~ = ~ ~ ( x -  xD -~ , 

i: x,)-,q, 
,1=I 

n 

j = l  k = l  

n 

~ i  ~=I  

1=1 k ~ l  

n 

x ~ -  n~ = ~ ~ ( x -  xD -~ x~, 

�9 = 2v (x,-  
~=I k = l  

~I=l k=l 

nnd so on. Because the results flowing from the (simpler) ansatz (3.1.1) are 
already sufficiently rich (also in the light of the remark  repor ted just above), 
we shall not  exploit  in the following the possibilities implied by  the more general 
~nsatz (3.1.35); there  should be no difficulty for the interested reader  to derive 
such results by  using the techniques of this subsection and of those t h a t  follow. 

3"2. Equations o] motion of first order. - In  this subsection we discuss tersely 
some models tha t  obta.in from (3.1.13) when C = 0, so tha t  theequa t ioas  (3.1.13) 
become of first order. By  differentiating these equations and then  using them 
to eliminate the first derivatives, it  is of course generally possible to  obtain 
also equations of seco~d order th,~t are, therefore,  again similar to the equations 
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of motion of an ordinary many-body problem. These equations of motion 
contain, however, generally also three-body forces, unless a cancellation occurs. 
We focus below just on two cases in which such cancellation does occur. 

As already pointed out above, all the models tha t  come under the heading 
of this subsection, when re-interpreted as many-body problems characterized 
by second-order equations, suffer of one drawback: while the initial positions 
are arbitrary, the initial velocities are not (they are given in terms of the initial 
co-ordinates by the first-order equations). Thus these models are characterized 
by the presence of constraints that  determine the initial velocities in terms 
of the initial positions. 

The first model obtains from (3.1.13) when G -~ Do = D~ = D~ ---~ A~ = 
= A2-----A8 = 0. We also set, for notational convenience, Bo = 0, B~ = co, 
A o =  �89 E = 1. The equations of motion derived from (3.1.13) then read 

(3 .2 .1 )  t j  ---- oJ2xj - 2g  ~ ~ '  ( x j - -  x~) -a , j = 1,  2 ,  . . . ,  n ,  

and the constraints on the initial conditions read 

n 

(3.2.2) ~(0) = oxj(O)  + g ~ '  (xr  x~) -x , j = 1, 2, ..., n. 

The corresponding partial differential equation reads 

(3.2.3) gYJx~ + 2eoxv2= + 2yJt-  2 n o v  2 = O. 

The equations of motion (3.2.1) are of course derivable from the Hamil- 
tonian 

(3.2.4) 
� 8 9  n t--1 

H 2 2 2 = ( p j -  r x j ) -  g~ Z Z (x~-- x~) -~ 

Note, however, that  the potentials have the (, wrong ~> sign; the singular two- 
body potential is attractive; the oscillator single-particle potential is repulsive. 
To change their signs, one should assume to and g to be imaginary; but this is 
forbidden by the constraint (3.2.2) (assuming that the x2s are real). 

For o~ = 07 these results coincide with previous findings of CG. 
The explicit solution of this many-body model could be easily discussed 

on the basis of (3.2.3), by using techniques such as those discussed below. But, 
since the solution of the many-body model (3.2.1) (even in the general case 
without the constraint (3.2.21)) has been extensively analysed in the liter- 
ature (~,e), we skip here any ~ r the r  discussion of this model  

The second model that  we discuss in this section obtains by setting 
C = Do -~ D1 ~ D2 = Ao ~ A I  = Aa --- Bo -~ O. We, moreover, set for nora- 
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tional convenience E----1, B, = 2B, A2--= g, and we perform the change of 
variables 

(3.2.5) xj(t) = exp [2zj(t)]. 

Then (3.1.31) yield 

n 

(3.2.6) 2 j - - - - B + g ~ ' e x p [ z ~ - - z k ] / s i n h ( z j - - z k ) ,  j = 1, 2 , . . . ,  n,  
k = l  

and it is easily seen ~hat these equations imply 

( 3 . 2 . 7 )  ~ = _ g2 ~ '  sinh-3 ( z ~ - -  zk) cosh (z~ - -  z k ) ,  j = 1 ,  2 ,  . . . ,  n .  

These are just the equations of motion derivable from the Hamiltonian 

(3.2.8) 
n n ,~--i 

H - - ~ l ~ p - - 2  2g ~ ~ s i n h  - : ( z ~ - z k ) ,  
i = 1  j = l  k = l  

tha t  has been the subject of much recent study. Note, however, tha t  with the 
present technique we obtain a model characterized by singular at tract ive inter- 
actions; and of course this technique is applicable only provided the initial 
velocities 2~.(0) are related to the (arbitrary) initial positions by the constraints 
(3.2.6) (with B being an arbi trary constant,  simply related to the (constant) 
speed of the centre of mass of the system; see below). 

The partial  differential equation connected to this many-body problem 
reads 

(3.2.9) g x 2 ~  -[- 2Bx~v~ -~ ~vt-- [n(n--  1)g ~ 2nB] yJ = O. 

I t  is immediately seen tha t  the solution of this equation can be explicitly rep- 
resented as follows: 

(3.2.10) 

with 

(3.2.11) 

yJ(x, t) = f c,~(t) x m 
m = O  

e ~ ( t ) = c m ( O ) e x p [ ( n - - m ) [ ( n - ~ m - - 1 ) g ~ - 2 B J t ] ,  m ~ - - O , 1 , 2 , . . . , n .  

Here c , ( 0 ) =  1 (and, therefore, also c , ( t ) =  1), while the n constants era(0), 
m = 0, 1, ..., n -- 1, are fixed by the requirement tha t ,  at t ~- 0, the polynomial 
(3.2.10) has the n positive zeros x~(0) = exp [2z~(0)]. Oll the other hand, the 
solutions zj(t) of the many-body problem (3.2.7) (with the constraints (3.2.6)) 
are given, through (3.2.5), by the t ime evolution of the zeros xj(t) of the ex- 
plicit polynomial (3.2.10). 
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If  we assume tha t  the initial conditions are such to exclude the future oc- 
currence of collapse, it  is easy to find, from (3.2.10), the asymptot ic  behaviour 
of the particles. We find 

(3.2.12) 

with 

(3.2.13) 

(3.2.14) 

z~(t)~,vt-t-as, j = 1, 2 , . . . ,  n ,  ( t - + +  ~ ) ,  

v, = B + ( j - -  1)g,  

a,  - -  �89 In [-- e~_x(O)lej(O)]. 

These results obtain by not ing tha t ,  in searching for the zeros of ~ as t -+ A- 0% 
only two terms can be important  on the r.h.s, of (3.2.10), and they  must  cancel 
exactly.  The same analysis cannot  be done for t - ->--  0% since necessarily 
collapse occurs in such an extrapolation if the initial da ta  are such to exclude 
its occurrence for t > 0. Note t ha t  the above analysis requires g > 0 and implies 
t ha t  the centre of mass of the system moves with the speed B ~-�89 ( n ~  1)g, 

finding tha t  is consistent with the constraints (3.2.6). 
We finally note t h a t  the  t r ea tment  given above applies even if B is t ime 

dependent,  say 

(3.2.15) B = / ( t ) .  

Then in place of (3.2.7) one has the equation of motion 

(3.2.16) ~j = ](t) -- g~ ~ '  slnh-3 (zj-- zk) cosh (z~ ~ z~), 
k=l  

containing the (arbitrary) forcing te rm [(t), while (3.2.11) is replaced by  the 
formula 

$ 

0 

m~---0~l, 2,...~n. 

3"3. Some translation-invariant many-body models. - In  this  subsection we 
consider the models characterized by the equations of motion (3.1.13) with 
C ~ 0 (so t h a t  these equations of motion are second order in t ime, and neces- 
sarily contain (~-~-1 = . v  ocity-dependent ~ forces), but  with A~ ~ A~ : A3 -~ B~ 

D~---- D~ = 0 (so t h a t  these equations of motion are t ranslat ion invariant,  
namely such tha t ,  if x~(t), j ~ 1, 2, ..., n, is a solution~ ~j(t)----xj(t} ~ - a  is 
also a solution). Setting for notat ional  convenience Ao-~ ~, Bo ---- g, C ---- 1, 
Do = 2p, E -= ~ in (3.1.13), we thus get the equations of motion 

(3.3.1) ~j ---- g--  ~ ~ 2 ~ '  [2--/x(~j ~ ~ )  ~ :~k ] / (x j - -  x~), j = l ,  2 , . . . , n ,  
k-=l 
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where of course x j  ~ xr Note thar now there  is no constraint ,  nei ther  on 

the initial  positions nor on the  initial  velocities. 
The m a n y - b o d y  problem character ized by  these equations of mot ion  is 

similar to, bu t  more general  than ,  the  problems discussed in subsect.  2"1. 

Indeed for g ~ ~, ~ ----/~ = 1, the equat ions of mot ion  (2.1.10) are reproduced;  
and  for g -~ ~ ~ # ~- O, x j ( t )  ~ y j ( t ) ,  one gets instead the equat ions of mot ion  
(2.1.21) (this case is t r ea t ed  a t  the end of this subsection). By  per forming  a 
scale t r ans format ion  of the dependent  var iables  xj and  of the independent  va-  
riable t, in addi t ion to a (~ Galilei )> t r ans fo rmat ion  to a f rame moving  with 

speed u, one re-obtains  the  eqs. (3.3.1), bu t  with constants  g, g, g and /~ 
replaced by  

(3.3.2a) g' ~ (g- -  an) ~o", 

(3.3.2b) ~ ' ~  ~ ,  

(3.3.2c) 2 ' =  (2 - 2utt + u ~) ~ ,  

(3.3.2d) # ' ~  ( # -  u) ~, 

where ~ and ~ are two nonvanishing constants .  Note  t h a t  there  is no choice 

of ~, a and  u t h a t  reduces, v ia  this t r ans fo rmat ion  (3.3.21), the  equat ions of 
mot ion  (3.3.1) to (2.1.10), unless # -~ g i g  and X = #~. Thus, in general,  (3.3.1) 
cannot  be t r ivia l ly  reduced to (2.1.10). In  the  following we keep all four con- 
s tants  g. ~, ), send #, a l though of course some of t h e m  could be replaced by  

uni ty ,  or made  vanish,  by  the t r ans fo rmat ion  (3.3.2). 
Before proceeding with the discussion, i t  is wor th  re-emphasizing tha t ,  in 

spite of the s imilar i ty  of the m a n y - b o d y  models discussed in subseet.  2"1 and in 
this subsection and  of the  fact  t h a t  in bo th  cases the solution is achieved th rough  
the  consideration of an associated par t ia l  differential equation,  the  two ap- 
proaches are not  identical;  indeed, a l though in bo th  eases the  mot ion  of the  
part icles x~(t) coincides with the t ime  evolut ion of the zeros of ~ funct ion ~v(x, t) 
sat isfying a l inear par t ia l  differential equat ion,  in the ease discussed in this 

subsection (and the  two tha t  precede it, as well as the two ~hat follow it) ~v is 
a polynomial ,  while in the case of subsect. 2"1 it is a ra t ional  function. 

The par t ia l  differential eqm~tion corresponding to the m a n y - b o d y  model  
(3.3.1) reads as follows: 

(3.3.3) 

Tile correspondence is of course through the  represen ta t ion  (3.1.1) of a (prop- 
erly norma.lized) poly~lomial solution of ~,his equat ion.  

I f  n is small  ((~ few-body problem ~>), the  mos t  convenient  technique to  solve 
(3.3.1) is by  an explicit  analysis of the t ime evolut ion of the  zeros of the  poly- 
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nomial  

(3.3.4) w(~, t) = n ! ~ o..(t) ~'~/m ! 
"r 

with the quanti t ies o~(t) characterized b y  the following equations:  

(3.3.5a) 

(3.3.5b) 

(3.3.6a) 

(3.3.6b) 

(3.3.6o) 

n ! ~: o=(o) z~/m ! = [ ~ -  ~,(o)] = ~(z,  0) ,  

n--I 

n ! ~  d,~(o)z~l~ ! = -  v,(z, o) ~ I x -  ~ ( o ) ] - ~ , ( o ) ,  
m~O J = l  

~,.(t) + ~, .( t)  = -- ~,o,.+~(t)- go.,+~Ct) - 2g~,.+~(t), 

m --- o, 1, 2, ..., ~ t -  2, 

~.__,(t) + =~._~(t) = - -  g ,  

v,,(t) = 1 .  

Conditions (3.3.5) determine the initial values of o=(0) and d~(0), m----0, 1, 
2, ..., n -  1, in terms of the  initial positions zj(0) and velocities ~r they  
correspond to the requirement  tha t  (3.3.4) satisfies, at  t = 0, (3.1.1) and (3.1.3). 
Equat ions  (3.3.6), tha t  can be solved by  reeursion start ing from (3.3.6o) and 
(3.3.6b) and by  proceeding then to obtain sequentially, through (3.3.6a), o~(t)  

for m-----n--2, n - - 3 ,  ..., 0, are of course equivalent,  through (3.3.4), to the  
requirement  tha t  ~2@, t) satisfies (3.3.3). 

Note,  incidentally, tha t  (3.3.4) and (3.1.1) imply the relationship 

n 

(3.3.7) o~_x(t) -~  - -  X ( t )  = -- ~t -x ~ vj(t), 

and it is easily seen tha t  (3.3.6b) is consistent with the equat ion for the  centre- 
of-mass co-ordinate X ( t )  t ha t  obtains b y  summing the n equations of mot ion 
(3.3.1). 

Of course, as discussed in previous subsections, the zeros ~j(t) of ~(~, t) need 
not  remain real;  t hey  may  collide (, collapse ,) and then move into the  complex 
plane. That  this need not  happen is implied b y  the discussion of subsect. 2"1. 
However ,  as now we show, there is a large class of problems in which, b y  an 
explicit solution of the  differential equation (3.3.3), it  is possible to conclude 
tha t  collapse must  necessarily occur. 

Consider in part icular  problem (3.3.1) with ~ ~ g---- 0: 

(3.3.8) 5~ = 2 ~ '  [~t-- ff(~ -4- x~) + x~x~]/(v~-- tk) ,  j : 1, 2, ..., n.  
/ t= l  
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I f  2 = #2, the Galilei t r ans format ion  x~ = y~ + / ~ t  yields for the  y / s  just  the 
equat ions of mot ion  (2.1.21), t h a t  have  been extensively  discussed in sub- 
sect. 2"1; thus we do not  discuss this ease here (except in a special subease, 
see below; but  let us recall t ha t  in this case, X = #2, the results of subsect. 2"1 
imply  t ha t  there is a large class of initial conditions t ha t  exclude the occur- 
rence of collapse). I f  instead 2 r r ~, we now show t h a t  collapse is a lmost  the  

rule;  indeed, for n > 2, it cer ta inly occurs if the centre-of-mass speed ( tha t  is 
clearly a constant  of the mot ion  for the sys t em (3.3.8)) does not  coincide with 
v+ or v_, defined by  the formula  

(;3.3.9) v• = # ~: (#"--- 2) ~ ; 

such a coincidence is of course possible only i f / t  2 > 2, so t ha t  v+ and  v are real. 
This result  is not  evident  f rom the s t ructure  of the  equations of mot ion 

(3.3.8). We prove  it using the explicit solution of (3.3.3); indeed this equat ion 
for g = ~ - - - - 0  reads 

(3.3.10) 

and it admits,  therefore,  the general  solution 

(3.3.11) ~,(x, t) = / + ( x -  v+ t) + / _ ( x -  v_t) , 

where f+(z) and /_(z) are a rb i t r a ry  functions and v+, v_ are given by (3.3.9). 
Iu  our case the functions /+ and /_ are de te rmined  by  the requi rement  

t ha t  y~(x, 0) and ~ot(x, 0) be given, in te rms  of the initial positions xj(0) and  
2~(0), by  the expressions (3.1.1) and (3.1.3). I t  is ac tual ly  convenient  to use 
for ~f the representa t ion  (3.3.4), which, used in conjunct ion with (3.3.11b yields, 
af ter  a lit t le algebra,  the explicit  formula  

(3.3A 2) ~(x, t) = co(o) + 1 ( ~ : _  2)-~n !" 

n 

�9 ~ {[e,~(0)~,+ + ~,,,_~(0)](x- v_t)m-- [C,~,(0)V_ + d~_~(0)](X-- v+tl'~}/m !, 
m = l  

where of course c,,(0) and d,.(0), m = 0, 1, 2, ..., n - -  1, are de te rmined  by  the 

initial positions x /0 )  and velocities 2+(0) through (3.3.5), while e,~(0)~ 1, 
&(o) = o. 

Thus 6he solutions x~(t) of (3.3.7) are the zeros of the explicit  polynomiM 
(of degree n in x) (3.3.12); note tha t ,  for real  x, this polynomial  is real, since 
the coefficients c,.(0) and ~.,(0) are real, while v+ and v are real  if #2 > 2, complex 
conjugate  if # 2 <  2. 

For  t -~ ~ c~, clearly 

(3.3.13) xj(t) ~ vj(:~ ~ ) t  @ a j ( ~  c~), j = 1, 2, ..., n, 
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where the sets ( v j (§  c~)} and  {vj(-- c~)} coincide wi th  the  set (vj} of the  n 

solutions of the  algebraic equat ion  of degree n in v 

(3.3.14a) [v+ § e._,(o)](v- v ) -  = [ v  § e._,(o)](v- v+)-. 

Note  t h a t  this does not  imply  v~(§ c~) -~  vj(-- c~), a l though i t  implies t h a t  

the  set {vj(§ oo)} coincides wi th  the  set  (v,(-- cr the  set of the  part icle speeds 
in the  r emote  pas t  coincides wi th  the  set  of the  part icle speeds in the  r emote  

future ,  a l though each part icle need no t  move  in the  ex t reme  fu ture  wi th  the  
same speed it  had  in the  r emote  pas t  (25). 

Using (3.3.7), one m a y  rewri te  (3.3.14a) in the  more elegant  fo rm 

(3.3.14b) 

where 

(3.3.15) 

[ ( v -  v_) / (v-  %)]" = ( V -  v _ ) l ( V -  v+) , 

n 

v --- x ( o )  = X ( t )  = n - ~  ~ ( t )  = - 6~_~(o) 
J=l  

is the  (constant)  speed of the centre of mass  of the  system. 
Now it is clear that~ if V --~ v_ or V ~ v+, (3.3.14) yields n equal  solutions 

v ~-- V; thus,  in the special eases wi th  initial  conditions such t h a t  V ~ - v _  
or V ~ v+ (possible, as no ted  before, only if #2 > 2), all part icles move  in the  
r emote  pas t  and  in the  r emote  fu ture  (almost)(2e) wi th  the  same speed V. 

I f  ins tead V does not  coincide ei ther  wi th  v_ or wi th  v+, the  a sympto t i c  ve- 
locities are given b y  the  formula  

(3.3.16) 

where the  quanti t ies  

v~ = ( v _ -  Vjv+)/(1- Vj), j = 1~ 2, . . . ,  n,  

(3.3.17) n; = I ( V -  v _ ) l ( V -  v+)l 1'~ exp Ei(O + 2~j)ln] 

are the  n- th  roots  of (27) 

(3.3.18) ( v -  v _ ) / ( v -  v§ = I ( v -  v _ ) / ( v -  v+)l exp [i0]. 

(25) This is a familiar phenomenon for the solvable many-body problems recently 
considered, that correspond to integrable dynamical systems; see the papers of 
ref. ( ' %  
(so) Note that, if the speeds of all particles were to coincide, at any finite time, 
with v+ or with v_, this would imply that they remain constant throughout the motion, 
so that in such a case the whole system would move as a solid body, without any internal 
motion. This follows by inspection from the equations of motion (3.3.8). 
(27) So that, if v+ and v_ are real, 0 = 0, while, if v+ and v_ are complex conjugate, 
I ( r -v+) / ( r -v_ ) l  = 1, 
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Clearly, if n > 2, the  v~'s c a m m t  be all real ;  thus  collapse mus t  have  occurred. 

The possibil i ty to obta in  explicit ly the a sympto t i c  speeds is nevertheless 
remarkable ,  and  suggests t ha t  it m a y  be of interest  to consider the  model  
obta ined  f rom (3.3.8) by  complexifieation, according to the procedure described 
a t  the  end of subsect.  2"4. For  the two-dimensional  m a n y - b o d y  model  thus  
obtahled,  the  oecttrrellce of colla.pse would be the  except ion ra the r  t han  the  
rule;  ye t  all ~he analy t ic  results  described above would remain  valid,  including 

the p rope r ty  t h a t  the  two sets of a sympto t i c  (as t -+ • c~) speeds coincide (~s). 
We end this subsection showing how simply the  results of subseet.  2"1 can 

be re-obta ined in the present  f ramework.  Let  g = X ---- # ~ 0, so tha t ,  except  
for the renaming  of the var iables  x~(t) as yj(t), (3.3.1) coincide with (2.1.21). 
Corresponding to this choice of the parameters ,  the  par t ia l  differential equa- 
t ion (3.3.3) t akes  the  very  simple fo rm 

(3.3.19) ~tt -~ ayJt ~-- 0 

and is, therefore,  immedia te ly  solved b y  the explicit formula  

(3.3.20) ~(x, t) = ~,(x, o) + [1 - e x p  [ -  at]] ~ ( x ,  o ) /a .  

Thus, using (3.1.3), one immedia te ly  concludes t h a t  the zeros of V(x, t) are the 
solutions of the algebraic equat ion in x 

(3.3.21) [ x -  x~(O)]-,:~(o) - -  a/[1 - exp [ -  at]J, 

which eoiueides with (2.1.24) (as indeed it should). 

3"4. Other  t r a n s l a t i o n - i n v a r i a n t  m o d e l s .  - Another  class of t ransla t ion-  

iuvar ian t  models obtains f rom (3.1.13) by  set t ing Bo ~ Ao ~ A~ ---- A3 -~ Do ----- 
--~ Do ~ 0 (so t ha t  the equat ions of mot ion  for the x~'s are homogeneous) ,  
and  then  by  using the same change of dependent  variables  a l ready used a t  
the end of subsect. 2"1, namely  

(3.4.1) x~(t) = exp [z~(t)], j = 1, 2, . . . ,  n .  

Essent ial ly  this same procedure  was used in the second pa r t  of subsect.  3"2. 

Sett ing for nota t ional  convenience C ~-- 1,  E ~ a,  B1 -~ g, Ao- -~ ~, D I  -= 2t t  , 

(2~) I t  is easily seen that the same property also holds for the quantities a j ( •  cr 
of eq. (3.3.13), whose explicit expression can be easily obtained. 
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we thus get for the co-ordinates x d t )  the equations of motion 

(3.4.2) 
n 

j = 1, 2, . . . ,  n ,  

and these imply for the co-ordinates z~(t) the translation-invariant equations 
of motion 

(3.4.3) ~, = -- $~(t) + G-- A2, q- 2 i '  [4 --/~(2j q- $,) q- ~,$,]/[exp [ z , -  z,] -- 1],  
k,=l 

j = 1, 2,  . . . ,  n ,  

where 

(3.4.4) ( / =  g + 2 ( n -  1),~, 

(3.4.5) A = ~ + 2 ( n -  1)/~. 

Clearly the study of the equations of motion (3.4.2) is essentially equivalent 
to the study of (3.4.3). The version (3.4.3) of the equations of motion may, 
however, be more appealing as a many-body model because of its translation- 
invariant nature; but it features a two-body force that  is not an odd function 
of the interparticle distance. Both models are characterized by the possible 
occurrence of collapse, whenever the co-ordinates of two particles coincide. 
The co-ordinates z~ may, moreover, exist at -- c~ at  a finite time, corresponding 
to the vanishing of x~., as implied by (3.4.1); in the framework of the many- 
body model (3.4.3) the (~ cause ~ of such a possible divergence should be at- 
tributed to the presence of a quadratic velocity-dependent force (the first term 
on the r.h.s, of (3.4.3)). 

In the following we investigate tersely the time evolution of these many- 
body models starting from initial conditions such to exclude the (future) oc- 
currence of any divergence. Clearly such initial conditions do exist (see below). 

The partial differential equation associated to the equations of motion 
(3.4.2) reads as follows: 

(3.4.6) ;ix*y;** q- gxy~. q-  vdtt q-- 2ttx~** --[- otyh--  [ n ( n - -  1) ~ q- ng] v d -~ O . 

The most convenient way to study the time evolution of a solution of this 
equation that  is a polynomial of degree n in x is through the ansatz 

(3.4.7) vd(x , t) -~ ~ v, d t )  x '~ , 
tra~O 
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since the t ime evolution of the co-efllcients c~(t) is then  determined by  the 
decoupled equations 

(3.4.8) ~,~(t) q- (a q- 2mtt ) d,,dt) -- 

- -  { I n ( n - -  1 )  - -  m(m -- 1 ) ]  1 q- (n--  m) g} c.,(t) = O ,  m = O, 1 ,  . . . ,  n .  

The explicit solution of these equations is, of course, 

(3.4.9) %(t)  [b (+) (-) - 1  �9 = ,~ - -b~  ] {[%(0)--b~ -) %(O)] exp [b (+ ) t ] -  

b(+) [b (-) -- [d~,(O)-- m cm(O)] exp~ ,~ t]}, m = O, 1, 2 , . . . ,  n, 

where b~ ) are the two roots (assumed, for simplicity, different) of the second- 
d e ~ e e  equat ion in b 

(3.4.10) b 2 @ ( g + 2 m k t  ) b - [ n ( n - 1 ) - m ( m - 1 ) ] 2 - ( n - m ) g = 0 .  

The initial values cm(O), G d 0 ) ,  m ~ 0 ,  1 ,  . . . ,  n - 1 ,  are determined by the initial 
positions and velocities of the particles through the two equations 

(3.4.11) 

(3.4.12) 

n--1 n 

x, + ~ c,o(o) x"  = I I  [ ~ -  x~(o)] = w(x, o1, 
nt=0 i=1 

n--1 i 
y. G(o) x,,, = - ~(x, 0) [ x -  x~(O)] ~ ( o ) ,  

m=O j~ l  

while, of course, 

(3.4.13) G(t)  = G(O) = 1,  4~(t)  = o 

(note the consistency of these last formulae with (3.4.8)). 
These equa.tions characterize quite explicitly the t ime evolution of the 

polynomial  V(x ,  t) (of degree n in x; see (3.4.7)). On the other  hand, the n 
zeros xj( t)  of this polynomial,  namely the values such tha t  V(xj ( t ) ,  t ) =  O, 

coincide with the solutions of (3.4.2) character ized by  the initial data  x~(0), 
2~(0), j----1,  2, ..., n, and of course yield through (3.4.1) the corresponding 
solutions of the equations of motion (3.4.3) (subject to the condition tha t  all 
the xs's be positive). 

The quantit ies c,,(t), m = O, 1, . . . ,  n - -  1, can be in terpre ted us convenient  
(( collective variables )) for the description of the many-body  system; their  
relationship to the particle variables x~(t), j = 1, 2, . . . ,  n,  is provided by  the  
simultaneous validi ty of the representat ions (3.1.1) ~nd (3.4.7). The advantage 
of these variables c~(t) over the particle co-ordinates x~(t) is of course tha t  their  
t ime evolution is much simpler, being in fact  given by  the explicit formula (3.4.9). 
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The dynamics of these many-body  models is quite rich, and a thorough 
discussion would require a separate paper.  We repor t  here only the asymp- 
to t ic  ( t -+  + c~) analysis for the model (3.4.3) with ~ = / ~  = 0 and g >  O, 
)~ > O. I t  is t hen  easily seen tha t  

(3.4.14) z i ( t ) ~ v ~ t + a ~ ,  j = 1, 2 , . . . ,  n, (t ---> + oo), 

where 

(3.4.15) 

(3.4.16) 

(3.4.17) 

vj = ~ - -  ~_~ ,  j = ~, 2, . . . ,  n ,  

a; -~- in (--  (~]~/~]j_l)[d~_l(0) -~- ~]j_le~_x(O)]/[d,(O) + ~j c~(0)]), 

j = 1, 2, ..., n ,  

~m = ( [n(n- -  1) -- r e ( m - -  1)] 2 + (n- -  m) g}�89 m ---- 0, 1, 2, ..., n .  

These results obtain from (3.4.7), (3.4.9), (3.4.10) and (3.4.1), and f rom the remark  
that ,  for t -> + c~, the zeros of ~ correspond to  an exact  cancellation between 
the two leading contributions in (3.4.7). Igote t h a t  these findings imply t h a t  
all the  particles escape to the right with velocities t h a t  are independent  of the  
initial conditions; since these asymptot ic  velocities are generally all different, 
the  particles become asymptot ical ly  more and more separated. Of course 
these asymptot ic  results can also be inferred direct ly f rom the equations of 
motion (3.4.3), once the asymptot ic  separation of the particles is ascertained. 

Let  us finally ment ion tha t ,  by  the t r ick of shifting par t  of the variables 
z~ by  in,  one can generate a model with two kinds of particles; as is apparent  
f rom (3.4.3), the two-body interact ion between different particles would then  
be nonsingular, so tha t  in such a many-body  problem different particles can 
cross each other.  

3"5. Some non- trans la t ion- invar iant  models; related properties ol the zeros 

el the classical polynomials .  - In  this subsection we discuss some non- t ransla t ion-  
invar iant  many-body  problems character ized by  equations of mot ion t h a t  
are special eases of (3.1.13). These models are interesting because their  dy- 
namical  behaviour  is ra.ther r ich;  moreover,  their  dynamics is so closely re la ted 
to  propert ies of the zeros of the  classical polynomials to  allow the  display of 
some remarkable,  and we believe novel, propert ies  satisfied by  these quantities.  

Le t  us consider first of all the  subclass of the results of subsect. 3"1 tha t  
obtains for A~ ~ Do = D1 ~ D~ = E = 0, C = 1, so tha t  (3.1.13) become 

(3.5.1) 2j = Be + B~x~ + 2 ~ '  (Ao + A~x~ + A~x~ + 2j~)/(zj-- ~)  , 
k'~---1 

j = 1~ 2, .. . ,  n ,  

1 5  - 11 N u o v o  C i m v n t o  B ,  
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while (3.1.4) becomes 

(3.5.2) ~v,t + (Ao + A~x -{- A~x 2) y;,, -~ 

~- (Bo -~- J~l x) ~)x-- [n(~} -- 1)A 2 ~- ~}[{1] ~) = O, 

where of course xj ~- x~(t), ~o =_ ,p(x, t). 

The real ly-body model character ized by  the equations of mot ion (3.5.1), 
and by the corresponding part ial  differentia] equat ion (3.5.2), are still too 
general to allow a t ransparent  analysis. Below we consider 3 special cases, 
t ha t  are part icular ly significant because of their  close relationship with the 
classical polynomiMs. In each c~se, we t~kc adva~ta.ge of the possibility of 
p(q-forming trivial ch~mges of variables, such as translations and scale trans- 
formations, to present the results in a canonical form that makes such relation- 
ship more evident.  

The simpler and perhaps more interesting case obtains if A1----A2-= 0. 
The canonical form is then  displayed by setting Ao ~- �89 Bo : 0, B~ = -- 1, 
so tha t  (3.5.1) become 

(3.5.3) 2~ = -- xj + ~ '  (1 + 22~2~:)/(xj-- x~), j : 1, 2, ..., n .  
k ~ l  

The i l l terpretat iou of these equations of motion is clearly in terms of a n-body 
model with an extermd Hooke force (of unit  s t rength in these dimensionless 
units) :tcting on each particle, and the veloci ty-dependent  two-body force 
(1 + 2~j.~,~)/(xj-- xj~) acting among the j - th  and lc-th particles. Such a system 
is clearly alw:~ys confined, due to the presence of the Hooke force. I t  has o~m 
equilibrium configuration (see below); aud it may,  but  it need not,  give rise 
to collapse (see below). Part icular ly interesting is the (oscillatory) mot ion 
close to the equilibrium configuration. 

The explicit  dynamicM evolution of this system can be st~ldied by  con- 
sidering the associated par t ia l  differential equation~ tha t  obtains h'om (3.5.2) 
with the determim~tion of the coefficients indicated above, reading, therefor% 

(3.5.4) ~ -  + �89 V~.~ - xy~ + n~  = O. 

The most convenient  way to s tudy the t ime evolution of the solutions of 
this equat iou is through the ansatz 

n 

(3.5. ,5)  v , (x ,  t) = 2- .  ~. %(t) H,.(x) , 
m--O 

where H,,,(x) is the Hermite  polynomial  of order m (29); for it is then easily 

(29) For the classical polynomials we use the notation of A. ERD~LYI, Editor: Higher 
Transcenderttal _Functions, Vol. 2 (New York, N.Y., 1953). 
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seen t ha t  (3.5.4) implies t h a t  the  coefficients e.,(t) satisfy the  simple equations 

(3.5.6) ~ + (n - -  m) c~ ---- 0 ,  m ----- O, 1, ..., n .  

Thus the i r  t ime evolut ion is given by  the  simple formula 

(3.5.7) e~(t) = e~(O) cos (~ . t )  + [d~(O)/o~] sin m~t 

with 

(3.5.8) to,,, = (n - -  m) ~ , m ---- O, 1, ..., n .  

The initial da ta  c~(0), d~(O) are related,  as usual, to  the  initial positions xj(0) 
and velocities &j(0) of the many-body  problem (3.5.3), through (3.1.1), (3.1.3) 
and (3.5.5) : 

(3.5.9a) 

(3.5.9b) 

~ f i  2- -  ~: e~(o) ~ ( x )  = ~(x, o) = I x -  x,(O)], 

2 - -  ~ e~(o)H~(x) = ~,(x, 0) = - ~(x, 0) I x -  x~(O)]-~,(o) .  
m~0 t=1 

These equations imply of course (") 

(3.5.10a) e.(O) ---- e.(t) = 1 ,  

(3.5.10b) 

(3.5.1oe) 

-boo 

f e.,(O) ----- (z~-~ 2'~-m/m !) dx exp [-- x ~] H.~(x) 1-[ [x - -  xj(0)], 
~=1 

- - c o  

-{-co 

~ ( 0 )  = -- (~-t2~-~]m ! ) f d x  exp [-- x~] �9 
--r 

n n 

�9 H~(x) I I  I x -  x,(o)] ~: I x -  x~ (o ) ] - l~ (o ) ,  

m = O, I ,  2,..., n - -  1, 

m = 0, 1 , . . . ,  n - -  1. 

The  n zeros of the polynomial  of degree n in x given b y  the explicit  for- 
mulae (3.5.5), (3.5.7), (3.5.8) and (3.5.10) provide the solutions of the  n-body 
model  characterized by  the  equat ions of mot ion  (3.5.3). Le t  us now discuss 
some special cases. 

Consider first of all the  configuration of the  system characterized by  the  
initial da ta  x~(0) ---- 5j, ~j(0) ---- 0, j --~ 1, 2, ..., n, where ~j are the n zeros of 
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the Hermite polynomial  of degree n 

(3.5.11) H~(~j) --~ 0, j = 1, 2, ..., n.  

Then clearly c.,(0) = din(0) = 0, m = 1, 2, ..., n -- 1, so tha t  ~f(x, t) = ~v(x, 0) = 

= 2-"H~(x); the n-body problem is at equilibrium. We have thus proved tha t  

the n zeros of the Hermite polynomial  of degree n provide the equilibrium 

coufiguration of the n-body system (3.5.3). And, since at equilibrimn the ve- 

locity-dependent par t  of the two-body force can be of course ignored, we may  

also assert tha t  the n zeros of the Hermite polynomial  of degree n coincide 

with the equilibrium positions of n particles ou the line whose dynamics is 

characterized by  the Hamil toniau 

(3.5.12) H(p, q) 1 i (P~ ~- q~) i t-1 ---- - -  ~ In ( q j -  q~),  
j=l j=2 k=l 

since the equations of motion tha t  obtain from this Hamil tonian are just the 

eqs. (3.5.3) with the velocity-dependent term on the r.h.s, omitted. 
The connection of the solvable model of eqs. (3.5.3) with the Hamiltonian 

model of eq. (3.5.12) is very interesting, as well as the very direct relationship 

of its equilibrium configuration to the zeros of Hermite polynomials;  the latter 

result is, however, not new, having in fact been discovered almost a century 
ago by STIELTJES (a0). 

The equivalence between the Hamil tonian model of eq. (3.5.12) and the 
solvable n-body model (3.5.3) is of course valid for qny motion in which the 

velocities remain small; this is clearly the case if the system oscillates around 

its equilibrium configuration, without  ever gett ing too far from it. Indeed,  

since the difference between the equations of motion (3.5.3) and those tha t  

correspond to the Hamil tonian (3.5.12) is quadratic in the velocities, the two 
models are identical not only as regards their equilibrium configurations, but  
also (to the first order) in accomlting for the small oscillations around the equi- 
librium configuration. But  for the model (3.5.3) it is clear tha t  these small 

oscillations are characterized by the .n frequencies o~,~, m = 0, 1, 2, ..., u - - 1 ,  
of eq. (3.5.8) ; see (3.5.7). On the other hand, the s tandard theory for the small 

oscillations of a dynamical  system around its equilibrium configuration, up- 

plied to the system characterized by the Hamil tonian (3.5.12) and by the 
(clearly unique) equilibrium configuration qj = ~ ,  j --~ 1, 2, ..., n, described 

(~0) See subsect. 6.7 of the classical textbook of G. SZEGO: Orthogonal Polynomials, 
Amer. Math. Soc. Colloq. Publ., 23, 1939. A discussion of these results is given in 
F. CALOG]~RO : The zeros o] the classical polynomials coincide with the equilibrium positions 
o] simple one-dimensional many-body p~'oblems, Not~ Intern~ No. 682, Istituto di Fisic~, 
Roma, April 1977. 
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above,  implies af ter  a l i t t le a lgebra t h a t  the  frequencies ~ ,  m = 0, 1, ..., 

n -  1, of the  normal  modes  are jus t  the  square roots  of the  eigenvalues of the  
ma t r i x  A of r a n k  n, whose ma t r ix  e lements  axe given in t e rms  of the  n quan-  

t i t ies  ~. b y  the  simple formula  

(3 .5 .13)  A ~ ,  = ,~, Z ( ~ , ~ -  . % ) - 2 _  ( z -  ~ , , . ) ( . % -  ~. , ) -~ ,  
k = l  

where of course 8~z is the  Kronecker  symbol ,  8~t ---- 1 if m ---- l, 8m~ ---- 0 if m V= l. 
Since these frequencies e3~ m u s t  coincide wi th  the  frequencies eo~ of eq. (3.5.8), 
while the  quant i t ies  5j coincide wi th  the  zeros of H.(x) ,  the  following theorem 

obtains  for  the  zeros of H e r m i t e  polynomials :  Let x~ ), m ---- 1, 2, ..., n, indicate 

the n zeros of the Hermite polynomial i t ( x ) ,  H , ( x~  ~) = 0; let the matrix A ol 

rank n be defined in terms of these zeros by the simple expression 

(3.5.14) A~,. : ~,,~ ~1 - '"~ "~ x~?~] -2 ' x .  ] - ( i -  O,~,)[x, ; [~m - -  (n) --2 

then the n eigenvalues a8 of A are the natural numbers from 0 to n -  1: 

(3.5.15) a8 = s - -  1 ,  s = 1, 2, ..., n .  

This result  is p resumably  new; we have  repor ted  it  elsewhere toge ther  

wi th  a terse  discussion of i ts  implicat ions (91). 
Le t  us now re tu rn  to  discuss the  solutions of the  n-body model  (3.5.3). 

There  are clearly special solutions t h a t  oscillate periodical ly wi th  one of the  
frequencies (3.5.8); some of these lend themselves  to a ve ry  i l luminat ing 
graphical  display.  Consider, for instance,  the  solution character ized b y  init ial  

conditions such t h a t  era(0) = d~(0) ----- 0 for m ---- 1, 2, ..., n - -  1 (see (3.5.9) 
and  (3.5.10)). Then  the  solutions m~(t) of (3.5.3) are given b y  the  n roots  of the  

equa t ion  in x 

(3.5.16) 

where  

(3.5.17a) 

(3.5.17b) 

H~(x)  ---- - r cos  [n  �89 t § ~ ] ,  

o = {[eo(0)] 2 § [eo(0)]2/n} �89 , 

---- axetg [n �89 vo(0)/do(0)] �9 

A convenient  way  of visualizing the  corresponding behav iour  of the  par-  
ticles character ized b y  the  co-ordinates x~(t) is to draw a graph  of the  t t e rmi t e  
po lynomia l  H.(x)  and  to  consider the  intersect ion of this  g raph  wi th  a s t ra ight  

(31) F. CALOG]~JRO'- ~ett. Nuovo Cimento, 19, 505 (1977). 
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line parallel to the x-axis tha t  oscillates periodically as described by  the r.h.s. 
of (3.5.16). Note tha t  in this manner  one discovers tha t  adjacent  particles 
have generally opposite speeds; moreover,  one finds tha t  the condition neces- 
sary and sufficient to eselnde the occurrence of collapse in this case is the re- 
quirement  tha t  the ampli tude C of the oscillations of the r.h.s, of (3.5.16) be 
less t han  the moduli of all the (local) extrema of H~(x) .  

Another  solution tha t  also lends itself to a very  explicit  graphical display 
is t ha t  corresponding to initial conditions such tha t  c,, ,(0)~ ~,,(0):= 0, m--~ 
---- 0, 2, 3, ..., n - -  1, ii~ which c~se (3.5.16) is replaced by 

(3.5.1s) 

(3.5.19a) 

(3.5.19b) 

/ / . , (x)  = - xC' cos  [ ( n -  1)~t + 9 ' ] ,  

C' : 2{ [c~(0) ]  2 + [6~(O)]~/(n-- 1)}�89 

~ ' =  aretg [(n--  1)tc~(0)/d~(0)] �9 

In this case the co-ordinates xj( t )  are given by the intersections of the graph 
of the Hermite  polynomial  t t~ (x )  with a straight line tha t  rotates  in an oscil- 
la tory way around the origin, representing the r.h.s, of (3.5.18). 

~Ve conclude this discussion emphasizing an interesting feature of this 
n-body model, tha t  may  make it re levant  for several applications: it is the 
explicit  role p layed by  the transi t ion from the n particle variables xj( t)  to 
the n quantit ies c,~(t), m = 0, :l, 2, ..., n - - 1 .  The connection is of course 
pro~-ided by  the formula 

n 

(3.5.20) c,~(t)H,,(x)  = 2~]-[ Ix--  xj(t)]. 
m = 0  j ~ l  

The quantit ies c,,,(t), m --= O, 1, . . . ,  n -  1, are characterized by  thei r  simple 
t ime evolution, see (3.5.7) ; they  may  be considered the (~ normal co-ordinates ~ 
for the system under  consideration (although their  relationship (3.5.20) to 
the particle co-ordinates is not  Iine~r). They  clearly const i tute ~ collective 
co-ordinates ~> for the description of the many-body  system, part icularly suited 
to the description of its t ime development.  >Tote incidentally tha t  the l~st of 
these co-ordinates is essentially just  the centre of mass X of the syste~m: 

n 

(3.5.21) c . _ , ( t )  - -  - 2 n X ( t )  = - 2 y_. x , ( t ) .  

t=1  

This last formula follows from (3.5.20); note its compatibi l i ty  with (3.5.6) 
a~ld with the equat ion of motio~ J~ + X = 0, t ha t  follows direct ly from (the 
sum of all) the eqs. (3.5.3). 

The second model to be discussed in this subsection corresponds to (3.5.1) 
a.nd (3.5.2) ~vith A~ = 0, bu t  A1 :/: 0. I ts  canonical form obtains by  set t ing 
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Ao----0, A I : I ,  Bo- - - - l~-~ ,  B I = - - I ;  we assume hereafter ~ > - - 1  (the 
motivation for this assumption shall be clear in the following, as well as the 
fact that  many results remain valid e~ven if this assumption does not hold). 

With this choice of coefficients the equations of motion (5.3.1) become 

(3.5.20a) ~j = 1 + ~ - -  xj + 2 ~ '  (z~ -[- :}~.:~)/($j- x~), 
k=l  

or, equivalently, 

(3.5.20b) 5~j = n -{- ~--  xj -4- ~ '  (x~. -{- x~ -[- 2 ~ : ~ ) / ( x j -  x~), 
k--1 

j = 1,  2 ,  . . . ,  n ,  

j----1, 2,..., n. 

Note incidentally that  these last equations imply for the centre-of-mass co- 
n 

ordinate X = n -1 ~x~ the equation 

(3.5.21a) J~ ---- n -{- ~z-- X ,  

namely the time evolution 

(3.5.21b) X ( t )  = n "4- ~r -}- [X(O) -- (n Jr ~)] cos t + X(O) sin t .  

Equations (3.5.20) have a less appealing interpretation as equations of 
motion of a many-body problem than those given above in this subsection, due 
to the non-translation-invariant character of the two-body force. Nevertheless, 
this model is interesting because of its relationship with properties of Laguerre 
polynomials. Indeed, because the results are analogous, except for the re- 
placement of Hermite polynomials by IJaguerre polynomials, to those described 
above, we present them below very tersely. 

The partial differential equation that  corresponds to the equations of motion 
(3.5.20) reads 

(3.5.22) 

The convenient ansatz to discuss the time evolution of a polynomial solution is 

(3.5.23) v/(x , t) = ( - - ) ' n  i ~ e~(t) JL~(x), 
Otto0 

where L:(x) is the Laguerre polynomial (~) of degree m, since (3.5.22) then 
implies 

(3.5.24) iim ~ (n-- m) v~ ----- 0, m ---- 0, 1, ..., n, 

namely 

(3.5.25) v~(t) = e~(0) cos co~t ~- [d~(0)/o~] sin o)~t, m = 0, 1, ..., n, 
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where  aga in  

(3.5.26) ~o., = ( n -  m) �89 , m = 0, 1, ..., n .  

As for  the  ini t ia l  d a t a  c,,(0), d,,(0), t h e y  are r e l a t ed  to the  in i t ia l  pos i t ions  xj(0) 
and  veloci t ies  2 / 0 )  b y  

(3.5.27a) (--)'~n ! ~cm(O) L~(x  ) : ~f(x, 0) = 121 I x - -  xj(0)] ,  
m~O j = l  

(3.5.27b) 
n--1 n 

( - - ) " n  ! ~] d n(0 ) . . . .  L: (x )  = F(x, 0) ~ I X -  X j ( 0 ) ] - - I  X j ( ( ) )  . 

m=O j ~ l  

These  equa t ions  d e t e r m i n e  the  2n quan t i t i e s  c,,(0) and  d~(0), m = 0, 1, ..., n - -  1, 
in t e r m s  of t he  2n ini t ia l  d a t a  xj(0), ~ (0 ) ,  while 

(3.5.28) c~( t )  = 1 .  

The re la t ionsh ip  b e t w e e n  the  n par t ic le  co-ord ina tes  xj(t), j = 1, 2, ..., n - -  1, 
aud  the  n <, col lect ive co-ord ina tes  )> Cm(t), m = 0, 1, ..., n - -  1, is g iven  b y  

(3.5.29) 
n n 

( - - ) ' n !  ~_c,~(t) L: (x)  = 1-[ [ x - -  xj(t)] . 
m=O i=1 

I n  pa r t i cu la r ,  c,_~(t) is s imp ly  r e l a t ed  to  the  cen t r e -o f -mass  co -o rd ina te  X( t ) :  

(3.5.30) X(t)  = n + ~ + c,,_~(t) . 

The n zeros y; of the  Lague r r e  p o l y l m m i a l  L:(x),  L~(~j) = O, y ie ld  the  (unique)  

equ i l ib r ium conf igura t ion  of t he  s y s t e m  cha rac t e r i zed  b y  the  equa t ions  of 
m o t i o n  (3.5.20). This  equ i l ib r ium conf igura t ion  cor responds  of course to  a 
so lu t ion  of the  equa t ions  t h a t  ob ta ins  b y  e q u a t i n g  to  zero the  r.h.s,  of (3.5.20), 
w i th  m o r e o v e r  ~ ---- 0, j = 1, 2, ..., n:  

(3.5.31) ~ '  ( ~ - -  ~k)- '  ---- �89 [1 - -  (1 + ot)lxs], j = 1, 2, ..., n .  
k=l  

N o t e  t ha t ,  to wri te  these  equa t ions ,  we h a v e  d iv ided  b y  2x i the  r .h.s,  of (3.5.20a). 
This  is eol lvenient ,  since it  is t h e n  i m m e d i a t e l y  recognized  t h a t  t he  zeros ~ 
of the  Lague r r e  p o l y n o m i a l  L:(x) coincide wi th  the  un ique  equ i l ib r ium con- 
f igura t ion  of the  (Hami l t on i an )  s y s t e m  cha rac t e r i zed  b y  the  H a m i l t o n i a n  

n n n i - - 1  

j = l  j ~ l  j~2 k=l  
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a result that  is again not new, going in fact back to S~ET.TJES (3o). Note that  
the single-particle potential constrains the particles on the positive real axis. 

The time evolution of the system (3.5.20) is clearly characterized by the n 
frequencies ~o~ of eq. (3.5.26), with m-~ 0, 1, . . . , n - - 1 ;  these frequencies 
must, therefore, coincide with the eigenfrequencies of the small oscillations 
of this system around its equilibrium configuration. But these eigenfrequencies 
can be computed by the standard procedure of linearization of (3.5.20) around 
the equilibrium configuration. In this manner, in analogy to the previous 
case, one proves, with a little algebra, the following theorem: .get x,~(n, a), 
m ~ 1, 2, ..., n, indieate the n zeros of the Zaguerre ~olynomiaI I~:(x), f~:[x,~(n, 

~)] : 0; let the matrix B of rank n be defined in terms of these zeros by the simple 
expression 

(3.5.33) B,~ = ~,~ ~ '  [x~(n, a) -- x.(n, . ) ] -~x.(n,  ~ ) - -  

--  ( 1 -  8~)[x,(n,  a ) -  x,~Cn, a)]-~x~Cn, a) ; 

then the n eigenvalues b, of B are one-hal/of the natural numbers from zero to n - -  1 : 

(3.5.34) b, = 1 (s-- 1), s ~- i, 2, ..., n.  

We have reported, and discussed, also this result elsewhere (al). 
A very explicit display of the motion of the particles obeying (3.5.20) can 

be given in some special cases, the simpler of these being of course that  charac- 
terized by vo(t) =/= 0, c~(t) ~ 0 for 1, 2, ..., n -  1; we 4o not elaborate this 
analysis here, since the interested reader will have no difficulty to duplicate 
the treatment given above in analogous cases. 

The last model of this subsection corresponds to (3.5.1) and (3.5.2) with 
A2 r 0. The canonical form obtains then by setting A0 ---- -- 1, A1 = 0, A~ ---- 1, 
B o ~ - ~ - - f l ,  B l = a J r - f l + 2 ;  we assume hereafter a > - - l ,  f l > - - l ,  for 
reasons tha t  shall be clear presently (but many of the following results do not 
require these restrictions). Since the treatment to be given now is essentially 
a repetition of those just given, except for the fact that  now the Jacobi poly- 
nomials _P(~'~)(x) (~g) are taking the place of the Hermite and Laguerre poly- 
nomials, we merely report the main equations and results, without any elab- 
oration. 

The equations of motion read 

(3.5.35a) ~ = ~ -  ~ + (~ + ~ + 2)x~ + 2 ~:' (x~ - 1 + ~ , ) / ( x ~ -  x,), 
k-~-_l 

j-~- i, 2,...~ n, 
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or, equ iva len t ly ,  

where  of eom'se X is the  cent re-of-mass  co-ordinate .  
The  cor responding  pa r t i a l  d i f ferent ia l  equa t i on  reads  

(3.5.36) ~ft~ -~ (x ~ --  1) ~fx~ -~ [~ -- /3 -~- (~ ~-/3 -~ 2) x] ~f~ --  (n ~- 0~ -~-/3 -~ 1) ~f = 0.  

The  co~venien t  ansa tz  for  its solut ion reads  

(3.5.37) V,(x, t) [2"n  !(n ~- ~ -7 fl) ! / (2n-~  a ~- fl) !] = ' ca t )  t~<~,~) ( x ) ,  
m~O 

since the~  

(3.5.38) ~ ~- [n(n + zr -~ fl -~ 1) - -  m ( m  + zr + fl + 1)] c,~ = 0 ,  

m ~ 0 ~  1~ ...~ n~ 

imply ing  of course 

(3.5.39) c,.(t) = c,,~(O) cos ogm t ~- [d.,(O)/eJ.,]/sia o~,,~t , 

where, however~ flow 

(3.5.40) ~o,,~ = [n(n  -~ ~ + fl + 1) ~ m(m ~- ~ + / 3  ~- 1)] �89 , m = 0, 1, 2, ..., n .  

The  re la t ionship  be tween  the  par t ic le  co-ordinates  xj(t)  and  the  collective 
co-ordinates  c,,(t) is g iven by  

n 

(3.5.41) [2,,n !(n + ~ +/3) !I(2,~ + ~ +/3) !] ~ c a t ) P ' , S ' ( x )  = f I  Ix--x~(t)], 
m=O J = l  

which also implies 

(3.5.42) e,~(t) ~-- 1 .  

Clearly the  ini t ial  da ta  are cor responding ly  re la ted  by  

(3.5.43a) [2'm !(~t + ~ -~/3) !/(2n-~ g + /3 )  !] ~ c,,(O)t)~3'(x) = 
rr.~O 

= ~(x, O) = 1~  I x -  x~(O)], 
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(3.5.43b) [2"n !(n -4- ~ + 8) !/(2n + cr -4- 8) !] ~ ~,,,(0) P~'P)(x) = 
rct~O 

= - ~(x, 0) ~ [ ~ -  x,(0)]-~,(0). 
J = l  

The equilibrium configuration for the system (3.5.35) is given by xj = .~, 
the n quantities ~ coinciding with the zeros xj(n, ~, fl) of the Jacobi polynomial 
/~2'~)(x), P~'~)[x~(n, o:, fl)] ~ 0, j ----- 1, 2, ..., n. This same configuration corre- 
sponds also to equilibrium for the (Hamiltonian) system characterized by the 
Hamiltonian 

(3.5.44) 
n 

H(p, q) = �89 y p ~ -  �89 ~ [(~ + a) m ( 1 -  q~) + (1 + 8) m (1 + q,)] - 
I - 1  j ~ l  

again a result going back to STIET,TJ~S (3~ NOW the single-particle potential 
confines all the particles in the interval (-- 1, 1). 

A comparison of the approximate (linearized) treatment of the small oscil- 
lations of the system (3.5.35) around its equilibrium configuration with the 
exact treatment given above leads to the following theorem (8~): Zet x~(n, ~, 8) 
be the n zeros of the Jacobi polynomial P~'P~(x); let the matrix C of rank n be 
defined in terms o/these zeros by the formula 

(3.5.45) 

then the n eigenvalues c. o/ C are given by the formula 

(3.5.46) c, = �89 (s-- 1)(2n-- s + a ~- fl), s = 1, 2, ..., n. 

Of course analogous results can be given for Gegenbauer and Legendze 
polynomials, since these are just special eases of the Jaeobi polynomials, cor- 
responding respectively to a ~ 8 and to ~ ~ 8 ~ 0 (~). 

3"6. Periodic and hyperbolic forces. - I a  analogy to the treatment given 
in the previous section, see in particular subsect. 2"3, we extend here the results 
of the previous subsections to models involving circular and hyperbolic func- 
tions. As will be presently seen, the solvable many-body models thus obtaine4 
encompass all those discussed in subsect. 2"3. Here, however, we shall forsake 
a detailed discussion of each model, limiting our treatment to the identification 
and display of these many-body models and of the technique by which they 
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can be analysed. We, moreover, restrict our consideration to translation- 
invariant problems. 

Now the basic ansatz is 

(3.6.1) ~f(x, t) = fl " ~ I  sinfl[x-- x,(t)], 
j = l  

tha t  reduces of course to (3.1.1) for/3 = O. I t  implies the following formulae: 

(3.6.2) 

(3.6.3) 

(3.6.1) 

(3.6.5) 

(3.6.6) 

n 

j = l  

~, = - ~t~ ~ ~ ctg ~ ( x -  x , ) ,  
/ = 1  

i=l k=l 

*f,:, - -  V{f l%, ,2X - fl '  ~, ctg [ f l ( x -  x,)] ~ '  (25 q- a~) ctg f l ( x , - -  x~)}, 
j= l  k = l  

n 

~vt, = ~v{-- fl~n2X ~- + fl Ectgf l (x-- . r~) .  
j = l  

k = l  

In all these equations of course ~v ~ V(x,  t), x j  ~ x~(t)~ X ~ X(t). Note tha t ,  
to obtain the last 3 equations, we have used the trigonometric ident i ty (2.3.10) ; 
and we have of course introduced the centre-of-mass co-ordinate 

n 

(3.6.7) X ( t )  = n -~ ~ _ x / t )  . 
5 ~ 1  

Assume now tha t  the function V(x, t) satisfies the linear partial  differential 
equation 

(3.6.8) A~vxx + BF.~ + U~v,, @ D ~ ,  4- EF, + F,p = 0, 

where the quantities A, B, C, D, E and F are independent of x,  but  might 
depend on t (see below). There clearly correspond for the co-ordinates xj( t)  

the equations of motion 

(3.6.9) C2j + E 2 ,  = B + fl ~ '  [2A -- D(2j + 21:) + 2C2j2k] ctg fl(xs-- xk), 

j = 1, 2, . . . ,  n, 
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with the additional equation 

(3.6.10) ~ ---- f l~n2(A-  D X  + CX2) . 

The solutions of the equations of motion (3.6.9) with no constraint on the 
initial data are in this manner related to the linear partial differential equa- 
tion (3.6.8), where now F should be considered as given by eq. (3.6.10). Clearly 
the centre-of-mass co-ordinate that  enters in this last equation satisfies the 
equation 

(3.6.11) CJ~ -+- E X  : B ,  

that  follows immediately from (3.6.9). 
We assume hereafter, for simplicity, A,  B, C, D and E to be constant 

(although the possibility to solve the many-body problem (3.6.9) even when 
these quantities depend arbitrarily on t should be emphasized; and note that  
the techniques described below apply also in this more general case). I t  is 
then immediately seen that  (3.6.11) implies 

(3.6.12) X(t) = X(O) + (B/E) t + ((]/E)J~(O) - (B/E)] [1 -- exp [-- Et/C]], 

and, inserting the corresponding formula for X(t)  in (3.6.10), one gets the ex- 
plicit expression of ~(t) in terms of A,  B, C, D, E and of the initial position 
X(O) and velocity X(0) of the centre of mass of the system. 

The many-body model characterized by the equations of motion (3.6.9) 
is clearly translation invariant; it is not Galilei invariant, although the change 
of variables x j ( t ) =  x ~ ( t ) ~  ut (corresponding to a description of the same 
system as seen in a frame of reference moving with constant speed u) reproduces 
the same model, but with the new coefficients A '-~ A -- Du  ~- Cu e, B '~-  B -- Eu, 
C ' ~  C, D'-~ D - -  2Cu, E'-~ E,  and with F '  given in terms A' ,  C', D' and X' 
by the same eq. (3.6.10) that  gives /v in terms of A, C, D and X ~ X ' ~  at. 

The linear partial differential equation (3.6.8) is most conveniently solved 
through the ansatz 

(3.6.13) ~(x, t) ~-- fl--(2i) -* ~ e~(t) exp [iflmx], 

that  is clearly consistent with (3.6.1) ; for the time evolution of the (~ collective 
co-ordinates ~> e,~(t) is then given by the simple equations 

(3.6.14) CY~(t) + (E + iflmD) d~(t) ~- (F ~- i f lmB--  fl2m2A) c,~(t) : 0, 

m ~ O, -4-1, -4-2,..., i n .  

Of course the explicit relationship between the particle co-ordinates xj(t) and 
the eonective co-ordinates is univocally determined by (3.6.1) and (3.6.13), 
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n a m e l y  b y  the  f o r m u l a  

(3.6.15) era(t) exp  [iflmx] = (2i) ~ 1-I sin f l [ x - -  xj(t)] ,  
m = - - n  1=1 

t h a t  of com*se impl ies  (when all the  x~'s are  real)  

(3.6.16) e~(t) : ( - - )"  c_*~(t), m == 0, 1, ..., n ,  

a p r o p e r t y  t h a t  is c lear ly  cons i s ten t  wi th  (3.6.14). 
The  expl ic i t  so lu t ion  of (3.6.14) is genera l ly  easy .  Moreover ,  if the  cen t re  

of mass  of the  s y s t e m  m o v e s  w i th  c o n s t a n t  speed,  

(3.6.17) .X(t) ~-- V ,  

as is t h e  case if B ~ E---- 0 or, in t he  genera l  case, if X(0)  ~ B / E ,  t h e n  F ,  

as givei1 b y  (3.6.10), is also t i m e  i n d e p e n d e n t ,  so t h a t  all the  coefficients in 
(3.6.14) b e c o m e  cons tan t .  Then  c lear ly  

(3.6.18) c f l ) - - c l + ) e x l ) [ o t ~ ) t ] ~ - c ( - ) e x p [ a ~ - ) t ] ,  r e = O ,  •  -~:2 , . . . ,  •  

(--) 
where  ~(+)m and  :r are the  two  roots  of the  second-degree  equa t i on  in 

(3.6.19) Co~ ~ -~ (E  d- i f lmD)  zr -~ ( F  d- i f l m B  - -  f l2m~A)  = O, 

r e = O ,  =[=1, ~-:2, . . . ,  - l - n ,  

and  the  cons t an t s  c(, +~ a n d  e(~ -~ are  r e l a t ed  to  the  ini t ia l  d a t a  c,.(0) and  d~(0) b y  
the  f o r m u l a  

(3.6.20) ,~:}-) r (+ )  t - - ) l - - 1  (:F) 
- ~ %(o)], %, =- • t ~  ~ j [d~(0) - -  m = O, • 1, .. . ,  -t- n .  

As for  the  ini t ia l  d a t a  era(O) and  d,,(0), t h e y  are  of course  r e l a t ed  to  the  
in i t ia l  pos i t ious  x~(0) and  veloci t ies  2j(0) t h r o u g h  (3.6.15); no te  inc iden ta l ly  
t h a t ,  for  smal l  ~, this  e q u a t i o n  is easi ly  solved in expl ic i t  fo rm,  for  ins tance  
for  ~ ~ 2 

(3.6.21) cl(t) = 0 ,  co(t) ~ --  2 cos fl[xl(t) - -  x2(t)], c2(t) = exp  [ - -  2 i f l X ( t ) ] ,  

while for  n ~ 3 

(3.6.22) 

co(t)  = c2(t) = o ,  

e l ( t )  = - e x p  [ i f l [ X l ( t ) -  x 2 ( t  ) - ~3(t)]] - 

- e x p  [ i f l [ x ~ ( t ) -  x 3 ( t ) -  x l ( t ) ] l  - e x p  [ i f l [x~( t )  - x l ( t ) -  x 2 ( t ) ] ] ,  

c3(t)  = e x p  [ -  3 i f l x ( t ) ]  . 
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As suggested by these formulae, and clearly implied by (3.6.15), it is generally 
true tha t  e.~(t) ~ 0 if m and n have different parities, and tha t  v.( t )  is simply 
related to the centre-of-mass co-ordinate, 

(3.6.23) c.Ct) --- exp [ -  i f lnX(t}] .  

I t  is of course always possible to work with real quantities, by introducing as 
(~ collective variables ~ the real and imaginary parts of e . ( t ) ,  in place of e.(t) 
and its complex conjugate (up to a sign; see (3.6.16)) e_,(t). 

These results open the possibility of a detailed discussion of the (rather 
general) many-body problem characterized by eqs. (3.6.9), including a de- 
termination of whether and when collapse occurs; but, as indicated at the 
beginning of this subsection, space limitations prevent us from elaborating 
this matter any further here. 

We end this subsection with two remarks. First of all we note that~ although 
in our discussion above we implicitly assumed fl to be real, an interesting many- 
body model obtains also for imaginary fl ~ i r. In such a model the circular 
functions are replaced by hyperbolic functions, so that  the physical behaviour 
becomes of course qualitatively different. On the other hand, the analytical 
treatment, displaying the possibility to achieve a quite complete and rather 
explicit solution of this many-body problem, remains applicable, with obvious 
modifications, also in the case with fl = i~, ~ real (indeed it remains formally 
valid, although hardly interesting, even for complex fl). 

Secondly we remark that  it is very easy, although certainly nontrivial 
as regards the changes induced in the qualitative physical picture, to modify 
these models so that  they involve two kinds of particles, following the pro- 
cedure of subsect. 2"4. Indeed also the other extensions discussed in that  sub- 
section are clearly easily apphcable in the context of the results presented in 
this subsection, and more generally in this section. 

4. -- S n m m a r y  and out look .  

A rich harvest of many-body models has been introduced in this paper. 
The main focus has been on models involving no constraints on the initial 
velocities or positions of the particles. The models considered are all amenable 
to analytic treatment, the main technique of solution being through the iden- 
tification of the motion of the particles with that  of the zeros of specially simple 
solutions of linear partial differential equations. Because these latter equations 
are generally solvable in rather explicit form, the motion of the particles de- 
scribed by these many-body problems can be studied in great detail, and can 
often be visualized quite explicitly. In many cases, (~ collective co-ordinates )~ 
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t h a t  are par t icular ly  appropr ia te  to describe the  dynamica l  evolut ion of these 
systems are quite na tura l ly  in t roduced through the process of solution. 

Typical  p ro to types  of the models discussed in this paper  are those charac- 
ter ized by  equat ions of mot ion  such as 

(4.1) 2~ = a 4. b~c~ 4- cx~ q- ~ '  [A 4- B(2j 4- 2~) + C(xj 4- x~) 4- 22j2k]/(Xj--Xk) , 
k = l  

j -" 1~ 2~..., n~ 

(4.2) 2~ = a 4- b2j 4- fl ~ '  [A -~ B(~'~ -{- 2~) 4- 2~2,:] ctgfl(x~-- xk), 
k = l  

j =: 1~ 2 , . . . ,  n,  

(4.3) 2j = a 4- b2j ~- 7 [A 4- B(2~ Jr 2~) 4- 22j2~] ctgh ~,(x~-- xk), 
k = l  

j =: 1, 2, ..., n;  

a l though models considerably more general  than  those repor ted  here are also con- 
sidered. The coefficients a, b, c, A, B, C appear ing  in these equat ions could 
be t ime dependent ,  a l though in the eases discussed in more explicit  detail  
thei r  constancy was general ly assumed. 

These models give rise to an ample  var ie ty  of motions,  including cases in 
which the particles can escape to infinity and cases in which they  are confined 
in a finite region of configuration space;  cases in which the  mot ion  is periodic, 
or quasi-periodic, or not periodic;  cases in which collapse, whose possibili ty 
is of course implied by  the singular character  of the two-body force appear ing  
on the r.h.s, of these equat ions of motion,  does or does not  occur. Some of 
these models are t ransla t ion invar iant ,  some are not ;  t hey  are general ly charac- 

ter ized by  the presence of ve loci ty-dependent  forces; but ,  when the sys tem 
admits  an equil ibrium configuration a round which it oscillates, there  are regimes 
in which the ve loc i ty-dependent  components  are small, so t ha t  in these cases the  
solvable sys tem provides a good approx imat ion  to a sys tem wi thout  velocity-  

dependent  forces, t ha t  is then  evident ly  of Hami l ton ian  type .  
A detai led analysis of the dynamica l  behaviour  has been repor ted  only 

for a few cases; the teehniques used provide tools t ha t  allow an easy t r e a t m e n t  
of the m a n y  other  models contained in this general  f ramework.  

Applications have  not  been ment ioned;  but  the va r ie ty  of behaviours  t ha t  
have  been displayed suggest an ample  scope. 

There are several  directions of research suggested by  the findings of this 
paper.  Since all the results obta ined  follow f rom the choice of a simple ansatz,  
one m a y  wonder  whether  addi t ional  results couhl be a t t a ined  by  modifications 
or extensions of these ; indeed the b~sis of some developments  of this k in4  have  
been given, but  perhaps  more radical  modifications m a y  produce fu r the r  
progress. But ,  even wi thout  drast ic depar tures  f rom the present  f ramework,  
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there are two important directions in which an extension of the results of this 
paper appear particularly interesting: an investigation of models involving 
an infinite number of particles (as), and an extension of the approach to more 
than one space dimension. 

Two other topics should also be mentioned, in which the research sug- 
gested by the findings reported in this paper appears called for and promising: 
the connection with the recent results on integrable dynamical systems (3,~), 
and the extension to the quantal case. 

Finally it should be noted that ,  while our main interest has been here on 
the discussion of solvable many-body problems, some of the results obtained 
(in particular those concerning the zeros of the classical polynomials) are of 
purely mathematical nature. 

* * *  

I t  is a p l easu re  t o  a c k n o w l e d g e  the  c o n t r i b u t i o n s  to  t h e  resu l t s  r e p o r t e d  

in  th i s  p a p e r  due  t o  va r i ous  i n t e r ac t i ons ,  p e r s o n a l  a n d  t h r o u g h  t h e  mai l ,  o v e r  

t h e  l a s t  18 m o n t h s ,  w i t h  t h e  fo l lowing  col leagues  a n d  f r i ends :  PH. CHOQUARD, 

D . V .  GHOODNOVSKY~ G . V .  GHOODNOVSKY~ A. ~)EGASPERIS~ H . P .  MCKEAN, 

J .  MOSER, S . P .  NOVlKOV, M . A .  OLSHANETSKY, A . M .  PERELOMOV. 

(32) Note added in p r o o / s . -  Recent results on the zeros of Bcssel functions are steps 
in this direction. F. CALOG~,RO: ,Lett. N a c r e  Cimento, 20, 254 (1977). 

�9 R I A S S U N T 0  

Si mostra come il mote degli zeri e dei poli di soluzioni particolari di alcune equazioni 
aLle derivate parziali lineari e non lineari possa essere interpretato come un problema 
a molti  corpi. Si introducono in tal  mode numerosi esempi di problemi a molti  corpi 
risolubili. L'analisi  b l imitata a modelli con un numero finite di particelle che si muovono 
in una dimensione. 

,~BK~eHHe HO.rlIOCOB H Hytze~ qaeTHblX pemeHK~ He.qll4He~HmX 141 JIHHe~HI~X ~fft~peHHlla$1b- 

HblX ypaBHeHHI~ B qaeTHblX HpoX3BO,~HblX H pO~CTBeHH~e (( p emaeM~e  )) npo6~eM~ 

MIlOI~X Tell. 

Pe3mMe (*). - -  IIoKa31~,iaaeTcn, qTO ~BH~C/'IHC IIOJIIOCOB H Hyae~i qaCTHbIX pcmeHm~ 
HCKOTOpI, IX HeJIHHe~HblX H JIHRC~HI, IX ~i~bcpenuna~Ibnmx ypaBRCHl~ B tiaCTHidX Hpo- 
H3BOjIHI~IX MO}KeT 6blTb HHTCplIpeTHpOBaHO B TepMHHaX 3KBHBaHeHTH~IX IIpodfflCM MHOFHX 
TOll. O d c y ~ a m T c s  HeroTopbIC pemaeMbtC MO~C~H MHorHx Te~. PacCMOTpeHHC 
orpaHHtmBaeTC~ IIpod~eMaMn, B~oqa~OIIL~MH KOHeqHOC tiHCJIO ~aCTHH, J~BH~Ky~Hxcg 
B O~HOMepHOM HpocTpaHcTBe. 

(*) Hepesec)eno pec)a,,cquegr 
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