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Summary. — The motion of the poles and zeros of special solutions of
certain nonlinear and linear partial differential equations is shown to
be interpretable in terms of equivalent many-body problems. Several
solvable many-body models are thus introduced and discussed. The
treatment is limited to problems involving a finite number of particles
moving in one space dimension.

1. — Introduction.

The first idea to investigate the time evolution of the positions of the poles
of special solutions of the Korteweg-de Vries (KdV) equation is due to
KRUSKAL (!). This investigation was pursued by THICKSTUN (%), and it was
greatly advanced by AIRAULT, MCKEAN and MOSER (?), who uncovered and
discussed a remarkable connection between the motion of the poles of rational
and elliptic solutions of the KAV equation and the time evolution of certain
one-dimensional many-body problems that had been introduced some years
ago in the quantal context (*) and whose integrable character in the classical

o) D. KruskAL: Lectures in Appl. Math., 15, Amer. Math. Soc. (1974), pp. 61-83.
2 R. THICKSTUN: Journ. Math. Anal. Appl., 55, 335 (1976).

®) Arravrr, H. P. McKEan and J. Moser: Comm. Pure Appl. Math., 30, 95 (1977),
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case had been recently demonstrated (°), leading to the discovery of a number
of remarkable properties and to the development of various generalizations (¢).
AMM also investigated, in a similar manner, the Boussinesq equation. Results
analogous to and, in certain respects, more advanced than those of AMM were
obtained by the CHoODXOVSKY Dbrothers, who moreover investigated the
Burgers-Hopf (BH) equation and thereby considerably enlarged the scope
of many-body problems whose time evolution can be shown to coincide with
the time evolution of the poles of (solvable) nonlinear partial differential equa-
tions (7). It should also be mentioned that certain equations, suggestive, at
least in some special cases, of some of the developments studied in depths by
AMM and CC, were previously given in a review paper by DUBROVIN, MATVEEV
and Novikov (#).

The display of these relationships between finite-dimensional integrable
dynamical systems and solvable nonlinear evolution equations (that may
themselves be considered infinitely dimensional instances of integrable dynamical
systems, as first pointed out by FADDEEV and ZAKHAROV (9)) is of great interest,
especially in the light of the beautiful findings of AMM and CC; and no doubt
much remains to be uncovered, as emphasized by AMM. Moreover, these
relationships may be used to evince information on one type of system from
the known properties of the otber. In particular, one may discover in this
way many-body problems that are (in some sense) solvable, being related to
partial differential equations whose time evolution is amenable to analysis.
Let us recall in this connection that the number of exactly solvable many-
body problems with pair interactions is, even in one-dimensional space, ex-
tremely scarce; while their interest is clearly considerable, both from a purely
mathematical point of view and as a tool for the investigation of physical
applications.
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17, 97 (1976); Lett. Math. Phys., 1, 187 (1976); Invent. Math., 37, 93 (1976); A. M.
PerELOMOV: Lett. Math. Phys., 1, 5331 (1977); M. AprLEr: Some finite-dimensional
integrable systems, in Proceedings of the Conference on Solitons, Tucson, Ar., January 1976;
T. Korera and K. SaAwaDA: Journ. Phys. Soc. (Japan), 39, 1614 (1975); S. M. WoJscCIE-
CUOWSKI: Phys. Lett., 59 A, 84 (1976); Lett. Nuovo Cimento, 18, 103 (1977); G. CasaTi
and J. ForD: Journ. HMaih. Phys., 17, 494 (1976); G. V. CHoopNOVSKY and D. V.
CHOODXOVSKY: Lett. Nuovo Cimento, 291, 300 (1977).

(") D. V. CHOoODNOVSKY and G. V. CHOoODNOVSKY: Nuovo Cimento, 40 B, 339 (1977),
hereafter referred to as CC.

(®) B. A. DuBrovin, V. B. MaTveev and S. P. Novigkov: Usp. Math. Nauk, 31, 55
(1976).

(®) L. D. FADDEEV and V. E. ZaAgHAROV: Funk. Anal. Priloz, 5, 18 (1971).



MOTION OF POLES AND ZEROS OF SPECIAL SOLUTIONS OF NONLINEAR ETC. 179

In this respect, the problems discussed by AMM and CC are, however, not
very useful. The many-body problems discussed by them are generally problems
whose solvability had been demonstrated previously; indeed, this is one high-
light of their findings. The relationship between the previously known many-
body problems and the motion of the poles of special solutions of the nonlinear
partial differential equations they consider is, however, sometimes not quite
direct, so that in some cases the motion of the poles does indeed provide novel
examples of solvable many-body problems. For instance, CC have shown
that the poles x,;(t) of an appropriate rational solution of the KdV equation
evolve in time aceording to the equations of motion (1)

(1.1) ) =23 [5,(0) — ml, i=1,2.m,

corresponding to n one-dimensional particles interacting via a pair potential
inversely proportional to the fourth power of the interparticle distance. The
solvability of this many-problem is a novel finding (*!). However, it holds only
in a very restricted subset of phase space, characterized by the 2n conditions (12)

n

(1.2) z, (@;— @) 2=0, j=1L2,..,n,
k=1
(1.3) &= (@— )2, i=1,2,..,n;
k=1

a subget that is nonvoid only for n = 1p(p + 1), p being a positive integer,
and that, moreover, requires the x,’s and %,’s not to be all real. Clearly this
last condition greatly reduces the relevance of this result to physics (12).
The existence of constraints that limit the co-ordinates ; (such as (1.2))
and/or the velocities &, (such as (1.3)) is characteristic of the approaches of
AMM and CO; indeed, as we disecuss below, the presence of such constraints
is an almost universal feature of the time evolution of the poles of nonlinear
partial differential equations (the single exceptional case that violates this
rule is discussed in detail below); in fact, one advantage of the BH equation
considered by COC is that in that case only a limitation on the velocities occurs,
but no limitation on the pole positions; and the many-body problem being

(1) A prime appended to the symbol of summation always indicates that the singular
term must be omitted.

(1) This finding had also been derived from the results of AMM by CALOGERO and
DxrGAsPERIS (unpublished).

(*2) Dots always indicate time differentiation.

(13) One could, however, consider the time evolution of the real and imaginary parts
of the pole positions. See, for instance, the third paper of ref. (8).
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reproduced (*) is just that with a pair potential proportional to the inverse
square of the interparticle distance, namely the one that has played a central
role in these developments (3¢). Also important in this econnection, indeed
most relevant to the developments discussed in seet. 3 below, is the fact that
the BH equation can be linearized by a simple change of dependent variable;
it is, therefore, substantially simpler than the KdV or Boussinesq equations.

The main focus of this paper is on the derivation and discussion of many-
body problems without consirainis on the initial data, whose time evolution can
be shown to coincide with the motion of the poles or zeros of (special) solutions
of partial differential equations. Since these differential equations can generally
be solved in rather explicit form, it is thereby generally possible to analyse
in rather explicit detail the corresponding many-body problems that we call,
therefore, « solvable ».

In sect. 2 we discuss the motion of poles of nonlinear partial differential
equations, beginning from a simple case (subsect. 271), extending it in various
ways (subsect. 2'2, 2’3 and 2'4) and finally (subsect. 2'5) outlining a classi-
fication of nonlinear equations that implies that, in the framework of the ap-
proach of AMM and CC that we also follow, no other example besides our very
simple (but rather rich) one yields equivalent many-body problems without
constraints, and only the BH equation treated by CC, as well as the higher-
order BH cases also considered by CC, yield equivalent many-body problems
without any constraint on the positions of the poles.

In sect. 3 we discuss mainly the motion of the zeros of linear partial differ-
ential equations; this investigation, suggested by the results of CC for the BH
equation and by the results discussed in sect. 2, turns out to be very fruitful in
the sense of generating several interesting examples of many-body problems,
of which only a few are discussed in detail. The treatment starts with a presen-
tation of the basic formulae and procedure (subsect. 3'1); equations of motion
of first order (that also yield many-body models characterized by equations
of motion of second order, but with constraints) are then considered
{(subsect. 3'2); finally, various models involving equations of motion of second
order (without constraints) are treated, including cases with translation-in-
variant forces (subsect. 3'3 and 3'4), with nontranslation-invariant interactions
(subsect. 3'5) and with forces involving eircular or hyperbolic functions (sub-
sect. 3'6). In the discussion of the many-body models of subsect. 3’5 an im-
portant role is played by the classical polynomials of Hermite, Laguerre and
Jacobi; indeed certain properties, presumably new, of the zeros of these poly-
nomials are also uncovered.

Section 4 summarizes tersely the main results and mentions the directions
of research that are suggested by these findings. It may be a good idea to
glance through this last section before delving into the body of the paper.

The notation is defined as the paper unfolds; suffice here to note that a
variable (not an index!) appended as a subscript indicates partial differentiation,
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and to reiterate that the dots indicate differentiation with respect to the time
variable ¢ and that a prime appended to the symbol of summation indicates
that the singular term in the sum must be omitted (1022).

2. — Motion of poles of nonlinear evolution equations and related many-body
problems.

In this section, that is divided in 5 subsections, we discuss the topic indicated
in the title. Much of the discussion is based on a simple example, analysed
in subsect. 271, and extended in various directions in the subsequent 3 sub-
sections. This discussion originates several interesting many-body models,
whose solutions are analysed in some detfail. The last subsection discusses more
general nonlinear partial differential equations and explaing why it should
not be expected that solvable many-body problems without constraints be
obtainable by these techniques used in connection with such equations. Thus
for these equations the study of the motion of the poles (of special solutions
of the kind considered here, and previously by AMM, CC and others (1'3s7))
is not a convenient starting point to generate many-body problems that are
both interesting and, in some gense, solvable.

2'1. A simple example. — Consider the nonlinear partial differential equa-
tion (')
(2.1.1) Pt o.fapt =0, @=¢1).
It is immediately solvable by the substitution ¢ = 1/y, since the equation
for y is the linear wave equation y, 4 y,— ay = 1; thus the solution of the

initial-value problem for the nonlinear equation (2.1.1) is given by the explicit
formula

(2.1.2)  g(=,t) = exp [— ot] go(& — 1) /{1 + @olx— )[1 — exp [— ad]]/a},

where, of course,

(2.1.3) Po(@) = @, 0) .

(*4) Of course arbitrary constants can be inserted in front of each term of this equation;
this corresponds to an appropriate rescaling of z, ¢ andfor ¢ itself. The arbitrariness
implied by the possibility to rescale variables is generally used in the following in order
to write equations as simply as possible; it is obvious how it could be exploited in each
case to get more general formulae. Here we have kept the constant « for convenience
(see below).
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Consider now a special solution of eq. (2.1.1) having the form

n

(2.1.4) g, t) = z [ — x;(8)]1r,(8)

=1

80 that ¢{w, t) is a rational function of », the quantities z,{¢) and »,(f) being its
poles and residues.

The following formulae are immediate consequences of (2.1.4):

(21.5)  gula, ) = — 3 [o— a,(0]* (1),

i=1

n

(2.1.6) s, ) = 3 {lo— 2,010 E,(0) + [o— 2,017 7,(0)}

=1

7

(2.1.7)  o¥w, )= i {lo— 2,722 + (2 — @,(1)]2 2r,() 3 7o) [2,(8) — @a(8)]} -
=1

k=1

Thus (2.1.4) satisfies (2.1.1) if and only if the following equations, that
obtain from the requirement that the coefficients of the poles of first and second
order vanish, hold:

(2.1.8) r;(t) =1—a;(t), i=14L2,..,n,
(2.1.9) Pt = — ar,(t) — 2r,(0) 3 mOflo ) — 3], G=1,2,, s
They imply

(2.1.10) &) = o[l —&(1)] + 2[1 — 2,(1)] i’ [1— &0 /lw,(0) — (D]

ji=1,2,...,n.

Note that (2.1.10) in its turn implies, for the « centre-of-mass» co-ordinate,

(2.1.11) X@t)y=mn" iw,-(t) )

=1

the simple equation

(2.1.12) X)) = o1 — X1,

that can be immediately integrated to yield

(2.1.13) X(t)= X(0) + ¢t + [X(0)— 1][1 — exp [— o] /e

From (2.1.2)-(2.1.4) we coneclude that the co-ordinates w;(f) are the n



MOTION OF POLES AND ZEROS OF SPECIAL SOLUTIONS OF NONLINEAR ETC. 183

solutions of the algebraic equation in

(2.1.14) i [1— %,(0)]/[w— t — %,(0)] = — a/[1 — exp [— o] .

=1

Thus, given x,(0) and %;(0), the solution of the «equations of motion » (2.1.10)
is reduced to the determination of the zeros of an explicitly given polynomial
of degree n (1%).

Let us now interpret (2.1.10) as the equations of motion defining a many-

body problem.
Congider first the 2-body case with o = 0. Then, setting x = #, — »; and
noting that (2.1.13) with « = 0 yields X() = X(0) + X(0)¢, we get

(2.1.15) &(t) = {4[1 — X(0)1*— [£()1%}/=(¢) ,
that can be immediately integrated to yield

[#(0)]* + Klo(:)]-* = 4[1— X(0)]*,

2.1.16
( ) K = [#(0)]2{4[1 — X(0)]*— [(0)]%} .

Thus in this case the time evolution of the relative co-ordinate z is just the
gsame ag for the two-body problem with the inverse-square potential! Explicit
integration yields

(2.1.17) a(t) = {422[1 — X(0)]? 4 2ta(0) £(0) - 22(0)}} .

A condition necessary and sufficient to exclude vanishing of x(f) for any ¢ is
(2.1.184) 2|1 — X(0)]| > 1#(0)]

or equivalently

(2.1.18b) [1 — 2,(0)1[L — #,(0)]1>0.

Its significance is clear; see also below.

Let us now discuss the n-body problem (2.1.10) for arbitrary n. It is trans-
lation invariant, but neither Galilei invariant, nor (evidently) Hamiltonian.
It becomes approximately Galilei invariant and (evidently) Hamiltonian to

(15) Let us recall in this connection that OrLsHANETSKY and PErRELOMOV have also
reduced the solution of the one-dimensional n-body problem with pair potential propor-
tional to the inverse square of the interparticle distance to the search of the zeros of
a polynomial of degree n, given explicitly in terms of ¢ and of the initial data; see their
papers listed in ref. (8).
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the extent that the conditions
(2.1.19) &) <1, i=1,2,...,m,

hold, in which case the velocity-dependent terms on the r.h.s. of (2.1.10) can
be dropped. But, as we now show, this condition cannot remain valid for
all time.

To further discuss the many-body problem (2.1.10), it is convenient to go
over to the variables

(2.1.20) () = w,(t) — t, j=1,2,..,n;

let us assume hereafter that these are the variables that represent the particle
positions. This change of variables corresponds of course to a (Galilei) trans-
formation to a frame moving with unit speed.

In the new variables the equations of motion read

n

(2.1.21) 1) = — ag,{t) + 2050 2 Oy — 0], j=1,2,..,n.

These equations of motion imply that the speeds #,(t) cannot change sign
throughout the motion. Moreover, the second term on the r.h.s. represents
a two-body interaction that is singular at zero interparticle separation and that
is attractive or repulsive depending on whether the two particles have speeds
of opposite or equal signs. Thus, if initially the speeds do not all have the
same sign, adjacent particles with speeds of different signs approach each
other and may eventually collide, producing at a finite time a singularity
(« collapse »); the natural continuation of the solutions beyond the time of
encounter yields complex conjugate values for the corresponding particle
co-ordinates. If instead the particles all have velocities of the same sign, no
collapse occurs and of course the ordering of the particles on the line does not
change throughout the motion. Sinee this latter case allows a more straight-
forward physical interpretation, we begin the following discussion from this
case.

Assume, therefore, that, say (),

(2.1.22) 7;>0, i=1,2,..,n,
and, moreover, for definiteness, that

(2.1.23) U< i j=1,2,yn—1

{18} A particle with vanishing velocity has no interaction; thus it remains seated at
his place and it can simply be ignored.
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(note that what was just written implies that both these conditions, if valid
at t = 0, remain valid at all (finite) times).

The previous analysis implies that, for given initial conditions y,(0), ¥,(0),
the solutions y,(f) of the equations of motion (2.1.21) are the % solutions of the
equation in y

(2.1.24) S §4(0)/ly — (0] = a/[1— exp [— o] .

i=1

A convenient and illuminating point of view to discuss this equation is
based on the graphical representation of the Lh.s. as a function of y (note that
this funetion has poles, with positive residues, for y = y,(0), and that it de-
creages everywhere). It is then easy to read off graphically the time evolution
of the co-ordinates y,(f); and in particular one gets the following asymptotic
behaviours:

(2.1.25) }i_{% [¥5(t)] = bie) , i=12,..,mn,
(2.1.26a) tl_;u_l}” [y,(0)] = a;_4, j=2,3,..,n,

(2.1.26b) Yalt) = — ot exp[— o] [ ”zg},-(())] {1 + Ofexp [«f]]},  —>— oo,

i=1

where the quantities b,(«) are the n solutions, ordered 8o that b, ,(x) > b,(«),
of the algebraic equation in b

(2.1.27) S 9,(0)/[b— ,(0)] = a,
=1

while the quantities a; are the n — 1 (finite) solutions, ordered so that a,,, > a;,
of the same equation with ¢ = 0, namely of the algebraic equation in «

(2.1.28) 3 9,(0)/fa— g, 01 =0.
§=1

These results hold for o> 0; if instead « <0, the same results obtain,
except for the exchange of ¢ with — ¢,
For a = 0 one gets instead, for { - — oo,

(2.1.294) y,(t) = vt -+ a, + O(Jt[),

2.1.29b) Y1) = a;_ -+ O(lt]) ji=2,8,..,mn,
and, for ¢ — 4 oo,

(2.1.30a) y,(t) = a; 4 O(@F), ji=1,2,..,n—1,
(2.1.300) Ynlt) = vt + a4 O(F1),
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where
(2.1.31) v = >4,(0),
=1
(2.1.32) a = 2 9,(0)5,(0)fv,
=1
and the a;, j=1,2,...,,n—1, are defined as above, namely as the roots,

ordered in increasing order, of eq. (2.1.28).

This latter example with « = 0 is particularly amusing; it corresponds to
& many-body problem with only interparticle forces (see (2.1.21)), whose
« centre of mass »

(2.1.33) Y(t)=nt Z Y1)
=1

moves freely with speed ¥ = v/n:

(2.1.34) Y(t) = (vjn)t + Y(0);

in the remote past, it sees n — 1 particles (almost) (1) at rest at the positions
a; and one particle coming in (say, from the far left) with velocity v; at any
intermediate time, it sees all the particles moving towards the right; in the
remote future, it sees again n — 1 particles (almost) at rest exactly in the same
positions as in the remote past exeept for the fact that each particle has moved
one place to the right, the first particle settling down in the first location a,,
while the last is eseaping to the right along the same trajectory that the
particle coming initially from the left would have followed had it been free
to move through the others (as it would have been the case if the other n — 1
particles had been exacily at rest initially).

Let us now discuss tersely the case in which the (initial) condition (2.1.22)
does not hold. The time evolution of the co-ordinates y,(f) is still determined
by (2.1.24), and a graphical representation of the Lh.s. of this equation as a
function of y is still the best approach for the analysis. Given the initial con-
ditions ¥,(0), ¥;(0), now there are two possibilities for the future evolution of
the system: either no collapse occurs, and in sueh a case the asymptotic be-
haviour of the system is the same as that deseribed above by egs. (2.1.25),
(2.1.27), (2.1.28), (2.1.30), (2.1.31) and (2.1.32); or, at a finite time, two particles
collide, disappearing after that into the complex plane (whence they might
even re-emerge, at a different location, at a later time!). Which one of these
two possibilities prevails, and, in the second case, when and where the collapse
oceurs is immediately evident from the graph of the Lh.s. of (2.1.24) and from
the (very simple) function of time that appears on the r.h.s. of this equation;
thus we shall not elaborate this point any further. Clearly, for given initial
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conditions y,(0), 7,(0), it is always possible to chose a sufficiently large (positive)
value of « to exclude the occurrence of collapse; since the presence of the a-term
(with « > 0) has the effect to slow down every particle, this fact has a very
clear physical meaning. In a similar manner it is possible to analyse the past
behaviour of the gystem, and/or the case with a<0.

Let us emphasize that the many-body problems we have discussed, pecunliar
as they are due to the presence of velocity-dependent forces and trivial as they
are due to the simplicity of their solution, do not involve any constraint on
the pogitions or velocities at the initial time ¢ =— 0 (other than some inequalities,
such as (2.1.22), to exclude collapse).

Note finally that introduction of novel co-ordinates z,(f) through the position

(2.1.35) y,(8) = exp [2,(8)] , i=12,..,mn,

transforms (2.1.21) into

{2.1.36) 2(t) = — 2,02, + o] + 22,(9) i' Z(t)/ {eXP [t} — 2(t)] — 1} ’
i=12,..,n.

Thus the many-body model characterized by these (translation invariant)
equations of motion is also solvable (for a more general version of this model,
and a more detailed discussion, see subsect. 3°4).

2°2. An ewtension: non—tramslation-invariant problems. — More general sol-
vable many-body models can be generated by noting that (2.1.4) implies,
besides (2.1.5)-(2.1.7), the equations

221) wp = i {lo— o] w,r; + 1},

=1

(2.2.2) op, =— 2” {[o— @ l2@;r, + [o — w171},

J=1

n

(2.23) @@,=— 3 {lz— ) a}r,+ [6— 2] 22,0, + 1},

=1

@24) ap, = 3 {lo— ol o+ - al @+ ai) + 1,

=1

(2.2.5) e

I

i{[w— 2] a,r] 4 [0 — =, "[r§ -+ 2w,r,é’ 7 (a0, — wk)]},

=1

(2.2.6) = i{[w—w,]‘“svfrf"F

§=1

+ e m,]“[z.fv,rﬁ + 24 r,é' /(e — ack)]} + ( % 1',-)2 .

=1
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Thus to the nonlinear partial differential equation

(2.2.7) (4o + A1 2)p, + (By + By2) o -+
+(Co+ Ciz + Co2?) g, + (Do + Dyw + Dya?) * = 0

there corresponds for the poles z,(¢) and residues #;(t) the 2n 4- 1 equations

(2.2.8) 7, = [0+ Cra, + 0,25 — &,(A, + A,2,))/(Dy + Dyz; + Dy3)
i=12,..,n,

(2.2.9) (Ao + Ayx))7; - Ay@;r; + [By— O, + (B, — 20) x,]r; +

+ (D, — 2D, 2,)7; +2(D, + D, —I—Dzwf)hf?'k/(wj— ) =0, j=1,2,..,n,

k=1

(2.2.10) zhfh{—@r—%+ikin]iﬁ=0-

=1 k=1 i=1

We have omitted for notational simplicity to indicate explicitly the time de-
pendence; note that there is no a priori need to exclude that also the coef-
ficients 4, B,, C, and D, be time dependent.

Substituting (2.2.8) in (2.2.9), one gets » « equations of motion » for the =
quantities #,, that are, however, generally not translation invariant (and also
not very appealing); while care can be taken of the constraint (2.2.10) by an
appropriate (if need be, time dependent) choice of 4,, By, C, and D,, the simpler
possibility is of course the choice 4, = D, = 0, B, = (.

On the other hand, the nonlinear partial differential equation (2.2.7) can
be reduced, by the simple change of dependent variable

(2.2.11) @@, 1) = 1/p(x, 1},

to the linear equation

(2.212) (4 + Ay2)p,— (Bo + Bix)p +
+(Co+ Gz + Coo®)p, = Dy + D + Dy @

The corresponding initial condition is clearly
(2.2.13) wla, 0) = 1/ 3 [o— 2,(0)]-17,(0) -
=0

Thus the function ¢ is completely determined, at the initial time ¢ = 0,
by the initial positions x,(0) and velocities %,(0) (through (2.2.13) and (2.2.8));
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its subsequent time evolution is provided by the linear first-order partial dif-
ferential equation (2.2.12); and the positions of its zeros x,(t) coincide, a8 im-
plied by (2.2.11) and (2.1.4), with the solutions () of the « many-body problem »
that obtains from (2.2.8) and (2.2.9).

Note finally that the same approach could also be extended to equations
for ¢ analogous to (2.2.7), but involving higher powers of #; and transformations
of the « particle variables » analogous to (2.1.20) and/or (2.1.35) could also be
used to enlarge the scope of many-body problems solvable by this technique.

2°3. Another extension: periodic and hyperbolic forces. — In this section we
apply first of all an extension technique that is often used in the context of
this type of problems, and in this manner we obtain novel solvable many-body
problems with periodic and hyperbolic potentials. But these results, obtained
by a cavalier procedure involving infinite series, are in fact incorrect. They
are however suggestive; and we then proceed to a more careful derivation,
thereby obtaining the correct version of these results.

The starting point of the more cavalier analysis is the many-body prob-
lem (2.1.21), where we now agsume that there exist an infinife number of
particles, arranged according to the following configuration: to every one of
the » co-ordinates y, an infinity of other particles is associated, whose co-ordinates
2;, are related to y, by the formula

(2.3.1) 2, =1Yy,+ ns/p, s=4+1, +2,...
It is reasonable to assume, for symmetry reasons, that such a configuration

is maintained throughout the time evolution, provided the initial velocities
of all these particles coincide, namely

(2.3.2) 2;5(0) = 7,(0), i=12,.,n, s=4+1, +2,...
We therefore focus in the following only on the time evolution of the y,s,

interpreting these guantities as the co-ordinates of n particles.
By using the well-known formula

+o @
(2.3.3) S(B—st=p1+28 T (B — 5?1 =motgap,

§g=—c0 =1

and by ignoring any convergence problem, it is then easy to derive from (2.1.21)
the equations of motion

(2.3.4)  §,(t) = — ag,{t) + 2By,(t) iI gxl(t) etg Bly,(t) — 9B, J=1,2,..,m,
k=1
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that now characterize a new n-body model, similar to (2.2.1) except for the
replacement of the two-body force ¥;4./(y,— y.) by the periodic interaction
BY; 9 ctg [y, — yi))-

The same approach applied to (2.1.24) would imply that the solutions

¥;(t) of the equations of motion (2.3.4) coincide with the solutions of the equa-
tion in ¥

(2.3.5) B 2 4;(0) etg By — y,(0)] = «/[1— exp[— at]] .
4=1

But, as we have indicated at the beginning of this section, these results
are in fact incorrect. Rather than pinpointing the source of the error, now we
provide a derivation that by-passes any handling of infinite series. This we
do, taking as starting point a new ansatz for ¢(x,¢) to replace (2.1.4), namely

(2.3.6) p(@, t) = fo(t) +527‘ ) etg o — »,(t)] .

i=1

This is of course suggested by the previous considerations, see in particular
(2.1.4) and (2.3.3); note, however, the additional presence of the term pro-
portional to p(?).

Let us now parallel the treatment of subsect. 2'1. In place of (2.1.5), {2.1.6)
and (2.1.7) we now have

(2.3.7) @ la, 1) =— B2 27 }/sin2 Bl — x,(1)] ,

(2.3.8)  @ulx, t) = Bo(t) + B Z [Bri(t) &,(t)/sin? Blo — ()] -+
-+ #5(t) ctg Blo — wa(t)]] ’

n

(2.3.9) e, 1) = B2o%(t) — R(1) + X ri(n)/sin? fla— w,(0)] +

=1

[

+ 2 37,0) et flo— a,0](e0) + 3 ) ctg flot) — 2,00])]

5=1 =1

To write the last formula we have taken advantage of the trigonometric identity
(2.3.10) ctg A ctg B=—1— (ctg A — ctg B) ctg (4 — B),

and we have introduced the quantity

(2.3.11) R(t) = X 7,(1) -
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It is thus seen that now the requirement that ¢(x, t) satisfies (2.1.1) yields
the following 2% 4 1 equations:

(2:3.12) o+ g+ fle*— B =0,
(2.3.13) r,;=1-—a, i=1,2,..,n,
(2.3.14) 7y 4 ar, + 2pr {0 + i netgf@—o)l}=0, j=1,2,..,n.

Here, and oceasionally below, we omit to indicate explicitly the i-dependence.
Summing (2.3.14) over j, we also get

(2.3.15) R+ aR+28Ro=0.
We then note that (2.3.12) and (2.3.15) imply that
(2.3.16) (0 £ R): -+ (o £ iR) + flo £ iR)* =0,

which is eagily solved, yielding
1
(2.317)  o(t) =—5of[f + v, exp[at]] + [B + y_exp ]},

(2.318)  R() = ga{[ﬂ + 7, exp [o]]* — [B + y_exp [af]]1}.

The constants y, that appear in this formula could be easily determined in
terms of o(0) and E(0).

On the other hand, from (2.3.13) and (2.3.14) we get the «equations of
motion »

(2.3.19)  &(t) = o[l — &,(8)] +-
+ 2B — 01 [ed + 3 [L— &) ctg Bla) — ml®] ,  G=1,2,., .

Before discussing this « many-body problem » and its solutions, we go over,
as in subsect. 2’1, to the variables

(2.3.20) yi(t) = (1) — 1, i=12..,n,

that are hereafter interpreted as particle co-ordinates. Thus now the many-
body problem is characterized by the equations of motion

2321)  Gi(t) = — @) + 2000~ o) + 3 (0 cte fly () — m(0)]
j=12,..,n,
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with o(f) given by (2.3.17) and the two constants p. and y_ constrained, in
terms of the initial conditions, by the requirement

(2.3.22) (B -+ y,) = (B 4y = 2inY(0),

where we have again introduced the centre-of-mass co-ordinate

(2.3.23) Yty =mn"" i yi(t),

=1
whose time evolution is given by the explicit formula

s
2nf

[0 {{y, + Bexp - atl]f(y. + A} —In {[y_+ Bexp (—atl]/(r_+ B} -

(2.3.24)  Y(1) = Y(0) +

The solutions y,{#} of this many-body problem are the roots of the explieit
equation in y

(2.8.25) B 34,(0) cte Bly— ,(0)] = fo(0) + af[1— exp[— od]],
Jm1

as implied by the ansatz (2.3.6), by the position (2.3.20) and by the explicit
form (2.1.2) of the solution of (2.1.1).

Of course for § == 0 one merely recovers the results of subsect. 2'1; thus
we hereafter assume f £ 0, keeping open the option to choose f real or
imaginary.

The many-body problem characterized by the equations of motion (2.3.21)
is marred by the presence of the explicitly time-dependent term involving
o(t), and by the constraint (2.3.22). We, therefore, focus attention on special
choices of the constants y. and y_ that eliminate (totally or partially) these
shorteomings.

The first choice we consider is y, = y_ = 0; note that (2.3.17) then implies
¢ = — &/f. Thus the many-body problem corresponding to this choice is
characterized by the equations of motion

(23.26)  Gi(t) = agi,(t) + 265,00 3 5u0) ctg B0 — ], G=1, 2,0, m,

with the constraint on the Initial conditions

(2.3.27) Y(0)=o0,
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that also implies in this case
(2.3.28) Yity=0, Y(t) = Y(0).

Its solutions are the roots of the explicit equation in y

(2.3.29) fy) =8 i?]y(o) ctg fly — y,(0)] = «/[exp faf] — 1] .

=1

Note that now, for § = 0, one would recover the system discussed in sub-
sect. 2'1, but with the sign of « reversed.

To discuss the time evolution of the solutions y,(f) it is again very convenient
to display graphically the Lh.s. of (2.3.39), f(¥), as a function of y. For real
B, namely in the periodic case, it is sufficient to focus attention only on an
interval of length =/, since any particle can be transferred inside such an
interval shifting its co-ordinates by an integral multiple of n/8, such shifts
having no dynamical effect. For imaginary f, f = iy, that still yields a real
problem since

(2.3.30) iy ctg iyz = y etgh yz,

one should instead consider f(y) in the whole interval (— oo, 4 o0). Note
that the condition (2.3.27) implies that not all the residues of the poles that
oceur for ¥ = y,;(0) can have the same sign; moreover, for imaginary £, this
condition also implies

(2.3.31) f(d 00) = 0.

The phenomenology that results from the assignment of different initial
positions y,(0) and velocities ¢;(0), for the different possible choices of the
values of o and f, is rather rich; yet in all cases it is very easily obtainable
by the technique just described. A detailed description need, therefore, not
be given here, since the reader may provide it easily by himself if he is inter-
ested. We merely mention that generally, for real § (periodic case), either
collapse occurs, or as ¢ — 4+ oo the particles tend to an equilibrium position,
whose configuration is of course always provided by the solutions of {2.3.29)
with — & or 0 on the r.h.s. depending on whether the product «f diverges to
— oo or to 4+ co. For imaginary f, the same asymptotic behaviour occurs for
t -} oo if #,(0) >0 and ¥,(0) <0 (we are assuming as usual the particle
co-ordinates to be ordered se that y,<y,,,); if instead ¢,(0) <0 andjor
9¥a(0) > 0, the extremal particles escape towards infinity, but they go all the
way only if «>0 (the physical reason is clear from (2.3.26)). We also note
that, for any given initial data ¥,(0), ,0), j = 1, 2, ..., », there always is a
(possibly negative) value & such that, for any « << &, no collapse occurs for

13 — I1 Nuovo Cimenio B.
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t> 0; again a fact of obvious significance, since the presence of a negative
a-term in the equations of motion (2.3.26) acts as a brake that damps the motion
of each particle (indeed (2.3.29) implies that, in the imit & - — co, ¥,(t) ~ ¥,(0)
for ¢> 0).

A second possible choice of the constants y, and y_ that eliminates the
explicit ¢-dependence in (2.3.21) is y, = y_ = oo; but it is easily seen that
this ehoice reproduces the case we have just discussed, except for the replace-
ment of & by — a.

A third possible choice of the constants y, and y_, that also eliminates the
explieit ¢-dependence in (2.3.21) and, moreover, yields a many-body problem
with only interparticle forees and no constraint on the initial centre-of-mass
veloeity, is y, = oo, y_ = 0 (the complementary choice, y, = 0, y_ = oo,
yields the same model and, therefore, need not be considered). Let us thus
proceed to the analysis of this very inferesting case.

As implied by (2.3.17) and (2.3.18), in this case p = — La/f, R = — nY = ip,
so that the equations of motion (2.3.21) become

n

(2.3.32) ity = 2B5,(8) T (1) etg By, (1) — ylD)] =12, m,

k=1

while the constraint (2.3.18) yvields
(2.3.33) o=—2ifnY .

Thus in this case the constant « has disappeared from the equations of motion,
and there is no constraint on the centre-of-mass velocity Y, since now (2.3.33)
can be viewed as the definition of «. Note that in this case, as implied by the
equations of motion (2.3.32), the velocity of the centre-of-mass remaing con-
stant even if it is not zero,

(2.3.34) Y(t)y= Y(0)=v/n.

The solutions of the equations of motion (2.3.32) are the roots of the equa-
tion in ¥y

(2.3.35) 2 4:(0) etg fly — ¥,(0)] = v otg frt,
j=1
that obtains from (3.2.25) for ¢ = — o/, « given by (2.3.33) and » defined

by (2.3.34).

Let us re-emphasize that this formula provides the solution of the many-
body problem characterized by the equations of motion (2.3.32), for any set
of initial data ¥,(0), 9,(0), j =1, 2, ..., n; the (initial) centre-of-mass speed
Y(0) is of course related to the initial speeds 4,(0) as implied by (2.3.23).
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As repeatedly mentioned above, the behaviour of the solutions of the
system (2.3.32) is better discussed by a graphical analysis of (2.3.35). We
discuss here only the case characterized by the initial conditions

(2.3.36) 9:(0)>0,

when no collapse can occur. In this case of course the centre of mass of the
system moves towards the right with the constant positive speed Y (0) = v/n.

Let us consider first the periodic case, with real f. We then assume of course
that all » particles are initially within an interval of length =/g,

(2.3.37) Ya(0) — 5:(0) <=/ ¥52>Y5).

It is then eagily seen (") that, as time proceeds, all particles move to the right;
at the time {, = 4, where

(2.3.38) 8 = n/fv = n/pn Y (0),

(2.3.39a) Ynlt) = 4:(0) -+ 7/,

(2.3.39b) yi(t) = ¥;1.00), j=1,2,., n—1;
at the time ¢, = 24,

(2.3.40a) Yults) = 4:(0) 4+ 7/B,

(2.3.40b) Yna(ts) = 1:(0) + =/B,

(2.3.40¢) Yilt) = Y5,a(0), i=1,2,..,0—2,

and so on. At the time i, = né,

(2.3.41) Yi(ta) =yi0) + =/, i=1,2,..,n,

namely the gystem has recovered exactly the initial structure, having moved
collectively towards the right a distance m/f. Thereafter the process is re-
peated. Thus the system has an internal structure that oscillates periodically,
with period

(2.3.42) T = nd = n/BY(0),

while it travels collectively with the constant speed Y (0) of its centre of mass
(so that indeed in the time 7' it moves the distance /). Of course for special

(*7) The Lh.s. of (2.3.35) is in this case an everywhere decreasing function of y, having n
poles at y=y,(0) and being periodic with period =/f.
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initial conditions the period of the internal motion might be a fraction of T';
for instance, if initially the particles are equally spaced with mesh n/af,
clearly they acquire the same spatial configuration at the times ¢, 1,, ete.;
and if, moreover, their initial speeds are all equal, then they continue to move
with congtant speed, namely in this special case there is no internal motion
at all (see below).

Clearly to discuss this system it is convenient to go over to the variables

(2.3.43) z,(t) =y,() — Vt,
where we set

(2.3.44) V= Y(0).

Then the equations of motion read

(2345) £ (t) = 280V 1 400 3 [V 4 4(t)] ctg fla,(t) — 24(0)],
k=1

J=12.,mn,

and, for these wvariables, the centre of mass

(2.3.46) Z(t) = n"1 Y 2,(t)
j=1
must be chosen at rest:

(2.3.47) Z(0)=0, Z(t) = Z(0).

The solutions z,(¢) are the roots of the equation in 2

(2.3.48) 2 [V -1 2,(0)] ctg Blz + Vi— 2,(0)] = aV otg fnVi;

=1
as implied by the previous analysis, they are all real, provided that

(2.3.49) [%:0) <V,

and they oscillate with period T, see (2.3.42), around the equilibrium positions
(2.3.50) Z; =&, + jm/pn, j=1,2,...,n,

where z, is arbitrary (corresponding to the translation-invariant nature of
the model).
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Note that the many-body system (2.3.31) approximates, provided that
(2.3.51) FZUIRAZA

the Hamiltonian system of n unit-mass particles interacting via the two-body
periodic potential

(2.3.52) W(z) =— 2V?In |sin fz|,

namely the n-body system characterized by the Hamiltonian

n n §1
(2.3.53) H(p,¢)=§ 3 p;—2V* Y 3Insinflg,— g:)].
j=1 fml k==l

Condition (2.3.51) can of course be satisfied, provided the initial configuration
of the system is sufficiently close to the equilibrium configuration.

Let us finally consider the behaviour of the system (2.3.32) for imaginary
B = iy, y real. Now the equations of motion read

n

(2.3.54) G0 = 29,(0) 3 Gu0) ctgh Ty, ) — 3], =1, 2., m,

k=1

and the solutions y,(¢) are the roots of the equation in y

(2.3.55) 3 5,(0) etgh yly — ,(0)] = n ¥(0) ctgh [yn ¥ (0)4]

=1

Let us recall that the centre of mass ¥ moves with the constant velocity Y (0)
and that there is no constraint on the initial positions ¥,(0) or velocities 3,(0),
although we restrict for simplicity the analysis to the case characterized by the
inequalities (2.3.36), that are sufficient to exclude the occurrence of collapse.

The usual analysis (®) implies then the following asymptotic behaviour
for this system:

(2.3.56a) Y1(t) = vt 4 a5 4 Ofexp [2y1]], t—>— oo,
(2.3.56b) Jim [y,(0] = a7, i=2,38,..,n,
(2.3.57a) Jim [y,0)] = a7, j=1,2,.,n—1,
(2.3.57b) Yalt) = vt + aP 4 Ofexp[— 2y1]] , t— 4 oo.

(**) The Lh.s. of (2.3.55) is in this case an everywhere decreasing function of y, with
poles at y=y,(0), and with the asymptotic values eénY (0) as et— 4 co, where e= 41
tfor y > 0).
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Here
(2.3.58) v =nY(0 zy, 0)
j=1
(2.3.59) ag? =;t9y1h%(2 exp&t%wAmDWL

and a;” are the » — 1 real solutions, ordered so that ol < a2, of the equation
3 (&)
na

(2.3.60) 3 5,(0) ctgh y[a — g,(0)] = v,

i=1

where ¢ stands for + 1 or — 1. In this analysis we have assumed y > 0; for
y < 0, the behaviour as t — - co is exchanged with that for ¢ - — oo, and
viee versa. Thus the behaviour of the many-body system characterized by the
equations of motion (2.3.54) can be described as follows: in the remote past,
one particle comes in from the extreme left with the (positive) velocity v,
and the other n — 1 particles are almost (1%) at rest at the positions a;’; at
intermediate times, all particles move to the right; in the extreme future,
n — 1 particles are (almost) at rest at the positions a;”, while the rightmost
particle escapes to infinity with speed ». To assess the overall effect of the
interaction note that the analysis outlined above implies

v (+) (+)
(2.3.61) a” < ai? <a)

and, moreover,
(23.62)  a—at = @ [ 37,000 3 4(0) cosh 2p[y,(0) — y(0)]] o7},
i=1 P

so that a)” — i is clearly translation invariant and positive (we are always
assuming y > 0).

In subsect. 3’6 we show that models similar to those discussed here, but
congiderably more general, can also be solved.

24, Miscellaneous extensions: particles of two different types, symmetrical
configurations, two-dimensional models. — In this subsection we discuss tersely
various extensions of the models discussed above, that can be obtained by
using certain tricks that were previously used in the literature in analogous
contexts.

The first trick leads to the introduction of two types of particles and is
performed by a simple shift of some of the particle co-ordinates (**). We apply

(*) This trick was introduced in the first paper of ref. ().
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it only to the lagt models considered in the previous subsect. 2°3; its applieation
to the other many-body problems discussed in the preceding section is left
a8 an exercise for the interested reader.

Congider first the n-body model characterized by the equations of motion
(2.3.32). Let us divide the n co-ordinates y, into two groups, shifting by the
amount }s/B the co-ordinates of the second group. This we do replacing the
co-ordinates y,, for j=mun,}+1,n,+2,..., n =mn; + n,, by the shifted co-
ordinates u;, defined as follows:

(2.4.1) Uy = Yn s+ E7/6, §=1,2,.., e =n—n,.

In the new co-ordinates the equations of motion read

(2.420) 3, =284 3 e ctg By, — v — 2 s 18P — w)}, G =1,2,..., m,
k=1 =1

(2.4.20) ;=260 3 by otg flu,— ) — 39602 B — 90}, G =1,2, 00, M
k=1 k=1

Here and often below we omit for simplicity to indieate explicitly the time
dependence.

If now we consider the y,’s, j = 1, 2, ..., n,, and the u,’s, j =1, 2, ..., n,,
a8 particle co-ordinates, we must interpret the equations of motion (2.4.2)
a8 describing a many-body system composed of particles of two kinds labelled
regpectively by the co-ordinates y; and u;, with the force 28,2, ctg B(z;,— 2)
acting between equal particles and the force — 284;%, tg B(z; — 2,) acting
between different particles (here 2, stands for y; or u,, whichever the case may be).
Note that the interaction between different particles is nonsingular, indeed it
vanishes at zero separation, so that different particles can go through each
other.

The solution of this many-body problem need not be discussed here, since
it is trivially related to the solution of the many-body problem (2.3.32) by the
change of variable (2.4.1).

There ig, however, an amusing observation that is worth reporting. Since
the force acting between unequal particles vanishes at zero inferparticle
separation, there clearly exists an equilibrium configuration of the two-body
problem with two different parficles located exactly at the same position and
moving exactly with the same speed. Let us eall such a two-body configuration
a «molecule ». It is then also possible to consider the n-molecule problem,
since such a configuration is compatible with the equations of motion, namely,
if given initially, it is maintained throughout the motion. It appears thus
that one is generating in this manner a novel solvable many-body problem.
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But an elementary computation and the use of the trigonometric identity
(2.4.3) ctgA—tg A =2ctg24

imply that this novel model coincides exactly with the original one, except
for a scaling of the particle variables by a factor of two! (29)

Let us also note that, although, as we just pointed out, the many-body
problem (2.4.2) is trivially related to the model (2.3.2), the remarkable richness
of its dynamical evolution suggests an ample scope for applications. Notable
in this connection is the existence of configurations containing « quasi-mol-
ecules »; indeed the form of the interaction indicates that two different particles
moving with almost equal speeds and located close to one another form a rather
stable compound. Of course one also has the possibility to perform an ad-
ditional change of variables analogous to (2.3.43); indeed this may yield the
most interesting models for applications in solid-state physics.

The trick described above to generate a model with two kinds of particles
can of course be applied also in the hyperbolic case, namely for § = 4y, » real.
Then in place of {2.3.54) one has the equations of motion

(2.4.40a) Y= oyyi{ z’ g obgh p(y, — yi) + z 1, tgh y(y; — “k)}a

k=1 k=1

also to be interpreted as describing a system composed of #, particles of one
kind and n, particles of another with the (singular) force 2y3,2, ctgh y(2,— 2)
acting between equal particles and the (nonsingular) force 2yz;2, tgh y(z,— 2)
acting between different particles, where again 2, stands here for y, or ,, which-
ever the case may be.

The solutions of this system are now related to the solutions of (2.3.54)
less trivially than in the previous case, since now an émaginary shift of n, co-
ordinates has been performed. The prescription to find these solutions is thus
the following one: the co-ordinates y;, j =1, 2, ..., #,, of the particles of the
first kind are the solutions of the equation in y

(2450)  3,(0) ctghyly— y,(0)] + 3 i,(0) tgh y[y— u,(0)] = v ctgh yot,
=1

=1

(*%) A similar phenomenon occurs in other recently discovered exactly solvable many-
body problems; see the third paper of ref. (8).
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while the co-ordinates u,;, j =1, 2, ..., ny, of the particles of the second kind
are the solution of the equation in u

(2450) S ,(0) cbgh plu— 1,(0)] 4+ 3 4(0) teh y[u— 9,(0)] = v etgh yot.

§=1 =1

Here of course 9,(0), %40), j=1,2,..,n, respectively w,;(0), u;0),
j=1,2,..., n,, are the initial positions and velocities of the particles of the
first, respectively, second kind, while v/n is the (constant) velocity of the centre
of mass of the whole gystem:

(2.4.6) v= 350 + Si(0) = 000 + 3 (0

=1 =1 =1 =1

As usual, if the number of real solutions of these equations is smaller than
the corresponding number of particles, collapse has occurred. A sufficient
condition to exclude this possibility is that all the particles of the same kind
have initially (and, therefore, throughout the motion) speeds of the same

sign, say

(2.4.7a) 7;(0)>0, i=12..,m,
and either

(2.4.7b) %;(0) >0, J=1,2,.., m,
or

(2.4.70) ;(0)< 0, J=1,2,.., ny.

Hereafter we limit, for simplicity, our consideration to these cases. Note that,
while the ordering of particles of the same kind cannot change throughout the
motion (so that we assume hereafter, for definiteness, y,,., > ¥, and u;, > ),
particles of different kind can go through each other.

A discussion of the solution of (2.4.8) (and, therefore, also (2.4.4)) can be
easily performed by the usual graphical technique. We report here only the
results for the asymptotic behaviour of the (extremal) particles that escape, in
the remote past or future. They have been obtained by using the well-known
asymptotic expansions

(2.4.8a) tgh = e{l — 2[exp[— 2ex] — exp[— 4ex] + exp[— bex] + ...]},

(2.4.8b) ctgh @ = e{l 4 2[exp[— 2ex] + exp[— 4ex] + exp[— 6ex] 4 ...]},

valid as e — -} oo, € = + 1. They imply an essential dependence on the sign
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of v and on the relative magnitude of the quantities

(2.4.9q) EJJ ) exp [2myy,(0)], m=0,1,2..,
(2.4.95) U.(y) = 3 4,;(0) exp [2myu,(0)], m=0,1,2, ..,
=1

a8 indicated by the following equations. Note that these definitions of Y.(yp)
and U, (y) imply that ¥, and U, are independent of ¢ and that

(2.4.10) Yo+ Uy =v=Y4,(0) + X u,(0)
=1 =1

We assume throughout y > 0.
For t >—
(2.4.11a) Vi Aot — (29) In ([ Yo(— 9) — Us(— p))jo}
if >0 and Y, (—y) > U{—7y),
(2.4.11b) wy A~ vt — (2p) 1 In {{[(Ty(— y) — Yao(— )] /o),
if v>0 and Ul(—— 7) > Y, (— V),
(2.4110)  y N w A Fot— @Wy) I {[Ya(—y) + Uu(— /e,
if v>0 and Y (—9)= U(—19),

(2.4.114) U, ~ vt 4 (2y) 7 In {[Yy(y) — U)o}, if v<0,
Yo ~— 29) In 2yt Yi(~y) — Ui(— )1}, if v=0,
(2.4.11¢) .
U~ (2p)7 In 2y [ Yi(y) — T} it v=0.
For ¢ - + oo

(2.4.12q) Y, A~ vt -+ (29)7 I {[Yi(y) — U)]fe}
if v>0 and Y.(p) > Uily),

(2.4.120) u, ~ ot 4+ (29)7 I {[Usly) — Ya(p)lo}
it v>0 and Uy(y) > Y.(y),

(2.4.12¢) Yy A, A b0t (dy)t In ([Yo(p) - Us)lfo},
it v>0 and Y,(y) = U(y),
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(2.4.12d) A vt — (2p)7 In {To(— ) — Uu(— )/}, if v<0,
Yo ~ (2y) " 10 2P Yy — U0}, it v=0,
(2.4.12¢) .
w ~— (29)7 In {21 Yo(— y) ~ Uu(— p)T} if v=0.

These cases cover all possibilities (recall that the validity of the inequalities
(2.7)is assumed). ‘We emphasgize that in each case all the particles whose asymp-
totic behaviour is not given explicitly by these formulae have asymptotically
vanishing velocities; their asymptotic positions are given by the solutions of
the equations obtained from (2.4.5) by replacing the term on the r.h.s. by its
asymptotic value, namely [v| for ¢ — 4 oo and — [v| for ¢ —— oo.

Attention should be called on the rather intriguing nature of the asymptotic
results explicitly displayed by eqs. (2.4.11) and (2.4.12). Note in particular
the possibility that a «molecule » emerge (see (2.4.12¢)).

Let us terminate here the discussion of models involving two kinds of par-
ticles. Of course the technique we have discussed could be used in other cases
besides the examples treated above.

Let us now return to the many-body model of subsect. 2’1, fixing our at-
tention on the equations of motion (2.1.21), but considering a special sym-
metrical configuration that is maintained throughout the motion. The only
such configuration occurs for even n, » = 2m (21), and is of the following type:

(2.4.13) Y; () = uo + u,(t) , Yirml) = wp—us(t), j=1,2,..,m,

where u, is an arbitrary constant. Clearly, if this configuration of the 2m co-
ordinates y, is given initially, namely if (2.4.13) holds at { = 0 and if, moreover,

(2.4.14) 7:(0) = — §14m(0) , §=1,2,..,m,

the configuration (2.4.13) is maintained at all times. One can then consider
only the time evolution of the co-ordinates wu,(t), j =1, 2, ..., m; and inter-
preting these quantities as particle co-ordinates, one obtains thereby a novel
many-body problem, characterized by the equations of motion (%)

(2.418) ;= — a,; + 20, 3 W f(w;— wr) — 205 3 Unf(w; + ), G=1,2,..., m.
k=1

=1

(®*) The symmetrical configuration with an odd number of particles has the central
particle at rest; but then such a particle has no interaction and can be, therefore,
ignored.

(22) This procedure, applied to the integrable many-body models of ref. (+), yields
just those integrable Hamiltonian systems that have been introduced by OLSHANETSKY
and PERELOMOV in connection with semi-simple Lie algebras; see, in particular, the
second and the third of their papers listed in ref. (%),
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This appears as a novel solvable many-body problem, whose physical inter-
pretation is, however, marred by the non-translation-invariant character of
the last term on the r.h.s. But as we show, it can be reduced back to the original
model. Indeed the position

(2.4.16) 7 =

implies, after some trivial algebra, the following equations of motion for 2;:

(2.4.17) B —ad, 28, Y (2 — 2) i=1,2,..., m;

k=1

and these equations are identical, except for the replacement of n by m, to
(2.1.21).

This intriguing result implies that the co-ordinates of the 2m-body problem
(2.1.21), characterized by the initial conditions that correspond to the special
configuration (2.4.13), coincide exactly with the square roots of the co-ordinates
of a corresponding m-body problem, obtained by eliminating one-half of the
particles!

The same kind of trick can be applied to the models of subsect. 2°3; and
in this case again a rather extraordinary event occurs. Let us focus attention
for simplicity just on the specific model characterized by the equations of
motion (2.3.26), that we prefer to write here with the sign of « reversed (%%):

(2.4.18) ¥i=— oy, + 28y, z’ Yr g By — U J=1,2,..,m.
k=1

Let again n = 2m and consider the symmetrical configuration (2.4.13) of this

system. Then for the m co-ordinates u; the equations of motion read

(2.4.19) ¥, =—ott; + 2/5’12].{ ‘mz' Wy obg flu; — uy) — % %y, ebg fu; + uk)},

k=1 k=1
j=1,2,..., m.
Now get

(2.4.20) Z, = €08 20u; .

Then a little algebra reproduces for the co-ordinates z; exactly the equations
of motion (2.4.17).

We may, therefore, assert that the solutions of the 2m-body problem (2.4.18)
corresponding to the symmetrical configuration (2.4.13) are given, via (2.4.20),
by the solutions of the m-body problem (2.4.17)!

(**) Note that the requirement (2.3.27) that the centre of mass does not move is con-
sistent with the symmetrical configuration considered below.
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These results are of course valid for real, as well as for imaginary, f; and
they are immediately extendible also to the other models of subsect. 2°3.

The last topic that we take up in this subsection is the possibility of gener-
ating two-dimensional models by complexification (*¢). We merely report the
form that takes such a model, obtained by writing (2.1.21) with ¥, replaced
by z; and then by setting z; = x; - ty,:

(24.21a) & =— ok, + 2 Y [@uldsde— 959:) + ¥nl@sFe + 9,50
k=1

(2.4.210) gi=—ay; 4+ 2 2' [o(@;9: + 9:%) + Y39 — d;ﬂtk)]/r‘:k’

k=1

Here we have used the synthetic notation
(2.4.22) Cp=0;— ey,  Yu=Yi— Y,  Th=Tjp - Yin.

The equations of motion (2.4.21) can be interpreted as describing a two-
dimensional #-body problem, although one with non-spherically-symmetrical
forces (**). We shall not diseuss here the detailed behaviour of the solutions
of such a gystem, that are of course obtainable by its simple relation to the
many-body problem (2.1.21), whose solution has been discussed in subsect. 2'1.
We merely mention that, in spite of the simplicity of this connection, the be-
haviour of the solutions of the system (2.4.21) is considerably richer in com-
plexity than the behaviour of the solutions of (2.1.21), as implied by the avail-
ability of an extra dimension, and by the correspondingly more complicated
phenomenology resulting from the consideration of the r.h.s. of (2.1.24) as
a function of a complex, rather than a real, variable.

2'5. More gemeral partial differential equations. — We have discussed in
subgect. 21 the solvable many-body problems that correspond to the motion
of the poles of rational solutions, of type (2.1.4), of the very simple nonlinear
partial differential equation (2.1.1), or of its variant (2.2.7); and in the sub-
sequent subsect. 2'2-2°4 we have congidered various extensions that give rise
to other solvable many-body problems. A natural question suggested by these
results, as well as by the original findings of AMM and CC, is: can the same
approach be applied to other nonlinear partial differential equations, and in
particular to nonlinear partial differential equations, that can be solved by
some analytical technique?

(?4) See the fourth paper of ref. (%).
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To discuss this question it is convenient to rewrite here the ansatz (2.1.4),
(2.5.1) (@, 1)y = D [w— a,(t)]1r;(2),
j=1

and to construct from it table I, that displays the contributions E,, that ap-
pear in the formula

n 3
(2.5.2) Flo, 9oy @65 Pouy Gury Pr] = Z z [ — z,(t)]* By(1)
=1 s=1

for all the choices of the function F that are compatible with (2.5.1) and (2.5.2).

TasBLE 1. — Coefficients of eq. (2.5.2).

¥ Rli Rz:‘ Rs;‘
@ 7 0 0
(pz O -—‘Ti 0
L 2 7y 0
Paz 0 0 27']»
Pt 0 — 7 — 24,7,
P 75 2,y + B1; &,
. n
2 2r; Z/ Tl (X5 — 7.) 7 0
fat]
&, 5
P 0 7 Z' 73/ (0, — 23) -7
Pt
n n .
Fe¥ ["7‘ > "A-/(Ij—%)]t vy dry D) vl —ay) &75
o] k=1
b n\
9 — 305 3 (= ) o+
=1
n n N n 3
=+ 37, 2’ 3 z/ e/l — F )@, — 2)] 3r; E’ 75/ (2~ %) 73
k=1 =1 =1

From table I one can immediately read the relationship between many-
body problems and nonlinear partial differential equations, that are induced
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by the ansatz (2.5.1); for instance, one sees that to the Burgers-Hopf (BH)
equation

(2'5'3) Pt + Pee + PP = 0

there corresponds the 3n equations

(2.5.4) F; =0, i=1,2,...,mn,

(2.5.8) &; = E, 73/, — 1) i=12,..,n,
=1

(2.5.6) r; =2, i=12,..,n,

or, equivalently (7),

(2.5.7) i, =23 (@— @)1, i=1,2,..,n.

k=1

An important remark is that generally to a nonlinear partial differential
equation for g(z, t) obtained equating to zero a linear combination of the terms
appearing in the first column of table I there correspond 3n equationg, to be
satisfied by the 2» quantities z,(f) and r,(¢). Thus, generally, after the r,’s are
eliminated, there obtain for the ,’s n constraints in addition to » « equations
of motion ».

The only possibilities of avoiding the presence of constraints in addition
to the equations of motion is either to take advantage of the occurrence of
vanishing entries in table I to construct nonlinear partial differential equations
for @ that give rise only to 2» equations for the x,’s and r,’s, or to combine the
terms appearing in the first column of table I, so that of the corresponding 3n
equations, that must be satisfied by the #,’s and r,’s, » equations are auto-
matically implied by the remaining 2n equations. But, as is immediately seen,
the first possibility corresponds only to the nonlinear partial differential equa-
tion (2.1.1), that has been discussed in subsect. 2'1; while, as regards the second
possibility, the only nontrivial instance is the BH case mentioned above and
treated in detail by CC.

One may, therefore, conclude that the only many-body problems without
constraints that can be treated on the basis of the ansatz (2.5.1) are those
described in the previous sections. This conclusion is not modified by the con-
sideration of equations involving higher derivatives, or higher powers, of ¢
than those reported in the first column of table I, and a correspondingly more
general ansatz for the function ¢(z,?), namely

S n

(2.5.8) P, 1) =3 > [@— @) *r,(t),

=1l  gml
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that constitutes the natural extension of (2.5.1). We omit to report here a
formal proof of this assertion; every reader can easily convince himself of its
validity by the consideration of simple examples and by the recognition that
the number of equations to be satisfied generally increages faster than the
number of variables to be determined. Thus, even though an effect such as
that exemplified above in the BH case by the fact that (2.5.4) are implied by
(2.5.6) can occur in other instances, it is not enough to eliminate all constraints:
for instance in the KdV case the ansatz (2.5.8) with § = 2 introduces the 3n
variables x;, r;; and ry;, § =1, 2, ..., n, but poles of up to 5th order appear,
8o that the number of equations obtained by imposing that their coefficients
vanish is Bn; thus, although » equations can be eliminated, in analogy to the
BH case, since they turn out not to be independent of the others, there
still remain the % constraints (1.2), in addition to the n first-order equations
of motion (1.3) (see AMM and CC).

It should of course also be noted that a first-order equation for the z,'s,
even when it yields second-order equations interprefable as a many-body
model with one- and two-body forces, implies that the (initial) velocities are
determined by the (initial) positions, namely in these cases there always are
constraints. This remark is of course related to our previous assertion, in the
introduction, stating that the n-body problem associated to the BH equation
is restricted by n constraints, and that associated with the KdV equation by
2n constraints.

It is also clear that the above considerations are essentially unmodified
by extensions such as that discussed in subsect. 2'2, involving nonautonomous
partial differential equations and leading to non—translation-invariant models.
Such an extension does, however, yield certain nontrivial results, such as the
association of the nonlinear partial differential equation

(2.5.9) e @re @+ 029, 4 ¢) =0

to the first-order equations of motion

(2.5.10) &; = wn; -+ 2 E (2, — @)1, j=1, 2, ..., n,
k=1

that also imply (") the second-order equations of motion

(2.5.11) i =ote,— 43 (2,— x,) 2, j=1,2..,n.

k=1

But, since these results can also be obtained by the (simpler) technique of the
following section, we do not elaborate on them here any further (see subsect. 3'2).
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The extent to which the extensions discussed in subsect. 2°'3 and 2'4 are
also applicable in the context discussed in this subsection should also be suf-
ficiently self-evident not to require any additional elaboration.

3. — Motion of zeros of linear evolution equations and related many-hody
problems.

Much of the discussion of the previous section was based on the analysis
of the motion of the poles of special solutions of a (very simple) nonlinear
partial differential equation. The simplicity of this equation was related to the
possibility of transforming it by a simple change of dependent variable into a
linear equation; the poles of solutions of the nonlinear equation coincide then
with the zeros of solutions of the linear equation. Thus the above analysis
could have been just as well based on the study of the zeros of (special) solutions
of linear partial differential equations, although the special solutions discussed
in the previous section were more naturally suggested, and more easily handled,
in the nonlinear framework.

It is, therefore, natural to proceed to a direct study of the motion of the
zeros of solutions of linear partial differential equations. This we do in the
6 subsections of this section. We consider mainly special solutions of poly-
nomial type, or natural generalizations of such solutions; they are clearly sug-
gested by our aim to generate by this approach solvable many-body problems.
Several such models are indeed exhibited, and some of them are discussed;
they are analogous to, and more general than, those of the previous section;
indeed the two approaches, although not identical, are quite similar.

3'1. Basic ansatz and formulae. — Let us consider a polynomial of degree
n in », with n zeros at the positions z,(t):

(3.1.1) i@, ) = T o — ,0)] -

=1
This representation immediately implies the following formulae:

rn

(3.1.2) Yo =P z (—2,) 1,

=1

(313) y, =—uyp i (@ — )7,

i=~1

n

(BLY) p=293 (@— ) S (@,— m),

=1 k=1

14 — Il Nuovo Cimenio B.
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BLB) yu=—y > (r—a) Y (@ + &)@, — 2, ,
i=1 k=1

B.16)  pu=p @—a) & 425, 3 b~ )],

=1 k=1

(317 wy,—ny=y>> (z— )z,

=1

(B.L8)  ap.=2¢p3 @e— o), (o,— @),

j=1 k=1

(3.1.9) x%:——wZ(w—-% “lu; %r (#; + &) | (@, — @)

=1 k=1

(3.1.10) 2?y,,—nn—1)p = 21;)2 (@ — )" lez ),

=1

(3.1.11) #x*y,.— 2(n— Loy, +an—1)p] = sz w— x) @ Z (0 — @)

j=1
(3.1.12) alry,,— (n— D)y =—yp Z (@ — @)~ ', Z, (£, -+ Tro;) /(@ — @) -
j=1 k=1
In all these equations of course y = p(x,t) and z, = x,(1).

Now the procedure to relate many-bedy problems to linear partial dif-
ferential equations is quite straightforward; indeed the assumption that a
linear combination of the left-hand sides of eqs. (3.1.2)-(3.1.12) vanishes corre-
sponds to the requirement that the v satisfies a linear partial differential equa-
tion (whose consistency with the original ansatz (3.1.1) must be ascertained);
while the requirement that the same linear combination of the right-hand
sides of these equations vanishes yields generally a set of «equations of motion »
for the quantities x,(t), ¢.e. 2 many-body problem if these quantities (or others
simply related to them; see below) are interpreted as particle co-ordinates.
The most general many-body problem obtainable in this manner is clearly

(3.1.13)  C#% -+ E&;== By + Bya, + 3 (2, — )t
k=1
[2(A4e + Az, 4+ Agz; + Ajxiwy) + 204,38, —
— (& 4 B (Do + Dy2)) — Dywy(@,0, + Tu2i)] J=1,2..,n
corresponding to the linear partial differential equation

(B.1.14)  [A+ Ao+ 4.2 4+ Ay2®] g, -
+ (B + Bie— 2(n— L) 4,221, - Oy, + [B— (n— 1) Do) p, +
+ [Do + D& + Dy2?] 0 — [n(n— 1)(Ay— A32) + nBily = 0.
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It is easy to verify that a polynomial solution of type (3.1.1) is indeed consistent
with this differential equation.

The initial conditions for the equations of motion (3.1.13) prescribe the initial
values #,(0), £,0), j =1, 2, ..., n, for the «co-ordinates » «,(f) and the « ve-
locities » &;(f). These data also specify the initial conditions for the linear dif-
ferential equation (3.1.14), since (3.1.1) and (3.1.3) imply

(3.1.15a) y(x, 0) = II [z — 2,(0)],
=1
(3.1.155) (@, 0) = — p(, 0) 3. [5— ,(0)]-1,(0).
=1

It is thus seen that the solutions ;(f) of the n-body problem characterized
by the equations of mofion (3.1.13) and by the initial conditions x,(0), %,(0),
j=12,..., n, coincide with the n zeros of the solution of the linear partial
differential equation (3.1.14) with initial conditions (3.1.15), a solution that
has exactly » zeros, since it is indeed just a polynomial of degree n in x. Note
that there is no constraint on the initial data (3.1.15), except possibly some
inequality to guarantee that the zeros of the polynomial y(x, f) remain always
real, or equivalently to avoid the occurrence of collapse in the many-body
problem (3.1.13) (see below).

The many-body problem (3.1.13), and the differential equation (3.1.14)
related to it, are too general to yield a transparent physical picture; more
interesting cases obtain by special choices of the quantities A , B, 0, D, and E,
as discussed in subsequent subsections. Yet it is even possible to obtain more
general models. Indeed the following formulae are also implied by the an-
satz (3.1.1):

(3.1.16)  wlry,— nyl = y)[nX - i (@ — )y,

J=1

(3.1.17)  ayp, =— [nX+§ (@— @) a2

j=1

(3.1.18) @y, =— ip{nX +;\:1 (@— @, [&0,— 24, 2 (0, — mk)]}
(3.1.19)  @[r?y..— 2(n— 1) ayp, + n(n—1)y] =
= p[(nX)*~ nXH—ZjZ o — o) z wul(@,— )] ,
(31.20)  @[ap.— (n— 1)yl =— p[n2 XX + §nX, +
+S@—u)a 2 (@, - ) (0, — @) 5

=1
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they involve the collective co-ordinates

(3.1.21) X)) =n? ixj(t) ,
(3.1.22) AL(t) = nt iw?(t} .

Thus the procedure indicated above can be applied by using formulae (3.1.16)-
(3.1.20) in addition to (3.1.1)-(3.1.12). In this manner, one relates a linear
partial differential equation more general than (3.1.14) to a many-body problem
characterized by equations of motion more general than (3.1.13) and by one
additional equation involving the collective co-ordinates X, X,, whose con-
sistency with the equations of motion for the co-ordinates z; is a necessary
requirement for the validity of the scheme. This condition must be verified
in each case and, when it can be satisfied, it generally implies some constraint
on the initial values of the collective co-ordinates and/or on their initial ve-
locities. Merely to prove that such models do exist, we treat here tersely one
such example. It iy characterized by the equations of motion

(3.1.23) &y = o, - 25 Y d (e, — @)

k=1

and by the constraint

(3.1.24) Xt)=0.

This constraint is compatible with the equations of motion (3.1.23), provided
the initial data are such that

(3.1.25) X)) =0, X,0)=0.
In fact, it is easily seen that (3.1.23) imply

(3.1.26) X =1aX,,

(3.1.27) X, =aX,.

The first of these two equations follows immediately by summing (3.1.23)
over j; the second obtains with a little algebra by multiplying (3.1.23) by «;
and then by summing over j. Clearly, together with (3.1.25), they imply (3.1.24).

Thus, provided the initial data are constrained by (3.1.25), the many-
body model characterized by the equations of motion (3.1.23) is solvable via
the linear partial differential equation

(3.1.28) Yo axy, =0,
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that clearly corresponds through (3.1.6) and (3.1.17) to (3.1.23) and (3.1.24).
In fact, using the explicit solution of this equation

(3.1.29) (@, 1) = (@, 0) + yu(, 0)[1 — exp [— awt]] jo

and (3.1.3), one immediately concludes that the solutions z,(t) of (3.1.23) corre-
sponding to the initial data 2,(0), £,(0) (such that (3.1.28) hold) coincide with
the roots of the transcendental equation in z

n

(3.1.30) S [@— @,(0)]1%,(0) = aw/[1 — exp [— awt]] .

=1

In this manner the many-body problem has been reduced to the solution of a
single nondifferential equation. But it is not here the place to pursue the
analysis of this model.

Yet other formulae may be obtained by multiplying by « thoge given above;
for instanece, from (3.1.16)-(3.1.18) it follows that

(3.131) 2wy, — ny] = w[mnX +nX,+ i (x— w,)‘lw’,‘] ,

i=1

(3.1.32) w2y, =— w[amX + 1nX, + i (®— w,)“d:,.w?] )

§=1

(3.1.33)  ayu=— plenX — X)* + InX, +

+ "2 (@— @,)"[&,02 — 28,0} i (o, — wk)]}

=1 k=1

Using these formulae one may obtain still more general models, but the number
of constraints to be satisfied also tends to increase.

Another possible extension of the approach is via the eonsideration of higher
derivatives of p, for instance

n

(3.1.34) Yoo, = 2y "z (@— x;)™t i ,(wj— @)t Z’ [(@; — @) + (2, — wz)_l] .

=1 =1 =1

But the presence of a triple sum on the r.h.s. of this equation yields, through
the procedure indicated above, equations of motion that, when interpreted
as representing a many-body problem, involve the presence of three-body
forces; and clearly the inclusion of a derivative of  of order m leads to m-body
forces. Since we want to limit our consideration to many-body models with
external potentials (one-body forces) and two-body forces, we do not consider
these cases in the following.
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It shounld be emphasized that there is no a priori requirement that the
quantities 4,, B,, C, D, or E be time independent, although in most of the
following this shall for simplicity be assumed.

We finally mention an extension of the ansatz (3.1.1) that leads to a further

enlargement of the class of many-body problems solvable by these techniques.
This is the position

n

(3.1.35) (@, 1) = exp Udt’f(t*)} I e — @)1,

=1

implying the formulae

(3.1.36) Po= 1 :gl(w* @;)7

(3.1.37) pe=ylf— é (w— 2,73,

(3.1.38) Yoo = zz,)’igl(wh m].)—xél' (@, — 2,)*

(3.1.39) — z (@— ;) [f_ z (&, + &)@, — 2] ,

(3.1.40) P = w{f + £ +,§1 (@ — ;) [ of — &; + 2x,k§1 Tl (25— wk)]},

B14l)  ay,—np =1y Y (t— ;) @,

j=1

(3.1.42) Yy = 29 i (&— @) a, E (@;— @)™ty
i=1 k=1
(3.1.43) =t + 3 @= @) fmd — 2, 3 @+ ), — o)}
=1 k=1

and so on. Because the results flowing from the (simpler) ansatz (3.1.1) are
already sufficiently rich (also in the light of the remark reported just above),
we shall not exploit in the following the possibilities implied by the more general
ansatz (3.1.35); there should be no difficulty for the interested reader to derive
such results by using the techniques of this subsection and of those that follow.

3'2. Equations of motion of first order. — In this subsection we discuss tersely
some models that obtain from (3.1.13) when € = 0, so that the equations (3.1.13)
become of first order. By differentiating these equations and then using them
to eliminate the first derivatives, it is of course generally possible to obtain
also equations of second order that are, therefore, again similar to the equations
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of motion of an ordinary many-body problem. These egunations of motion
contain, however, generally also three-body forces, unless a cancellation occurs.
We focus below just on two cases in which such cancellation does occur.

Asg already pointed out above, all the models that come under the heading
of this subsection, when re-interpreted as many-body problems characterized
by second-order equations, suffer of one drawback: while the initial positions
are arbitrary, the initial velocities are not (they are given in terms of the initial
co-ordinates by the first-order equations). Thus these models are characterized
by the presence of constraints that determine the initial velocities in terms
of the initial positions.

The first model obtains from (3.1.13) when C =Dy =D, =D, = A, =
=A,=A;=0. We also set, for notational convenience, B, =0, B, = w,
Ay=1g, E=1. The equations of motion derived from (3.1.13) then read

(3.2.1) & = 0z, — 2¢° zl (w;— )2, i=12...,m,

k=1

and the constraints on the initial conditions read
(3.2.2) £/0) = w@,(0) 4+ g 3 (@, — @)1, j=1,2,..,n.
E=1

The corresponding partial differential equation reads

(3.2.3) IVze + 20009, -+ 29, — 200y = 0.,

The equations of motion (3.2.1) are of course derivable from the Hamil-
tonian

n n 11
(3.2.4) H=1}>@pi—o'asd)— ¢ 3 (@— ).
j=1 j=2 k=1

Note, however, that the potentials have the « wrong » sign; the singular two-
body potential is attractive; the oscillator single-particle potential is repulsive.
To change their signs, one should assume o and ¢ to be imaginary; but this is
forbidden by the constraint (3.2.2) (assuming that the ,’s are real).

For w = 0, these results coincide with previous findings of COC.

The explicit solution of this many-body model could be easily discussed
on the basis of (3.2.3), by using techniques such as those discussed below. But,
since the solution of the many-body model (3.2.1) (even in the general case
without the constraint (3.2.21)) has been extensively analysed in the liter-
ature (*°), we gkip here any further discussion of this model.

The second model that we diseuss in this section obtains by setting
C=Dy=Di=D,=A,=A,= A, = B, = 0. We, moreover, set for nota-
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tional eonvenience ¥ =1, B, = 2B, A, = ¢, and we perform the change of
variables

(3.2.5) x;(t) = exp [22,(?)] .

Then (3.1.31) yield

(3.2.6) 4= B 4 ¢ 3 exp [z, — 2,]/sinh (2, — ), j=12,..,mn,

k=1
and it is easily seen that these equations imply
(3.2.7) 5,=—g2Y sinh (s, —2) cosh (z,— 2), J=1,2,...,n.
j=1
These are just the equations of motion derivable from the Hamiltonian

n

§—1
Pi—2¢° > Y sinh?(2;,— ),

1 =1 k=1

l

Ma

(3.2.8) H

1
2

i

3

that has been the subject of much recent study. Note, however, that with the
present technique we obtain a model characterized by singular attractive inter-
actions; and of course this technique is applicable only provided the initial
velocities 2,{0) are related to the (arbitrary) initial positions by the constraints
(3.2.6) (with B being an arbitrary constant, simply related to the (constant)
speed of the centre of mass of the system; see below).

The partial differential equation connected to this many-body problem
reads

(3.2.9) 982y, + 2Bry, + p,— [n(n— 1)g + 2nB]p = 0.

It is immediately seen that the solution of this equation can be explicitly rep-
resented as follows:

(3.2.10) plw, 1) = E Cn(t) z™
with
(3.2.11)  ¢,(t) = ¢,.(0) exp [(n — m)[(n + m— 1) g - 2B] t], m=0,1,2,...,n.

Here ¢,(0) = 1 (and, therefore, also ¢,(t) = 1), while the n constants ¢,(0),
m == 0,1, ..., n— 1, are fixed by the requirement that, at { = 0, the polynomial
(3.2.10) has the n positive zeros #,(0) = exp [2z;(0)]. On the other hand, the
solutions 2;(t) of the many-body problem (3.2.7) (with the constraints (3.2.6))
are given, through (3.2.5), by the time evolution of the zeros x,(t) of the ex-
plicit polynomial (3.2.10).
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If we agsume that the initial conditions are such to exclude the future oc-
currence of collapse, it is easy to find, from (3.2.10), the asymptotic behaviour
of the particles. We find

(3.2.12) 2;(t) &~ vt 4 a;, i=14L2,..,n, (>4 oo,
with

(3.2.13) v, =B+ (j—1)g,

(3.2.14) a; =% In[— ¢,_4(0)/e;(0)] .

These results obtain by noting that, in searching for the zeros of y as ¢t — - oo,
only two terms can be important on the r.h.s. of (3.2.10), and they must cancel
exactly. The same analysis cannot be done for ¢ —— oo, since necessarily
collapse occurs in such an extrapolation if the initial data are such to exclude
its occurrence for ¢ > 0. Note that the above analysis requires g0 and implies
that the centre of mass of the system moves with the speed B+ i (n—1)g,
a finding that is consistent with the constraints (3.2.6).

We finally note that the treatment given above applies even if B is time
dependent, say

(3.2.15) B=f(t).

Then in place of (3.2.7) one has the equation of motion

(3.2.16) 3= f(t) —g° Z' sinh-3 (2, — 2;) cosh (2;,— 24),

k=1
containing the (arbitrary) foreing ferm f(t), while (3.2.11) is replaced by the
formula

(3.217)  6.(t) = ¢4(0) exp [(n— m) [('n +m—1)gt 42 f dt’f(t’)]] '
' m=20,1,2,...,n.

3'3. Some tramslation-invariant many-body models. ~ In this subsection we
consider the models characterized by the equations of motion (3.1.13) with
C = 0 (so that these equations of motion are second order in time, and neces-
sarily eontain « velocity-dependent » forces), but with 4, = A, = 4, =B, =
= D; = Dy = 0 (so that these equations of motion are translation invariant,
namely such that, if ,(), j=1,2, ..., n, is a solution, &) = x,(t) 4 o is
also a solution). Setting for notational convenience 4, = 4, By =g, 0 =1,
Dy = 2u, E = o in (3.1.13), we thus get the equations of motion

(3.31) & =g—ox;+2 E' [A— p(@; 4 @) + 28] [(@s— @)y, J=1,2..., 1,
=1
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where of course z, =,(1). Note that now there is no constraint, neither on
the initial positions nor on the initial velocities.

The many-body problem characterized by these equations of motion is
similar to, but more general than, the problems discussed in subsect. 2°1.
Indeed for g = «, 1 = pu = 1, the equations of motion (2.1.10) are reproduced;
and for g = 1 = u = 0, x,{t) = y,(¢), one gets instead the equations of motion
(2.1.21) (this case is treated at the end of this subsection). By performing a
scale transformation of the dependent variables #; and of the independent va-
riable ¢, in addition to a « Galilei» transformation to a frame moving with
speed u, one re-obtaing the eqs. (3.3.1), but with constants g, @, 1 and u
replaced by

(3.3.2a) g’ = (g— au) po,
(3.3.28) o'= oo,

(3.3.2¢) A= (A—2uu 4 u?) 0%,
(3.3.2d) w=(u—1u)o,

where ¢ and ¢ are two nonvanishing constants. Note that there is no choice
of g, 0 and u that reduces, via this transformation (3.3.21), the equations of
motion (3.3.1) to (2.1.10), unless u = g/ and 4 = g Thus, in general, (3.3.1)
cannot be trivially reduced to (2.1.10). In the following we keep all four con-
stants g, «, A and u, although of course some of them could be replaced by
unity, or made vanish, by the transformation (3.3.2).

Before proceeding with the discussion, it is worth re-emphasizing that, in
spite of the similarity of the many-body models discussed in subsect. 2’1 and in
this subsection and of the fact that in both cases the solution is achieved through
the consideration of an associated partial differential equation, the two ap-
proaches are not identical; indeed, although in both cases the motion of the
particles z,(?) coincides with the time evolution of the zeros of a function y(z, ?)
satisfying a linear partial differential equation, in the case discussed in this
subsection (and the two that precede it, as well as the two that follow it) v is
a polynomial, while in the case of subsect. 21 it is a rational function.

The partial differential equation corresponding to the many-body model
(3.3.1) reads as follows:

(3.3.3) 7~1Pm -+ Y« -+ Yt + 2uy., + xY, = 0.

The correspondence is of course through the representation (3.1.1) of a (prop-
erly normalized) polynomial solution of this equation.

If n is small (« few-body problem »), the most convenient technique to solve
(3.3.1) is by an explicit analysis of the time evolution of the zeros of the poly-
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(3.3.4) p@,t)y=mn! i () 2™ m !

m=0

with the quantities ¢,(¢) characterized by the following equations:

(3.3.5a) n! i en(0) 2™ /m ! = ﬁ [#— 2,(0)] = yp(, 0),
m=0 Jmi
(3.3.5b) n !nf 6n(0) 2™ [m | =— (2, 0) i [z — 2,(0)]7,(0),
m=0 =1
(3.3.6a) 6,(8) + abn(t) = — ACmya(t) — GOm 1(t) — 2plm1a(t) ,
m=0,1,2,..,n—2,
(3.3.6b) Ga_a(t) + aba(t) =— 9,
(3.3.6¢) cn(t) =1.

Conditions (3.3.5) determine the initial values of ¢,(0) and é.(0), m =0, 1,
2, ..., — 1, in terms of the initial positions z,(0) and velocities &;(0); they
correspond to the requirement that (3.3.4) satisfies, at ¢ = 0, (3.1.1) and (3.1.3).
Equations (3.3.6), that can be solved by recursion starting from (3.3.6¢) and
(3.3.6b) and by proceeding then to obtain sequentially, through (3.3.6a), ¢,(f)
for m=n—2, n—3,..., 0, are of course equivalent, through (3.3.4), to the
requirement that y(w, ¢) satisties (3.3.3).
Note, incidentally, that (3.3.4) and (3.1.1) imply the relationship

(3.3.7) 0slt) = — X)) = — n Sa0),

=1

and it is easily seen that (3.3.6b) is consistent with the equation for the eentre-
of-mass co-ordinate X(¢) that obtains by summing the n equations of motion
(3.3.1).

Of course, as discussed in previous subsections, the zeros x,(t) of p(x, ) need
not remain real; they may collide (« collapse ») and then move into the complex
plane. That this need not happen is implied by the discussion of subsect. 21.
However, as now we show, there is a large class of problems in which, by an
explicit solution of the differential equation (3.3.3), it is possible to conclude
that collapse must neecessarily oceur.

Consider in particular problem (3.3.1) with o == g = 0:

(3.3.8) &=23 A= pld, -+ &) + &8 f@,— 3, G=1,2, .., 0.

k=1
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If A = w2, the Galilei transformation », = y, + wt¢ yields for the y,’s just the
equations of motion (2.1.21), that have been extensively discussed in sub-
sect. 2'1; thus we do not discuss this case here {except in a special subcase,
see below; but let us recall that in this case, A = p?, the resuits of subsect. 2'1
imply that there is a large class of initial conditions that exclude the occur-
rence of collapse). If instead A % 42, we now show that collapse is almost the
rule; indeed, for n > 2, it certainly oceurs if the centre-of-mass speed (that is
clearly a constant of the motion for the system (3.3.8)) does not coincide with
v, or v_, defined by the formula

(3.3.9) ve=p + (u— A

such a coincidence is of course possible only if u2 > 4, so that v, and v_ are real.

This result is not evident from the structure of the equations of motion
(3.3.8). We prove it using the explicit solution of (3.3.3); indeed this equation
for g = o = 0 reads

(3.3.10) Apor + Yoo + 2uyp, =0
and it admits, therefore, the general solution
(3.3.11) pla, ) =f(e—v t)+f (x—v_t),

where f,(2) and f_{z) are arbitrary functions and v,, v_ are given by (3.3.9}.

In our case the funections f, and f_ are determined by the requirement
that p(x, 0) and w,(x, 0) be given, in terms of the initial positions #,(0) and
Z;(0), by the expressions (3.1.1) and (3.1.3). It is actually convenient to use
for y the representation (3.3.4), which, used in eonjunction with (3.3.11), yields,
after a little algebra, the explicit formula

(3.3.12)  p(z, 1) = ¢(0) + L (u2— Ay En !

2 Alenl0) 0 & 100~ v_t)" — [0,(0) v+ Eu ()] (w— 0 1) m
m=1
where of course ¢,(0) and ¢é,(0), m = 0, 1, 2, ..., n — 1, are determined by the
initial positions x,(0) and wvelocities #;(0) through (3.3.5), while ¢,(0) =1,
é.(0) = 0.

Thus the solutions x,(f) of (3.3.7) are the zeros of the explicit polynomial
(of degree n in x) (3.3.12); note that, for real ., this polynomial is real, since
the coefficients ¢,,(0) and ¢,,(0) are real, while v and v_ are real if 4> > A, complex
conjugate if u?<< A.

For t — 4 oo, clearly

(3.3.13) #,(t) ~ v,( & 00)t -+ a;(-k o0), J=1,2,...,m,
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where the sets {v;(+ oo)} and {v,(— o)} coincide with the set {v,} of the n
solutions of the algebraic equation of degree n in v

(3.3.14a) [0 4 ény(0)](0— 0_)" = [0_ 4 Eus(0)](0—0,)".

Note that this does not imply v,(- oo) = v,(— oo), although it implies that
the set {v,(4+ oo)} coincides with the set {v;(— oo)}: the set of the particle speeds
in the remote past coincides with the set of the particle speeds in the remote
future, although each particle need not move in the extreme future with the
same speed it had in the remote past (2°).

Using (3.3.7), one may rewrite (3.3.14a) in the more elegant form

(3.3.14b) [(v—o )/(v—v )] = (V—0)/(V—1,),

where

(3.3.15) V=X(0)=X(@t)=n" ﬁ;e,.(t) = — ¢,_,(0)
i=1

is the (constant) speed of the centre of mass of the system.

Now it is clear that, if V= v_or V = v, (3.3.14) yields n equal solutions
v = V; thus, in the gpecial cases with initial conditions such that V = v_
or V = v, (possible, as noted before, only if u2>> A), all partieles move in the
remote past and in the remote future (almost) (2¢) with the same speed V.
If ingtead ¥V does not coincide either with v_ or with v,_, the asymptotic ve-
locities are given by the formula

(3.3.16) v, = (0_— n,0,)[(L—,), i=1,2,..,n,

where the quantities
(3.3.17) ;= |(V— o )(V—v,)[" exp [i(0 + 27j)/n]
are the n-th roots of (*7)

(3.3.18) (V— o )[(V—0,) = |(V—v_)(V—v,)| exp [if] .

(*%) This is a familiar phenomenon for the solvable many-body problems recently
considered, that correspond to integrable dynamical systems; see the papers of
ref. (48).

(%%} Note that, if the speeds of all particles were to coincide, at any finite time,
with v, or with v_, this would imply that they remain constant throughout the motion,
so that in such a case the whole system would move as a solid body, without any internal
motion. This follows by inspection from the equations of motion (3.3.8).

(®) So that, if v, and v_ are real, 6 = 0, while, if v, and v_ are complex comjugate,
(V= ))(V—v)| = 1.
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Clearly, if n > 2, the v,’s cannot be all real; thus collapse must have occurred,

The possibility to obtain explicitly the asymptotic speeds is nevertheless
remarkable, and suggests that it may be of interest to consider the model
obtained from (3.3.8) by complexification, according to the procedure described
at the end of subsect. 2'4. For the two-dimensional many-body model thus
obtained, the occurrence of collapse would be the exception rather than the
rule; yet all the analytic results deseribed above would remain valid, including
the property that the two sets of asymptotic (as ¢ — - oo) speeds coincide (2*).

We end this subsection showing how simply the results of subsect. 2°'1 can
be re-obtained in the present framework. Let g = A = p = 0, so that, except
for the renaming of the variables z;(t) as y,(f), (3.3.1) coincide with (2.1.21).
Corresponding to this choice of the parameters, the partial differential equa-
tion (3.3.3) takes the very simple form

(3.3.19) Vo o = 0

and is, therefore, immediately solved by the explicit formula

(3.3.20) yla, ) = p(, 0) + [1— exp[— at]] yi(w, 0)/cx.

Thus, using (3.1.3), one immediately concludes that the zeros of y(x, f) are the
solutions of the algebraic equation in »

n

(3.3.21) > [ — 2,(0)]714,(0) = o/[1— exp[— at]] ,

=1

which coincides with (2.1.24) (as indeed it should).

3'4. Other translation-invariant models. — Another class of translation-
invariant models obtains from (3.1.13) by setting B, = 4, = 4, = 4; = D, =
= D, = 0 (so that the equations of motion for the /s are homogeneous),
and then by using the same change of dependent variables already used at
the end of subsect. 2°1, namely

(3.4.1) x;(t) = exp [2,(1)], i=1,2,..,n

Essentially this same procedure was used in the second part of subsect. 3'2.
Setting for notational convenience ¢ = 1, § = «, B, = ¢, 4, = 4, Dy = 2y,

(3%) It is easily seen that the same property also holds for the ¢uantities a;(L oo}
of eq. (3.3.13), whose explicit expression can be easily obtained.
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we thus get for the co-ordinates w,(f) the equations of motion

(3.4.2) & =gw,—oai; +2 ”2 [Aws — e y(&; + ) + &8/ (@, — @3)

k=1

i=12,..mn,

and these imply for the co-ordinates z,(f) the translation-invariant equations
of motion

(84.3) Z=—%0)+G— A2+ 2 i, [A— p(2; + %) + 2%/ [exp [2,— 2] — 1],
k=1

i=12,..,n,
where
(3.4.4) G=g-+2mn—1)4,
(3.4.5) A=a+2n—1)pu.

Clearly the study of the equations of motion (3.4.2) is essentially equivalent
to the study of (3.4.3). The version (3.4.3) of the equations of motion may,
however, be more appealing as a many-body model because of its translation-
invariant nature; but it features a two-body force that is not an odd function
of the interparticle distance. Both models are characterized by the possible
oceurrence of collapse, whenever the co-ordinates of two particles coincide.
The co-ordinates 2; may, moreover, exist at — oo at a finite time, corresponding
to the vanishing of #;, as implied by (3.4.1); in the framework of the many-
body model (3.4.3) the « cause» of such a possible divergence should be at-
tributed to the presence of a quadratic velocity-dependent force (the first term
on the r.h.s. of (3.4.3)).

In the following we investigate tersely the time evolution of these many-
body models starting from initial conditions such to exclude the (future) oc-
currence of any divergence. Clearly such initial conditions do exist (see below).

The partial differential equation associated to the equations of motion
(3.4.2) reads as follows:

(3.4.6) Axty., + goY. + Vi + 2uBYe; + api— [R(n—1) A1 4-nglp = 0.

The most convenient way to study the time evolution of a solution of this
equation that is a polynomial of degree » in & is through the ansatz

(3.4.7) w(w, ) = 2 on(t) 2™,

m=0
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since the time evolution of the co-efficients ¢, (¢) is then determined by the
decoupled equations

(3.4.8)  €,(1) + (& + 2mu) ¢, (1) —
—{nn—1)—mm—1]2+ (n—m)g}e,(t) =0, m=0,1,..,n.

The explicit solution of these equations is, of course,

(3.49) ¢, (t) =[5, — b TH{[6,(0) — b, ¢, (0)] exp [ 1] —
~[6,(0)— b ¢ (0] exp B8]}, m=0,1,2,...,n,

where b are the two roots (assumed, for simplicity, different) of the second-
degree equafion in b

(3.4.10) b2+ (x+ 2mu)b— [w(n— 1) — m(m— 1)] A— (n—m)g=0.

m

positions and velocities of the particles through the two equations

The initial values ¢, (0), ¢,,(0), m == 0, 1, ..., » — 1, are determined by the initial

n~1

(3.4.11) w4 S 02 =TT e — . (0)] = y(a, 0),
(34.12) S ,(0)27 = — e, 0) S [ £, (0)](0)
while, of course,

(3.4.13) ety = ea(0) =1,  Gu(t) =0

(note the consistency of these last formulae with (3.4.8)).

These equations characterize quite explicitly the time evolution of the
polynomial y(x,t) (of degree n in x; see (3.4.7)). On the other hand, the n
zeros x,(t) of this polynomial, namely the values such that y(,(t),?) =0,
coincide with the solutions of (3.4.2) characterized by the initial data ,(0),
Z;{0), j =1,2,...,n, and of course yield through (3.4.1) the corresponding
solutions of the equations of motion (3.4.3) (subject to the condition that all
the w,’s be positive).

The quantities ¢,(t), m = 0, 1, ..., n— 1, can be interpreted as convenient
« collective variables» for the description of the many-body system; their
relationship to the particle variables #,;(¢), j = 1, 2, ..., n, is provided by the
simultaneous validity of the representations (3.1.1) and (3.4.7). The advantage
of these variables ¢, (t) over the particle co-ordinates x;(?) is of course that their
time evolution is much simpler, being in fact given by the explicit formula (3.4.9).
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The dynamics of these many-body models is quite rich, and a thorough
discussion would require a separate paper. We report here only the asymp-
totic (f - 4 oo) analysis for the model (3.4.3) with « = g =0 and ¢g> 0,
A> 0. It is then easily seen that

(3.4.14) z(t) ~ v;t + a;, i=1,2,..,n (t—>+ o),

where

(3.4.18)  w; = n;— Ny_a, i=12,..,mn,

(3.418)  a; = In{— (s/1;_1)[¢;_1(0) + 75_1¢,4(0)][[€(0) + m;¢,(0)]}
j=1,2,..,mn,

3.417)  gu={n(n—1)—m(m— 1)1+ (n—m) g}é ’ m=0,1,2,..,n.

These results obtain from (3.4.7), (3.4.9), (3.4.10) and (3.4.1), and from the remark
that, for ¢ — 4 oo, the zeros of y correspond to an exact cancellation between
the two leading contributions in (3.4.7). Note that these findings imply that
all the particles escape to the right with velocities that are independent of the
initial eonditions; since these asymptotic velocities are generally all different,
the particles become asymptotically more and more separated. Of course
these asymptotic results can also be inferred directly from the equations of
motion (3.4.3), once the asymptotic separation of the particles is ascertained.

Let us finally mention that, by the trick of shifting part of the variables
2; by im, one can generate a model with two kinds of particles; as is apparent
from (3.4.3), the two-body interaction between different particles would then
be nonsingular, so that in such a many-body problem different particles can
cross each other.

3'5. Some non—translation-invariant models; related properties of the zeros
of the classical polynomials. — In this subsection we discuss some non-translation-
invariant many-body problems characterized by equations of motion that
are special cases of (3.1.13). These models are interesting because their dy-
namical behaviour is rather rich; moreover, their dynamies is so closely related
to properties of the zeros of the classical polynomials to allow the display of
some remarkable, and we believe novel, properties satisfied by these quantities.

Let us consider first of all the subclass of the results of subsect. 31 that
obtains for A, = Dy = D, = D, = E = 0, (' = 1, so that (3.1.13) become

(3.51) &= Bo+ Biz, +23 (Ao + Auz; + A;7] -+ 8,0) (@i~ @),

k=1

i=12,..,mn,

15 ~ Il Nuovo Cimenio B,
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while (3.1.4) becomes

(3.5.2) Yoo+ (Ao + A1 + 4,27 yoo +
+ (By+ By#) w,— [n{n—1)A; + nBly =0,

where of course x, = w,(t), v = yp(x, t).

The many-body model characterized by the equations of motion (3.5.1),
and by the corresponding partial differential equation (3.5.2), are still too
general to allow a transparent analysis. Below we consider 3 special cases,
that are particularly significant because of their close relationship with the
classical polynomials. In each case, we take advantage of the possibility of
performing trivial changes of variables, such as translations and scale trans-
formations, to present the results in a canonical form that makes such relation-
ship more evident.

The simpler and perhaps more interesting case obtaing if 4, = 4, = 0.
The canonical form is then displayed by setting 4, =4, B, =0, B, = — 1,
so that (3.5.1) become

(3.5.3) ;if,:—;o,.+f’ (1 - 2&,%,) [(2; — @) j=1,2,.., n.

k=1

The interpretation of these equations of motion is clearly in terms of a n-body
model with an external Hooke force (of unit strength in these dimensionless
units) aeting on each particle, and the velocity-dependent two-body force
(1 + 22,2,)/(x,— z,) acting among the j-th and k-th particles. Such a system
is clearly always confined, due to the presence of the Hooke force. It has one
equilibrium configuration (see below); and it may, but it need not, give rise
to collapse (see below). Particularly interesting is the (oscillatory) motion
close to the equilibrium configuration.

The explicit dynamical evolution of this system can be studied by con-
sidering the associated partial differential equation, that obtains from (3.5.2)
with the determination of the coefficients indicated above, reading, therefore,

(3.5.4) Yo+ Sy — oy, +Fap=0.

The most convenient way to study the time evolution of the solutions of
this equation is through the ansatz

(3.5.5) pla, t) = 27 Zc,,{(é)H

where H,(x) is the Hermite polynomial of order m (2); for it is then easily

(**) For the classical polynomials we use the notation of A. ErpELy1, Editor: Higher
Tramscendental Functions, Vol. 2 (New York, N.Y., 1953).
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seen that (3.5.4) implies that the coefficients ¢,(f) satisfy the simple equations
(3.5.6) 6y (n—m)e,=0, m=0,1,..,n.

Thus their time evolution is given by the simple formula

(3.5.7) n(t) = €n(0) €08 (0 t) + [€4(0)/wn] 8iN @, t
with
(3.5.8) Wn = (n—m)}, m=0,1,..,n.

The initial data ¢,(0), ¢,.(0) are related, as usual, o the initial positions x,(0)
and velocities #;(0) of the many-body problem (3.5.3), through (3.1.1), (3.1.3)
and (3.5.5):

n

(3.5.9a) 2~ i ew(0) H () = p(w, 0) = T] [& — =;(0)],

m=0 =1
(3.590) 23 6u(0) Holo) = 9@, 0) = — (@, 0) 3, [o— m,(0)],(0) -
m=0 =1

These equations imply of course (?)

(3.8.10a) ¢,(0) = ca(t) =1,

+o

(3.5.10b)  ¢.(0) = (w¥2™™/m 1) f d exp [— #?] H,.(x) f[ [ — 2,(0)],
§=1

m=20,1,2,...,n—1,

+o
(3.5.100) ¢,(0) =— (m 12" ™/m!) f dz exp[— 7]+

-H,(x) ﬁ [ — z,(0)] % [ — 2,(0)]*£:(0) , m=20,1,...,n—1.
j=1 k=1

The # zeros of the polynomial of degree » in z given by the explicit for-
mulae (3.5.5), (3.5.7), (3.5.8) and (3.5.10) provide the solutions of the n-body
model characterized by the equations of motion (3.5.3). Let us now discuss
some special cases.

Consider first of all the configuration of the system characterized by the
initial data ,(0) = %,, 4,(0) = 0, j = 1, 2, ..., n, where Z, are the n zeros of
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the Hermite polynomial of degree n
(3.5.11) H.(z;)=0, i=1,2,..,n.

Then clearly ¢,,(0) = ¢é,(0) = 0, m = 1, 2, ..., n — 1, so that y(z, {) = yp(x, 0) =
= 2" H,(x); the n-body problem is at eguilibrium. We have thus proved that
the n zeros of the Hermite polynomial of degree n provide the equilibrium
configuration of the n-body system (3.5.3). And, since at equilibrium the ve-
locity-dependent part of the two-body force can be of course ignored, we may
also assert that the n zeros of the Hermite polynomial of degree » coincide
with the equilibrium positions of % particles on the line whose dynamies is
characterized by the Hamiltonian

n n i—1
(3.5.12) Hp,)=4>0+¢)—> 2In{g,—a),
i=1 =2 k=1

since the equations of motion that obtain from this Hamiltonian are just the
eqs. (3.5.3) with the velocity-dependent term on the r.h.s. omitted.

The connection of the solvable model of eqgs. (3.5.3) with the Hamiltonian
model of eq. (3.5.12) is very interesting, as well as the very direct relationship
of its equilibrium configuration to the zeros of Hermite polynomials; the latter
result is, however, not new, having in fact been discovered almost a century
ago by STIELTIES (39),

The equivalence between the Hamiltonian model of eq. (3.5.12) and the
solvable n-body model (3.5.3) is of course valid for any motion in which the
velocities remain small; this is clearly the case if the system oscillates around
its equilibrium configuration, without ever getting too far from it. Indeed,
since the difference between the equations of motion (3.5.3) and those that
correspond to the Hamiltonian (3.5.12) is quadratic in the velocities, the two
models are identical not only as regards their equilibrium configurations, but
also (to the first order) in accounting for the small oscillations around the equi-
librium configuration. But for the model (3.5.3) it is clear that these small
oscillations are characterized by the » frequencies w,, m = 0,1, 2, ..., n— 1,
of eq. (3.5.8); see (3.5.7). On the other hand, the standard theory for the small
oscillations of a dynamical system around its equilibrium configuration, ap-
plied to the system characterized by the Hamiltonian (3.5.12) and by the
(clearly unique) equilibrium configuration ¢; = z,, j = 1, 2, ..., 0, desecribed

(30) See subsect. 6.7 of the classical textbook of G. SzrGO: Orthogonal Polynomials,
Amer. Math. Soc. Colloq. Publ., 23, 1939. A discussion of these results is given in
F. CALOGERO: The zeros of the classical polynomials coincide with the equilibrium positions
of simple one-dimensional many-body problems, Nota Interna No. 682, Istituto di Fisica,
Roma, April 1977.
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above, implies after a little algebra that the frequencies &., m =0, 1, ...,
n — 1, of the normal modes are just the square roots of the eigenvalues of the
matrix A of rank », whose matrix elements are given in terms of the n quan-
tities Z; by the simple formula

(3.5.13) Apy = Oy f (@B —T) 7 — (L— 0u) (T — T1)2,

k=1

where of course 4, is the Kronecker symbol, 6, = 1if m =1, 6, = 0if m £ L.
Since these frequencies &,, must coincide with the frequencies w,, of eq. (3.5.8),
while the quantities Z, coincide with the zeros of H,(x), the following theorem
obtains for the zeros of Hermite polynomials: Let ™, m = 1, 2, ..., n, indicate
the n zeros of the Hermite polynomial H (x), H, (@) = 0; let the matriz A of

rank n be defined in terms of these zeros by the simple expression

@510 A= 5,3 [ T (L= 8o — T

k=1

then the n eigenvalues a, of A are the natural numbers from 0 to n — 1:
(3.5.15) a,—=8—1, s=1,2,..,n.

This result is presumably new; we have reported it elsewhere together
with a terse discussion of its implications (3!).

Let us now return to discuss the solutions of the n-body model (3.5.3).
There are clearly special solutions that oscillate periodically with one of the
frequencies (3.5.8); some of these lend themselves to a very illuminating
graphical display. Consider, for instance, the solution characterized by initial
conditions such that ¢,(0) = é,(0) =0 for m=1,2,..,n— 1 (see (3.5.9)
and (3.5.10)). Then the solutions #,() of (3.5.3) are given by the n. roots of the
equation in

(3.5.16) H,(z) = — C cos [nt 4 ¢,
where

(3.5.17a) C = {[6(0)]* + [¢o(0))*/m}?,
(3.5.17b) @ = arctg [n? 65(0)]60(0)] .

A convenient way of visualizing the corresponding behaviour of the par-
ticles characterized by the co-ordinates x,(t) is to draw a graph of the Hermite
polynomial H,(x) and to consider the intersection of this graph with a straight

(3') F. CALoGERO: Lett. Nuovo Cimento, 19, 505 (1977).
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line parallel to the z-axis that oscillates periodically as deseribed by the r.h.s.
of (3.5.16). Note that in this manner one discovers that adjacent particles
have generally opposite speeds; moreover, one finds that the condition neces-
sary and sufficient to eselude the occurrence of collapse in this case is the re-
quirement that the amplitude € of the oscillations of the r.h.s. of (3.5.16) be
less than the moduli of all the (local) extrema of H ().

Another solution that also lends itself to a very explicit graphical display
Is that corresponding to initial conditions such that ¢,{0) = ¢,(0) =0, m =
=10,2,3,...,n—1, in which case (3.5.16} is replaced by

(3.5.18) H,.(2) = — 20 cos [(n— 1)}t + ¢'1,
(3.5.194) 0’ = 2{[e,(0)]* + [¢,(0)]%/(n— 1)}},
(3.5.19b) @' = aretg [(n— 1)t ¢;(0)/6,(0)] .

In this case the co-ordinates x,(t) are given by the intersections of the graph
of the Hermite polynomial H,(z) with a straight line that rotates in an oseil-
latory way around the origin, representing the r.h.s. of (3.5.18).

We conclude this discussion emphasizing an interesting feature of this
n-body model, that may make it relevant for several applications: it is the
explicit role played by the transition from the n particle variables x;(f) to
the n quantities ¢,(f), m = 0,1, 2, ..., n— 1. The connection is of course
provided by the formula

(3.5.20) S () Ho(@) = 20T [0 — a5(0)] -
m=0 j=1

The quantities ¢,(t), m = 0,1, ..., n — 1, are characterized by their simple
time evolution, see (3.5.7); they may be considered the « normal co-ordinates »
tfor the system under consideration (although their relationship (3.5.20) to
the particle co-ordinates is not linear). They clearly constitute « collective
co-ordinates » for the description of the many-body system, particularly suited
to the description of its time development. Note incidentally that the last of
these co-ordinates is essentially just the centre of mass X of the system:

(3.5.21) rsll) = — 20X () = — 2 ixj(t) )

i=1

This last formula follows from (3.5.20); note its compatibility with (3.5.6)
and with the equation of motion X + X = 0, that follows directly from (the
sum of all) the eqs. (3.5.3).

The second model to be disecussed in this subsection corresponds to (3.5.1)
and (3.5.2) with 4, = 0, but 4,52 0. Its canonieal form obtaing by setting
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Ay=10, A, =1, B,=1-1+a, B,=—1; we assume hereafter a« > — 1 (the
motivation for this assumption shall be clear in the following, as well as the
fact that many results remain valid ewen if this assumption does not hold).

With this choice of coefficients the equations of motion (5.3.1) become

(3.5.20a) #H=1+oa—a,+2 Z’ (@ + &500) (0, — @) i=14L2,.,mn,
*=1
or, equivalently,

(85.208) #=n+a—a,+3 @+ 0+ 28)/@—2), §=1, 2., 0.

k=1
Note incidentally that these lagt equations imply for the centre-of-mass co-

ordinate X = ! #; the equation
o1

(3.5.21a) X=nta—2X,
namely the time evolution

(3.5.21b) X@)=n4 o+ [X(0)— (n+ )] cost |+ X(0) sin¢.

Equations (3.5.20) have a less appealing interpretation as equations of
motion of a many-body problem than those given above in this subseetion, due
to the non—translation-invariant character of the two-body force. Nevertheless,
this model is interesting because of its relationship with properties of Laguerre
polynomials. Indeed, because the results are analogous, except for the re-
placement of Hermite polynomials by Laguerre polynomials, to those described
above, we present them below very tersely.

The partial differential equation that corresponds to the equations of motion
(3.5.20) reads

(3.5.22) Yo+ BPoe + (1 ax— )9, +np=0.

The convenient ansatz to discuss the time evolution of a polynomial solution is

(3.5.23) v, ) = (—)n! S o) Ixa),

m=0

where L5 (x) is the Laguerre polynomial (2#) of degree m, since (3.5.22) then
implies
(3.5.24) bm + m—m)e, =0, m=0,1,.., n,
hamely

(3.5.25) om(t) = 6,(0) €08 w,t + [€,(0)/w,] sin @, 2, m=0,1,..., n,
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where again

(3.5.26) o, = (n— m), m=0,1,..,n.

As for the initial data ¢,(0), ¢,,(0), they are related to the initial positions ,(0)
and velocities #;(0) by

(3.5.27a) (—)y'n! icm(O)L;‘"(Jc) = p(x, 0) = ﬁ [ — 2,;(0)],

(3.5.276)  (—)n !ni é.(0) L2 (2) = — yp(x, 0) i[w- 2,(0)]718,(0) .

m=0 i=1

These equations determine the 2n quantities ¢,,(0) and é,,(0), m = 0, 1, ..., n — 1,
in terms of the 2n initial data x,(0), %,(0), while

(3.5.28) ealt) = 1.

The relationship between the n particle co-ordinates a;(t),j = 1, 2, ..., n — 1,
and the n «collective co-ordinates » ¢,(t), m = 0, 1, ..., n — 1, is given by

(3.5.29) (—)"n! anm(t) Li(x) = ﬁ [ — o;(8)] .

m=0 =1
In particular, ¢,_(t) is simply related to the centre-of-mass co-ordinate X(1):
(3.5.30) X(t)=mn -+ a - e, ().

The n zeros 7, of the Laguerre polynomial L¥*(z), L*(Z,) = 0, yield the (unique)
equilibrium configuration of the system characterized by the equations of
motion (3.5.20). This equilibrium configuration corresponds of course to a

solution of the equations that obtains by equating to zero the r.h.s. of (3.5.20),
with moreover &, =0, j=1, 2, ..., n:

(3.5.31) 3@ =T = [1— (L + )], §=1,2,..,m.

Note that, to write these equations, we have divided by 2w, the r.h.s. of (3.5.20a).
This is eonvenient, since it is then immediately recognized that the zeros Z,
of the Laguerre polynomial L#(x) coincide with the unique equilibrium con-
figuration of the (Hamiltonian) system characterized by the Hamiltonian

n  §—1

(3.5.32) H(p,q) =% p;+ %"E [(;— 1 +a)lngl—3 YIn(g—q),

=1 =1 §=2 k=1
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a result that is again not new, going in fact back to STIELTIES (**). Note that
the single-particle potential constrains the particles on the positive real axis.

The time evolution of the system (3.5.20) is clearly characterized by the n
frequencies w,, of eq. (3.5.26), with m = 0,1, ..., n — 1; these frequencies
must, therefore, coincide with the eigenfrequencies of the small oscillations
of this gystem around its equilibrium configuration. But these eigenfrequencies
can be computed by the standard procedure of linearization of (3.5.20) around
the equilibrium configuration. In this manner, in analogy to the previous
case, one proves, with a little algebra, the following theorem: Let x.(n, a),
m=1,2, ..., n, indicate the n zeros of the Laguerre polynomial L (), L[z, (n,
o)] = 0; let the matriz B of rank n be defined in terms of these zeros by the simple
expression

(3.5.33) B,w= 6in 2”2' [@m(m, &) — @i, )] 2@0(n, ) —
k=1

— (1= dum)[miln, &) ~ (0, )2 2m(my @) 5
then the n eigenvalues b, of B are one-half of the natural numbers from zero to n — 1:
(3.5.34) b,=13(s—1), s=1,2,..,n.

We have reported, and discussed, also this result elsewhere (%!).

A very explicit display of the motion of the particles obeying (3.5.20) can
be given in some special cases, the simpler of these being of course that charac-
terized by e,(f) # 0, ¢,(f) = 0 for 1,2,..., n—1; we do not elaborate this
analysis here, since the interested reader will have no difficulty to duplicate
the treatment given above in analogous cases.

The last model of this subsection corresponds to (3.5.1) and (3.5.2) with
A, # 0. The canonical form obtains then by setting 4y =~ 1, 4, =0, 4,=1,
By=a—8, B=a -+ -+ 2; we assume hereafter «>—1, §>—1, for
reasons that shall be clear presently (but many of the following results do not
require these restrictions). Since the treatment to be given now is essentially
a repetition of those just given, except for the fact that now the Jacobi poly-
nomials PP (z) (*) are taking the place of the Hermite and Laguerre poly-
nomials, we merely report the main equations and results, without any elab-
oration.

The equations of motion read

(35.350) #=a—ft (@4 B4 +23 (@~ 1+ &)@, — ),

ji=12,..,n,
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or, equivalently,
3.5.350) & =a—f+(x-+pf+n)o, +nX -+

+ 2T a— 2 4 28 @) [ — @), =1, 2,0, 1,

k=1

where of course X is the centre-of-mass co-ordinate.
The corresponding partial differential equation reads

(3.5.36) yu+ (@*— Vye +la—f+ («+f+2)alyps— (0 taf -+ 1)yp=0.

The convenient ansatz for its solution reads

(8.5.37) (e, )= [2nl(n—+a -+ B) Y@+ a+F) 1S e t) PPla),

m=0

since then

(3.5.38) éu-t+Inntatpf+l)—mmtadt - 1]e,=0,
m=0,1,..., n,

implying of course
(3.3.39) ¢u(t) = ¢,(0) cos w, t + [€,(0)w,]/sinw, 1,

where, however, now
(35.40) w,=Mn+at+pf+l)—mm+atpL1], m=0,1,2,.., 0.

The relationship hetween the particle co-ordinates #;(f) and the collective
co-ordinates e, (t) is given by

n

(3.5.41) 2eni(n+at B)2n+ o+ B! "zcm(t) PP (g) =TT [x— @;(0)]

m=0 i=1

which also implies

(3.5.42) ea(t) = 1.

Clearly the initial data are correspondingly related by

(3.5.43a) [2*n!n + o+ B) Y2 4o+ B) 1] icm(O)P;""ﬂ’(w) =

m=0

= y(x, 0) = ﬁ [#— a;(0)],

i=1
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(3.5.430)  [2ml(n 4+ B) !f(2n + & + B) 1] 3 6,(0) PP(w) =
m=0

= — p(@,0) 3 [0 — o,(0)],0).

i=1

The equilibrium configuration for the system (3.5.35) is given by x; = %;,
the » quantities #; eoineiding with the zeros z,(n, «, 8) of the Jacobi polynomial
PrB(x), PoPly(n, o, )] =0, j=1,2,..., n. This same configuration corre-
sponds also to equilibrium for the (Hamiltonian) system characterized by the
Hamiltonian

(35.44) Hip,q) =330 —3S(A+a)n{l—q)+ @+ Hn@L+g)—~
=1 §=1
n =1

- z Zln(!b—'qk)’

=2 k=1

again a result going back to STIELTIES (®). Now the single-particle potential
confines all the particles in the interval (— 1, 1).

A comparison of the approximate (linearized) treatment of the small osecil-
lations of the system (3.5.35) around its equilibrium configuration. with the
exact treatment given above leads to the following theorem (31): Let x,(n, a, )
be the m zeros of the Jacobi polynomial PP (z); let the matriz C of rank n be
defined in terms of these zeros by the formula

(B545)  Cun= 13 (L— )@y — )~ (1= ,)(L— o) @ — )

k=1
then the n eigenvalues ¢, of C are given by the formula
(3.5.46) e,=3(s—1@2n—s+ o+t H), s=1,2,..,n.

Of course analogous results can be given for Gegenbauer and Legendie
polynomials, sinee these are just special cases of the Jacobi polynomials, cor-
responding respectively to « = § and to « = f = 0 (®).

3°6. Periodic and hyperbolic forces. — In analogy to the treatment given
in the previous section, see in particular subsect. 23, we extend here the results
of the previous subsections to models involving circular and hyperbolic func-
tions. As will be presently seen, the solvable many-body models thus obtained
encompass all those discussed in subsect. 2°3. Here, however, we shall forsake
a detailed discussion of each model, limiting our treatment to the identification
and display of these many-body models and of the technique by which they
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can be analysed. We, moreover, restrict our consideration to translation-
invariant problems.
Now the basic ansatz is

(3.6.1) pla, 1) = ] sin fle— ,(1)] ,
j=1
that reduces of course to (3.1.1) for # = 0. It implies the following formulae:

(3.6.2) p. = yf detgfle—a),

j=1

(3.6.3) Y, = — zpﬁﬁ:a&j ctg fle—a;),

B:64) o=yl fnr £ 28 S otg [Bla— 2] 3 et fla,— @)},

k=1
(3.6.5)  w. = p{p2X — g z ctg [Blo— )] 3 (@ + &) ctg flo,— o)},

(3.6.6) . = p{— X+ ﬂictg Blr—r,)-

(= &+ 268, 3 otg Bla,— @)}

k=1
In all these equations of course p = i, t), &, =z,(t), X = X(f). Note that,

to obtain the last 3 equations, we have used the trigonometric identity (2.3.10);
and we have of course introduced the centre-of-mass co-ordinate

(3.6.7) X(t) = n? iwj(t) .

Agsume now that the function y(r, t) satisfies the linear partial differential
eguation

(3.6.8) Al{)zx + —BW{ -+ (J’?/)(f + Dz/)zi + Ew; + Iﬂ"{') =0,

where the quantities 4, B, €, D, E and F are independent of x, but might
depend on t (see below). There clearly correspond for the co-ordinates x,(f)
the equations of motion

(3.6.9) &+ Bi,— B+ B3 24— D(a, + ) + 20%8,] ctg flo,— m),

k=1

j=1,2,..,n,
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with the additional equation
(3.6.10) ¥ = p*n%(4 — DX + 0X?).

The solutions of the equations of motion (3.6.9) with no constraint on the
initial data are in this manner related to the linear partial differential equa-
tion (3.6.8), where now F should be considered as given by eq. (3.6.10). Clearly
the centre-of-mass co-ordinate that enters in this last equation satisfies the
equation

(3.6.11) ¢X + EX =B,

that follows immediately from (3.6.9).

We assume hereafter, for simplicity, 4, B, C, D and E to be constant
(although the possibility to solve the many-body problem (3.6.9) even when
these quantities depend arbitrarily on ¢ should be emphagized; and note that
the techniques described below apply also in this more general case). It is
then immediately seen that (3.6.11) implies

(3.612)  X(t) = X(0) + (B/E)t + (O/E)[X(0) — (B/E)] [1— exp[— Et/C]],

and, inserting the corresponding formula for X(#) in (3.6.10), one gets the ex-
plicit expression of F(¢) in terms of A, B, C, D, E and of the initial position
X(0) and velocity X(0) of the centre of mass of the system.

The many-body model characterized by the equations of motion (3.6.9)
is clearly translation invariant; it is not Galilei invariant, although the change
of variables w,(t) = m;(t) -+ ut (corresponding to a description. of the same
system as seen in a frame of reference moving with constant gpeed ) reproduces
the same model, but with the new coefficients A’= A — Du -+ Cu?, B'= B — Eu,
0'=0C, D'=D~—2C0u, B'= E, and with F' given in terms A’, ', D' and X'
by the same eq. (3.6.10) that gives F' in terms of A, 0, D and X = X'+ ut.

The linear partial differential equation (3.6.8) is most conveniently solved
through the angatz

(3.6.13) p(@, ) = f2i) " 3 ea(t) exp [ifmal ,

Mm=—n

that is clearly consistent with (3.6.1); for the time evolution of the «collective
co-ordinates » ¢,(?) is then given by the simple equations

(3.6.14) (C&,(t) + (B 4+ ifmD)é,(t) + (F + ifmB — f2m*A)e,(t) =0,
m=0, +1, +2,..., +=a.

Of course the explicit relationship between the particle co-ordinates x;(f) and
the collective co-ordinates is univocally determined by (3.6.1) and (3.6.13),
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namely by the formula
(3.6.15) > en(t) exp [ifma] = (2¢)" [] sin Blz — 2,(t)],
J=1

m=—n

that of course implies (when all the z,’s are real)

(3.6.16) en(t) = (—)"e* (1), m=10,1,..,n,

-_m

a property that is clearly consistent with (3.6.14).
The explicit solution of (3.6.14) is generally easy. Moreover, if the centre
of mass of the system moves with constant speed,

(3.6.17) Xty=",

as is the case if B = F = 0 or, in the general case, if X(0) = B/E, then F,
as given by (3.6.10), is also time independent, so that all the coefficients in
(3.6.14) become constant. Then clearly

(3.6.18) e (t) =P exp [ 1] + ¢Dexp[et], m=0,+1, +2,.., £n,

{+)

m

where o and of” are the two roots of the second-degree equation in «

(3.6.19) Cot + (B + ipmDye 1 (F -+ ifmB — frm2A) = 0,
m=0, +1, £2,..., - n,

and the constants ¢’ and ¢’ are related to the initial data ¢,(0) and ¢,(0) by

the formula
(3.6.20) ¢ = £ [o — 0,17 [¢,(0) — i ¢, (0], m=0, £1,..., £n.

m

As for the initial data ¢,,(0) and ¢é,(0), they are of course related to the
initial positions 2,(0) and velocities 2;(0) through (3.6.15); note incidentally
that, for small », this equation is easily solved in explicit form, for instance
for n =2

(3.6.21) ety =0, clt) = — 2 cos flay(t) — x3(0)] , c(t) = exp [— 20X (1)] ,
while for n =3
6o(t) = 6(t) = 0,
o(t) = — exp [iBlas(t) — a(t) — as(1))] —

— exp [if[#:(t) — @y(t) — m(t)]] — exp [iB[zy(t) — an(t) — @a(0]]
ey(t) = exp[— 3ipX(1)].
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As suggested by these formulae, and clearly implied by (3.6.15), it is generally
true that ¢,(f) = 0 if m and n have different parities, and that ¢,{t) is simply
related o the cenfre-of-mass ee-ordinate,

(3.6.23) c,(t) = exp[— ifnX(t)] .

It is of course always possible to work with real quantities, by introducing as
« collective variables » the real and imaginary parts of ¢,(t), in place of ¢,(?)
and its complex econjugate (up to a sign; see (3.6.16)) c_,(1).

These results open the possibility of a detailed discussion of the (rather
general) many-body problem characterized by egs. (3.6.9), including a de-
termination of whether and when collapse occurs; but, as indicated at the
beginning of this subsection, space limitations prevent us from elaborating
this matter any further here.

We end this subsection with two remarks. First of all we note that, although
in onr discussion above we implicitly assumed § to be real, an interesting many-
body model obtains also for imaginary g = ¢y. In such a model the circular
functions are replaced by hyperbolic functions, so that the physical behaviour
becomes of course qualitatively different. On the other hand, the analytical
treatment, displaying the possibility to achieve a quite complete and rather
explicit solution of this many-body problem, remains applicable, with obvious
modifications, also in the case with § = ¢y, y real (indeed it remains formally
valid, although hardly interesting, even for complex f).

Secondly we remark that it is very easy, although certainly nontrivial
ag regards the changes induced in the qualitative physical picture, to modify
these models so that they involve two kinds of particles, following the pro-
cedure of subsect. 2°4. Indeed also the other extensions discussed in that sub-
section are clearly easily applicable in the context of the results presented in
this subsecfion, and more generally in this seetion.

4. — Summary and outlook.

A rich harvest of many-body models has been introduced in this paper.
The main focus has been on models involving no constraints on the initial
velocities or positions of the particles. The models considered are all amenable
to analytic treatment, the main technique of solution being through the iden-
tification of the motion of the particles with that of the zeros of specially simple
golutions of linear partial differential equations. Because these latter equations
are generally solvable in rather explicit form, the motion of the particles de-
seribed by these many-body problems can be studied in great detail, and can
often be visualized quite explicitly. In many cases, « collective co-ordinates »
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that are particularly appropriate to describe the dynamical evolution of these
systems are quite naturally introduced through the process of solution.

Typical prototypes of the models discussed in this paper are those charac-
terized by equations of motion such as

+1) & =a+ ba; + cr;, 4 zﬂl [A 4 B(@; + @;) + Cla; + @) + 28, %] /(2 — 24)

(43) & =a+bi, -y 3 [A 1+ Bl 4 &) + 2,3,] ctgh y(a,— 2,

k=1

although models considerably more general than those reported here are also con-
sidered. The coefficients a, b, ¢, 4, B, C appearing in these equations could
be time dependent, although in the cases discussed in more explicit detail
their constancy was generally assumed.

These models give rise to an ample variety of motions, including cases in
which the particles can escape to infinity and cases in which they arve confined
in a finite region of configuration space; cases in which the motion is periodic,
or quasi-periodic, or not periodic; cases in which collapse, whose possibility
is of course implied by the singular character of the two-body force appearing
on the r.h.s. of these equations of motion, does or does not occur. Some of
these models are translation invariant, some are not; they are generally charac-
terized by the presence of velocity-dependent forces; but, when the system
admits an equilibrium configuration around which it oscillates, there are regimes
in which the velocity-dependent components arve small, so that in these cases the
solvable system provides a good approximation to a system without veloeity-
dependent forces, that is then evidently of Hamiltonian type.

A detailed analysis of the dynamical behaviour has been reported only
for a few cases; the techniques used provide tools that allow an easy treatment
of the many other models contained in this general framework.

Applications have not been mentioned; but the variety of behaviours that
have been displayed suggest an ample scope.

There ave several directions of research suggested by the findings of this
paper. Since all the results obtained follow from the choice of a simple ansatz,
one may wonder whether additional results could be attained by modifications
or extensions of these; indeed the basis of some developments of this kind have
been given, but perhaps more radical modifications may produce further
progress. But, even without drastic departures from the present framework,
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there are two important directions in which an extension of the results of this
paper appear particularly interesting: an investigation of models involving
an infinite number of particles (2), and an extension of the approach to more
than one space dimension.

Two other topics should also be mentioned, in which the research sug-
gested by the findings reported in this paper appears called for and promising:
the connection with the recent results on integrable dynamical systems (5¢),
and. the extension to the quantal case.

Finally it should be noted that, while our main interest has been here on
the discussion of solvable many-body problems, some of the results obfained
(in particular those concerning the zeros of the classical polynomials) are of
purely mathematical nature.
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® RIASSUNTO

Si mostra come il moto degli zeri e dei poli di soluzioni particolari di alcune equazioni
alle derivate parziali lineari e non lineari possa essere interpretato come un problema
a molti corpi. Si introducono in tal modo numerosi esempi di problemi a molti corpi
risolubili. I’analisi & limitata a modelli con un numero finito di particelle che si muovono
in una dimensione.

ABmkenne N0JII0COB | HYJICH YACTHBIX Pelennil heJlMMeHnbIX H JHHeHHBIX JRddepentmam-
HWIX YPaBHEHHH B 4YACTHBIX NPOM3BOJHBEIX M POACTBEHHbIC « pellaeMiie » NPOGIeMEl
MHOTHX TeJ.

Pestome (*). — I[loxa3siBaeTCs, YTO OBHXKEHHE HOJIIOCOB M HyNed ZacTHBIX pemeHui
HEKOTOPBIX HEIMHEHHBIX M JIMHEHHBIX Au(depeHnaibbIX ypaBHEHHN B YaCTHBIX HpO-
HM3BOJIHBIX MOXKeT ObITH HHTEPIPETHPOBAHO B TEPMHHAX FKBABATICHTHBIX IPO6IEM MHOTHX
Ten. OO6CYXmaloTcd HEKOTOpHIE peImaeMble MOAEIA MHOIHX Tell. PaccMoTpeHue
OTPaHWYHBAETCS MPOONEMaMH, BKIFOYAIOIIMMHA KOHEYHOE HMCIO YacCTHLl, ABHXYIIHXCS
B OSHOMEPHOM TPOCTPAHCTBE.

(*) IIepesedeno pedaxyueil.

16 — Il Nuovo Cimenio B.



