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MATHEMATICAL MODELS FOR HYSTERESIS*

JACK W. MACKIt, PAOLO NISTRIt, AND PIETRO ZECCA

Abstract. The various existing classical models for hysteresis, Preisach, Ishlinskii, Duhem-Madelung, are
surveyed, as well a more modern treatments by contemporary workers. The emphasis is on a clear mathe-
matical description of the formulation and properties of each model. In addition the authors try to make the
reader aware of the many open questions in the study of hysteresis.
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Introduction. During the last twenty years there has been a steady growth in the
study ofvarious models for hysteresis. The purpose of this paper is to describe the math-
ematics of the various models in existence. There is a substantial literature devoted to
hysteresis in each of the communities of physicists, engineers and mathematicians, and
our aim is to attract mathematicians in particular to this interesting area of research.

1. The phenomenon of hysteresis. We propose to characterize hysteresis as a spe-
cial type of memory-based relation between an input signal v(t) and an output signal
w(t). At the most basic level, the relation between the output and input is determined
by a pair of threshold values c < fl for the input. We will use the names relay (also
called passive, or positive) hysteresis and active (also called negative) hysteresis for the
two types of relations we will discuss. We remark that there is at present no universally
accepted terminology for these phenomena.

Note. Unless explicitly stated otherwise, we assume the input v(t) and the output
w(t) are real-valued. Allowing w(t) E Rn is usually a straightforward extension.

Inrelay hysteresis, the graph (v, w) with output w(t) F[v](t) moves, for a given con-
tinuous piecewise monotone input v(t), on one of two fixed output curves hu(v),hL(v)
defined, respectively, on [a, c), [-oc,/], c < fl (Fig. 1), depending on which thresh-
old, a or/3, was last attained. It is common for hu (hL) to be asymptotically constant
because of saturation as v +x (-x), and hu, hL need not meet (Fig. l(a)). In relay
hysteresis, the memory-based behaviour of the output can be described by the formula

hL(v(t)) ifv(t) _< a;

(1) F[v] (t)
hu (v(t)) if v(t) >_ ;
hL (v(t)) if v(t) (a, ) and v (T(t)) a;

hv(v(t)) ifv(t) e(a, fl) and V(T(t))=;

where -(t) sup{sis <_ t, v(s) a or v(s) fl} (i.e., 7-(/:) is the value of time at the
last threshold attained). If r(t) does not exist (i.e., v(s) (a, ) for all s < t), then we
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MATHEMATICAL MODELS FOR HYSTERESIS 95

need to specifically define F[v] (t) depending on the physical problem we are modelling.
Thus we define F[v] (t) r/if no previous threshold exists, where either rl hL (v(t)) or

rl hu(v(t)), as required. Note that r(t) is defined for any continuous input v(.); thus
the domain of F can be taken as C[0, o).

hL(V)
(a)

w

hu(v)

(b)
FIG.

The hysteresis region is defined by

Active hysteresis allows trajectories inside the hysteresis region 7-(. Referring to Fig.
2, if the piecewise monotone input v(t) increases to -, then decreases, the graph (v, w)
after v(t) - moves on a response curve inside H (dashed); if the input continues to
decrease to 6, then increases, the graph moves on another interior path (dotted). The
mathematical models for this type of hysteresis require the existence of at least two fixed
families of curves filling 7-/, one family for increasing v(.), one family for decreasing v(.).
Note that in the case of relay hysteresis, we would have had f[v](t) hz (v(t)) in the
example given. It can also happen that there is a single family of interior curves on which
two-way motion occurs, i.e., the dashed and dotted curves coincide in Fig. 2.

W

FIG. 2

In all of the above descriptions of basic hysteresis, the relation of response to input
is rate-independent: the velocity with which the input moves on the v-axis is only reflected
in the velocity of the output on the w-axis. The qualitative nature of the response does
not change.
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96 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

The mathematical models for the two types of hysteresis defined above are quite
different in character, even though their memory-based behaviour is similar. Both types
have been described for v(t) continuous piecewise monotone, but active hysteresis is eas-
ily extended to continuous inputs by using approximations and a limiting process [36].
Relay hysteresis F v H Fly] is inherently discontinuous as a map between function
spaces, since an input function that just reaches a threshold and reverses gives a very
different output from a function that reverses just short of the threshold by an arbitrarily
small amount. As we shall see below, if the families of interior curves are sufficiently
regular, then active hysteresis has excellent continuity properties as a map between ap-
propriate function spaces.

We want to emphasize again that the terminology for, and precise definition of, hys-
teresis has varied from area to area and paper to paper.

2. The mathematical models.

2.1. The Duhem hysteresis operator. The Duhem model for active hysteresis dates
from 1897 [19] and focusses on the fact that the output can only change its characterwhen
the input changes direction. This model uses a phenomenological approach, postulating
an integral operator or differential equation to model the relation described in Fig. 2.
Babugka [2] used the differential equation

(2)

with ++ (t) magi0, (t)], )_ (t) min [0, v(t)] to generate the curves of Fig. 2. Bouc
[8], [9] used an integral operator of which a particular case is the equation

dw
(3) +

dv
g(v w)= b

dv
dt

A typical choice for 9 is g(v, w) w b4)(v), with 4) chosen (say, piecewise linear) so
that w(.) forms a classical hysteresis loop when v(.) is a sinusoid (Fig. 3).

W

FIG. 3

The work of Hodgdon [26], [27] and Coleman and Hodgdon [13], [14] shows that such
a model is useful in applied electromagnetics because the functions and parameters can
be fine-tuned to match experimental results in a given situation.

Krasnosel’skii-Pokrovskii [36, 29-32] call this model the "Madelung model," re-
ferring to Madelung’s landmark 1905 paper on electromagnetic hysteresis [42]. How-
ever, the Madelung paper does not use a differential equation or integral operator. In
fact, Madelung allows nonuniqueness of trajectories through a point (for + of fixed sign),
which would make a differential equation model difficult. Their version of what we call
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MATHEMATICAL MODELS FOR HYSTERESIS 97

the Duhem model postulates that for piecewise monotone inputs the output is defined
by

dw
(4) w F[v] -d O(w, v, i).

Most often, q is assumed to have the form

f fo(w, v)/, /(t) _< 0;
+)

fz(w,v)+, +(t) 0,

with fD, fz continuous (D is for "decreasing input," I is for "increasing input"); this is
clearly equivalent to Babuka’s version.

The solutions of (4) give the trajectories interior to the hysteresis region . To
include C bounda cues hu and hz, we can modi (4) by adding the constraints

(5)
w’(t) h(v(t))v’(t)

w’(t) h (v(t))v’(t)

for w(t) > hv(v(t)),

for w(t) <_ hz(v(t)).
This adds the physically irrelevant trajectories

+ +
for initial states outside and off the curves ht, hz.

2.2. The Ishlinskii hysteresis operator. Ishlinskii’s model (cf. [36, 35]) dates from
1944. (The referee has pointed out that it appears in a paper of Prandtl in 1928 [50].) It
was proposed as a model for plasticity-elasticity. The foundation for this model is a basic
active hysteresis mapwhose behavior is sketched in Fig. 4, called a stop by Krasnosel’skii-
Pokrovskii [36, 3].

W

h

FIG. 4

For the stop as sketched in Fig. 4 the bounding curves are w +h, the hysteresis
region 7-/is the stripD
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98 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

and the corresponding operator Sh v w for v continuous monotone, initial state
(v0, w0) E 7-/, according to the following rules:

(i) If v(-) is moving to the right at time t, then Sh[v](t) min{h, v(t) vo + w0};
(ii) If v(.) is moving left at time t, then Sh[v](t) max{-h, v(t) vo + w0}.
When we want to include dependence on (to, w0), we write Sh(to, w0) [v].
The operator Sh can be defined for piecewise monotone inputs by referring to Fig.

4 with its single interior family of two-way curves. We can describe this extension ana-
lytically by asking that the semigroupproperty hold:

qh (to, W0)[)] (t) Sh (tl, Sh (to, W0)[V] (tl))[V] (t).

The simplest form of Ishlinskii hysteresis operator can then be defined as the super-
position

() w(t) F[v](t) ((h) o (to, wo(h)) [v](t)dh.

Although defined for piecewise monotone v(.), under reasonable conditions on ((.)
(((h) >_ O, f h((h)dh < o, say) this operator can be extended to a map from C(t0, t)
into C(to, tl) [36, 35.7]; in fact Lipschitz continuous inputs will yield Lipschitz continu-
ous outputs. We can also use a Stieltjes integral to define Ishlinsldi operators by replacing
(h)dh with d.

2.3. The Preisach model. The Preisach model of electromagnetic hysteresis dates
from 1935 [51]. It was investigated in the 1950s by Everett and collaborators [21]-[25]
and by Biorci and Pescetti [6], [7] and has been studied extensively in recent times. This
model uses a superposition of especially simple independent relay hysteresis operators
as described in Fig. l(a). That is,

(7) F[v](t) f f It(a, )/?,[v] (t)dc d/,

where It(a,/)^ > 0 is a weight function, usually with support on a bounded set in the
(c,/3)-plane, F is a relay hysteresis operator with thresholds a < , and

ht(v) +1 on [a, c);

hL(v) -1 on (-, ].

The arbitrary initial state /= +1 must be chosen if v(t0) (a,/). Whereas the Madelung
model is based on a "how can we model this relation" approach, the Preisach model is
founded on a physical assumption: hysteresis is the result of the superposition of the
behaviour of independent domains within the material, each of which can be modelled
by a simple "flip-flop" relay hysteresis operator.

For a thorough discussion of the Preisach model, see Mayergoyz [43] and Brokate-
Visintin [12]. The monograph of Krasnosel’skii-Pokrovskii [36] only deals briefly with
this model (pp. 367-384).

2.4. The Krasnosel’skii-Pokrovskii hysteron. Krasnosel’skii and Pokrovskii use a
geometric approach to define their basic hysteresis operator, called a hysteron.

As a preliminary, they define a hysteresis operator called a "play." The one-dimen-
sional play can be thought of as a piston with plunger, of length 2h (Fig. 5).
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MATHEMATICAL MODELS FOR HYSTERESIS 99

FIG. 5

The output is the position of the center of the piston w(t), the input is the plunger po-
sition v(t); Fig. 6 shows the rules of motion. Notice that we always have Iw v < h.
This defines an active hysteresis operator with c -, fl +, and a single family
of interior curves.

W

FIG. 6

Note that for a given input v(.), the output w(.) Ph[v](t) of the play is

where Sh is the stop of Fig. 4. In fact we can give a direct formula for Ph as follows.
Define gh(v, w) min[v + h, max(v h, w)]. If the initial output value w0 w(to) is
given and if the input v(.) is monotone, then Ph[v; w0] (t) gh (v(t), Wo). If v(.) is piece-
wise monotone (alternatively, Brokate [11] uses a step function), with v(.) monotone on

1 [ti_l, t], i 1,..., n, then

Ph[v; w0](t) gh (v(t), w(ti-1)) for t

They then define a hysteron, F, as a map from piecewise monotone continuous input
functions v(.) to output functions w[v](.). The domain f(F) c R2 (the interior ofwhich
is our hysteresis region 7-t), which defines the input-output relation, is assumed defined
by three properties (refer to Fig. 7), which we present in slightly less general form than
in [36].

Property 1. The intersection K(vo) f(F) fq vo of f(F) with the vertical line
evo { (v, w)Iv v0} is a nonempty interval (perhaps a singleton).

Property 2. The endpoints of K(v), v R, define two continuous curves Oz(v) (left
endpoint) and OR(v) (right endpoint); when K(v) is a singleton the two curves coin-
cide. The domain of OR is some interval (-, aR); the domain of Oz is some interval
(bL, Cx), bL < aR.
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100 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

R(V)

FIG. 7

Property 3. Define f0(F) c f(F) as the finite open region bounded by L and n;
stratify this region by a given family of nonintersecting graphs of continuous functions
7r(.) such that the left endpoint of each graph lies on L and the right endpoint of each
graph lies on n. The remaining points of each graph do not intersect z t3 n.

The above defines an active hysteresis operatorwith a single family of interior curves.
They then show that any operator defined through the above properties extends uniquely
from the class of piecewise monotone inputs to a mapping defined for any continuous
input, and in fact admits a canonical representation in terms of generalized play. Let
f(v, z) be a given real-valued function of two real variables continuous on f(F) and
strictly monotone in z. Krasnosel’skii-Pokrovskii show that any hysteron can be repre-
sented in the form

(8) F[v](t) y(v(t),P(rz,rn)[v](t)),

where P(Fz, Fn) is a generalized play operator defined by the hysteresis diagram
in Fig. 8 (for piecewise monotone continuous inputs and then extended to continuous
inputs). This operator just replaces the 45 lines in Fig. 6 with functions Fz(.), Fn(.).

FIG. 8

More precisely, for a generalizedplay we are given two continuous nondecreasing func-
tions FL(V), Fn(v) defined on respective intervals (-, aL) and (bn, oc), bn < aL, with
FL (v) > Fn(v) for all bn < v < aL. The two curves are connected by horizontal lines,
and the output w(.) P(FL,Fn)[v](.) for continuous monotone input v(t), t > to, is
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MATHEMATICAL MODELS FOR HYSTERESIS 101

defined as
/,

(9) w(t)
max{w(to), rn[v(t)]} when v(t) is nondecreasing,

min{w(t0), Fz[v(t)]) when v(t) is nonincreasing.

This means that the motions follow the arrows as sketched in Fig. 8.
The shortcoming of the Krasnosel’skii-Pokrovskii hysteron is that it only allows a

single family of interior trajectories. To allow two families (as in Fig. 2), Krasnosel’skii
and Pokrovskii [36, p. 61] define aprehysteron as any deterministic, static, weakly correct
map ("transducer") which maps continuous piecewise monotone inputs v(.) into con-
tinuous outputs w(t) F[v](t). It is assumed that the initial state (v0, w0) at time to is
given and is "admissible" for F (intuitively, (v0, w0) is in the hysteresis domain 7-/or on
the boundary curves). Axiomatically, it is assumed that a certain domain { (v, w)} in R
is given---called the feasible states.

Deterministic. w(t) F[v](t), for t >_ to, is uniquely determined by (to, v(to), w(to))
(to, vo, wo) and v (.).
Static. (i) F[v(’)](t)[(to,vo,wo) F[v(.)](t- to + tl)l(tl,vo,wo) (t >_ to); and
(ii) If we replace the input v(t) by v(at + (1 a)to) with a > 0, then the output

w(t) is replaced by

w(at + (1- a)to) (t >_ to).

Here (to, v0, w0) specifies the initial conditions v(to) vo, w(to) wo.
Warning. In the monograph [36] of Krasnosel’skii-Pokrovskii, a static transducer

is defined on page 4; a completely different meaning is assigned this phrase in Part 5
(p. 212)--the definition in Part 5 is a very special case.

Weakly correct. If {Vn(’)}nCX=l and v.(.) are continuous monotone inputs, to < t <
tl with (Vn(to),W) and (v.(to),w.)admissible and if w, w., sup[to,ill [Vn(S)-
v.(s)l 0, then

F[vn(.)](tl)l(to,v(to),w, ) -+ F[v.(.)](t)l(to,,.(to),o. ).
Under extra conditions ("controllable" and "uniformly correct on harmonic inputs") a
given prehysteron will coincide with some hysteron on piecewise monotone continuous
inputs. However, since hysterons are based on a single family of curves, for magnetic
phenomena this situation will in general not occur.

The best example of a prehysteron is a sufficiently regular Duhem model, and Kras-
nosel’skii and Pokrovskii state (without proof) that prehysterons can be characterized by
the operator described in Fig. 2 with continuous curves.

3. Properties of the various models. In this section we present a sampling of the
mathematical properties of the hysteresis operators defined by the four models pre-
sented in 2.

3.1. Properties of the Duhem model. For the general Duhem model as described
by (4), the two families of curves in the (v, w) plane defined, respectively, by

dw
(a) fD(W, v),

(10) dv
dw

(b) d--- fI(w, v),
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102 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

represent the dashed and dotted curves in Fig. 2. (However, (4) only makes sense for
piecewise absolutely continuous inputs v(.).)

If the boundary curves hi, hD are absolutely continuous, if fD, fI are continuous,
differentiable with respect to w, and satisfy

(x u)[y(, ) y(u, )] < ()( ),
( u)[yo(, ) (,)] -()( u),

with AI, D nonnegative, then the Duhem hysteresis operator maps AC[to, tx] AC
[t0, t] continuously [36, m. 29.1, mma 30.1]. Here AC is the space of absolutely
continuous functions with norm lvll v(to) + t [v’(t)ldt. We can weaken these hy-
potheses by using differential inclusions involving a convefification of (10) [36, 27,
29.1].

Coleman and Hodgdon [13], [14], [26], [27] have eensively investigated the Duhem
model for magnetic hysteresis, using the equation

(11)
dB dH dH
dt [f(H)-B]+g(H),

with a > 0 constant. ey assume
(i) f(.) is piecewise smooth, monotone increasing, odd, with limH if(H) finite;
(ii) g(.) is piecewise continuous, even, with

lim g(H)= lim f’(H);

(iii) if(H) > g(H) > aeHf If’() g()l-d for all H > 0.
Here H is the applied magnetic field and B is the level of magnetization of the medium.
The solutions of (11) move on the cues defined by

(12)
dB
dH

a sgn()[f(H) B] + g(H),

and this can be solved explicitly for H piecewise monotone:

B f(H) + [B0 f(Ho)]e-(H-H) sgn

(13)
+--aH sgn fH[g(( ft(()]a((sgn )d(

for constant, B(Ho) Bo (sgn 1 as > 0 or < 0).
They show [14] that the conditions (i), (ii), (iii) are necessa and sufficient for a

model which will give a hysteresis diagram as in Fig: 2. If B(H; Ho, Bo) is the solution of
(12) with initialvalues (H0, B0), then theyshow: ifH > 0 (H < 0)andH + (-),
then

lim [B(H, Ho, Bo) f(H)] 0,
/-/----+- cx)

so the curve B f(H) is asymptotic to the upper and lower bounding curves hu, hL of
Fig. 2. In fact, they then obtain the upper and lower curves as

Bu(H)- lim Bu(H;Ho f(Ho))
Ho +oo

Jim BL(H;Ho,BL(H)
Ho--oo
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MATHEMATICAL MODELS FOR HYSTERESIS 103

where Bu(H; H0, f(Ho)) is defined for H < H0 as the solution of (12) with/:/ < 0
and initial state (H0, f(H0)). (Bz (H; H0, f(H0)) is defined for H > H0 as the solution
of (12) with/:/> 0.) In their context Bu(H; H0, f(Ho)) is the unloading curve (i.e., H
is decreasing from (H0, f(H0)); Bz(H; H0, f(Ho)) is the loading curve; Bu(t),Bz(H)
are the unloading, respectively, loading curves when the applied field is brought from
saturation (H , respectively,-) to value H.

They prove that any state in the interior of can be reached from (0, 0) by a tra-
jectory with at most one change of sign of/:/. They call the curves (pieces of Bu, Bz)
bounding 7-/the major loop, and they prove that no trajectory can leave . They define
aprimitive minor hysteresis loop as the trajectory of a periodic solution of (12) which lies
in 7-/and has a single change of sign of H. They do not explicitly prove that such loops
exist (the geometry makes it reasonably clear that they do), but they show that if they
exist, then

(a) The values Hm, HM, of min H, max H on the loop uniqu.ely define the loop;
(b) If n(t)oscillates: n(t2+a) nm, H(t2k) HM, H(t) # 0 for t # t,

then (H(t),B(t)) approaches the unique primitive loop with extreme values
(Hm, HM).

They demonstrate the usefulness of their model by provin some results on alter-
natin current demagnetization, on hysteresis loss, and on remanence.

Hoddon [25], [27] has applied the Duhem model, using specific functions f (.) and
g(.) first proposed by himself and Coleman. However, he first modifies the model by
postulating the overnin relation

(14)
dH
dt

dB dBIf(B)- HI + -d--(B),
i.e., he interchanges the roles of B and H. If we replace (B) by (B,/), then we can
model rate-dependent responses B.(t)" the value of B(t) depends not only on the history
of H(.) but also on the history of/3(t). This corresponds, for example, to the fact that if
a pulse H(.) is applied to a material, it takes some time for B(t) to reach an equilibrium.

The simplest model uses f(B) and (B) piecewise linear (always satisfying (i), (ii),
and (iii) above with H replaced by/3); a more sophisticated model uses

A1 tan A2B,
B- B*

](B) A tan(A2B*)+,

’-an(a2* +
B + B*

IBI < B*;

B> B*;

, B < -B*;

(]’(B) [1- A3 exp ( A, IB, )][7(B)
]’(B),

For rate dependence, he replaces Da and/or Aa, by C(/)Da, C(/)Aa, respectively.
He is able to choose parameters so as to accurately reproduce experimental results.

Babuika [2] has proved the existence of periodic input-output curves which are limit
cycles. Recall that he describes the input-output relation through (2):

vo(t) yl(,, ,,),+(t) + f=(,, v),_(t).

Assume the following.
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104 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

(1) fl and f2 are continuous and nonnegative on R x R.
(2) For w fixed, fl (respectively, f2) is strictly increasing (decreasing) in v except

for the possibility that fl (w, v) =_ 0 (f(w, v) 0) on one interval.
(3) For v fixed, fl (respectively, fz) is strictly decreasing (increasing) in w except

perhaps fl 0 (fz _= 0) on one interval.
(4) There exist D1 > 0, D > 0 such that

fl (W, V) --: 0 for w >_ 0; f2(w, V) D1 for w < -D2.

(5) There are no points (w, v) such that

fl (w, v) f2 (w, v) 0.

He shows that for a given continuously differentiable input v(.), 0 < t < T, and
a given initial output value w(0) w0, there is a unique solution of (2), w(t; v(.), wo)
defined on [0, T). If w0 E [-D, D1], then w(t; v(.), Wo) [-D, D1] for all t [0, T)
and w(t, v(.), w0) is a continuous function of w0.

Now suppose we are given a nonconstant periodic continuously differentiable input
vv (.), but do not specify w0. Then there exists a unique nonconstant periodic solution of
(2), wv(.), corresponding to v(.). If we choose wo so that the point (0, w0) does not lie
on the corresponding closed curve in the (v, w)-plane, then limt_ [w(t; Vp(.), w0)
wp(t)] 0, i.e., it is a "limit cycle," which may in fact coincide with the closed curve
{ (vp(t), wp(t))lO < t < T} after some time.

Bouc [8], [9] used the operator

w(t) :[v](t) #2v(t)+ F(Vtv(.))dO(v(s)) + f (v(t))

with f(0) (0) 0, f and locally Lipschitzian; F(u) is continuous, positive-valued,
and decreasing for u > 0; Vtv(.) is the total variation of v(.) on the interval (s, t), i.e.,

ft [(r)ldr for v(.) absolutely continuous. If F(.) is globally Lipschitzian, i.e., [F(ux)
F(ua)l < Mlu.- u[ for some M > 0 and all ul _> 0, u2 _> 0, then to each periodic
input vp (.) corresponds a unique periodic output .Wp (.). As with the results of Babuka,
the curve (vp(.), wp(.)) is a "limit cycle" for any initial condition not lying on it (keeping
the input vp(.) fixed).

Krasnosel’skii and Pokrovskii devote a major effort to extending the Duhem model
from piecewise monotone inputs to continuous inputs. They define the differential equa-
tion

dw
(4) d--- (w, v, )), to _< t <_ tl,

to be vibrocorrect if

(i) The equation has a unique solution w(t; to, zo, v(.)) defined on [to, tl] for any
zo in an appropriate domain and any v(.) C (to, tl);

(ii) For any v*(.) e C(to, tl) and any sequence {vn(.)} c Cl(to,tl) with
limn_ live(’) -v*(’)ll 0, the solutions w(t) =_ w(t; to, zo, v(.)) converge
uniformly to v* (.).

This is a particular case of extending an operator by continuity from a dense subset of a
Banach space B to all of/3. They prove that the Duhem hysteresis operator w
defined by the above equation is in general not vibrocorrect (it will be vibrocorrect under
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MATHEMATICAL MODELS FOR HYSTERESIS 105

reasonable smoothness hypotheses if is linear in/, which is the same as saying that
interior motions occur on a single family of curves).

Since the Duhem hysteresis operator is in general not vibrocorrect, Krasnosel’skii
and Pokrovskii suggest working with a modification of the limit process which defines
vibrocorrectness. It is also more convenient to work with the spaces of absolutely con-
tinuous functions (aC(to,tt))and functions of bounded variation (BV[to, tt])rather
than C[to, t1]. Let Var’ [f(.)] denote the variation of f(.) on [7-1,7-2]. They prove the
following interesting theorem on approximations [36, p. 301].

THEOREM 3.1. Let v(.) E AC(to, tl), {v,(.)} c BV(to, tl) with lim,__, sup[to,ill
Iv(t) v,(t) 0 and

lim Varo[V,(.)] Varo[U(.)] + (t),
n----+o

to <_t<_tl

with (.) E AC(to, tl). Then the outputs w, F[vn] defined by the Duhem operator (4)
converge uniformly to the unique solution of

+ yo( o, w(to) lim wn (to),

subject to the constraints hu(.), hL (’).
3.2. Properties ofthe Ishlinskii model. The basic continuity results for the Ishlinskii

operator F defined by (6) are given in Krasnosel’skii-Pokrovskii [36, 35-36]. As men-
tioned earlier this operator maps (?[to, x) into (?[to, o) if(h) >_ 0with (.) f h(h)dh
< , which we assume throughout this section. In fact, under these assumptions the op-
erator maps the space of Lipschitz continuous functions into itself.

Kreji [37], [39], Kreji and Lovicar [38] have established continuity results under
special alternative hypotheses, proved the existence of an inverse operator under certain
conditions, and studied partial differential equations with hysteresis term.

For example, Kreji assumes a weight function of the form (h) -"(h), where
q(.) C[0,) is such that "(h) <_ 0 for all h with "(0) < 0. He then shows that
F is a Lipschitz continuous map from C[0, 7-] into C[0, 7-], and in fact maps absolutely
continuous (AC) functions into AC functions. He also shows that the hysteresis loops of
his operator consist of parts of the graph of +q(.) when v(.) is increasing and decreasing,
respectively.

Kreji and Lovicar have shown that the Ishlinskii operator (6) is a continuous map
from WI,P(0, 7-) into itself for 1 < p < oc (in fact, Lipschitz continuous when p 1
under the minimal assumption (h) > 0, (.) LI(0, o)).

KrejSi has used his continuity results for F to prove existence theorems for partial
differential equations with periodic boundary conditions.

3.2.1. A connection between Ishlinskii and Preisach operators. Kreji [37] and
Kreji and Lovicar [38] have recently shown how to connect a large class of Preisach
operators with Ishlinskii operators. Let a Preisach operator be defined by

(15) Z[v] (t) K-olim -1 fO
KK Zo,h[v](t) Om(P,op h)

dp dh,

where the following hold.
(1) zp,h is a relay as sketched in Fig. l(a) with thresholds a p h,/ p + h"

+1 ifv(t,) p+ h;

-1 if V(tm) p- h,
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106 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

where t, max{r E [0, t]; v(r) p + h} (i.e., last threshold attained). If the set
of previous thresholds is empty, then Zp,h[V](t) Zp,h[v](O). The initial state is chosen
as d(v(O) p h) for p >_ 0 and as -d( v(0) + p- h) for p < 0, where J(r)
sgn r (J(0) +1).

(2) If m(p, h) R x [0, cx) -, R is C in p, odd in p with o,
-0-Y > 0, then

(16) Z[v](t) m(v(t) Sh[v](t), h)dh,

where the simple stop Sh is defined below Fig. 4, just before (6). The operator h[v]
v Sh[v] (which is just the play of Fig. 6) figures prominently in the analysis of the
Ishlinskii model, and (16) gives a representation of the Preisach operators described
by (15), which allows the application of techniques normally used to analyze Ishlinskii
operators. On the other hand, replacing Om/Oo in (15) by

#(p,h) p(qo-)"(h) with

concave, q(0) 0, 0 < ’(0+) < o, Kreji shows that in this case

-1
Z I+F-’(0+)

where I is the identity and F is the Ishlinskii operator generated by

3.3. Properties ofthe Preisaeh model. Recall that the Preisach model defined a hys-
teresis operator as a superposition F[v](t) f f #(a, fl),Z[v](t)dad with #(a,
0 and (usually) has bounded support. This formulation is quite appealing mathemati-
cally, since if #(a, fl) is bounded and measurable with bounded support, then F[v] is a
well-defined map on C(t0, t). A disadvantage of the Preisach model is the lack of di-
rect information about the actual hysteresis curves. There is, however, an interesting
geometric picture associated with the model, based on the (a, fl) plane.

Assume #(a, fl) has support in a triangle T (Fig. 9) defined by the lines fl a, fl,, c a,, and define, for a given continuous piecewise monotone input v(.) and time
t,

(17)
S+(t) {(a, fl) e T lZ[v](t 1},

S-(t) {(a,) e T Il[v](t =-1}.

Then the boundary L(t) +(t) fq -(t) is a descending "staircase" with vertices at
values of c or corresponding to a subset of previous local maxima or minima of the
input v(.) (Fig. 10).

The final link of L(t) is attached to c fl at (v(t), v(t)) by a vertical segment when
v(.) is decreasing at t, by a horizontal segment when v(.) is increasing at t. Thus we can
write

(18) w(t) F[v](t) / fs #(c, fl)ddfl- /f #(c, fl)dcdfl,
+(t) -(t)

and F[ is characterized to a large extent by the evolution in time of S+ (t), S- (t) and
the measure #(c,)dd.

In fact, Brokate in [11] describes a remarkable connection between the curve L(t)
in the (c, fl) plane (t to be thought of as a parameter, fixed for each curve) and the play
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MATHEMATICAL MODELS FOR HYSTERESIS 107

FIG. 9

)i/(v(t), v(t))

FI6. 10

operator Ph[v; w0] described in Fig. 6. If the curve L(t) is given by the parametrized
functional relation q 99(t, p) in rotated coordinates p (/3 c)/2, q (c +/3)/2,
then

99(t, p) Pp (v; 99(0, p)) (t).

We could also replace # in (18) by a Borel measure d#(a, fl). Integrals of the above
type are often called Everett integrals, since he was the first to systematically exploit the
representation (18). For more details on the history and use of these diagrams see the
excellent discussions in Atherton, Szpunar, and Szpunar [1], Brokate and Visintin [12],
and Brokate [1 1].

If the support of # is a singleton, then F[ is a relay hysteresis operator. If the
support of # is sufficiently "broad," then F[ can be an active hysteresis operator; the
continuity properties in the two cases are radically different. We will survey continuity
results below.

It is straightforward to show (Mayergoyz [43]) that the hysteresis operator (18) has
the following two properties as an operator from continuous piecewise monotone func-
tions into piecewise smooth functions: Assume that #(-,-) is piecewise continuous with
at most jump discontinuities on a set of measure zero.

Properly A (wiping out property). Whenever v(t) attains a local maximum, all ver-
tices on L(t) with a coordinate below this maximum are wiped out; dually, each local
minimum of v(.) wipes out all vertices on L(t) with fl-coordinates above this minimum.
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108 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

Property B (congruenceproperty) (Fig. 11). All primitive hysteresis loops correspond-
ing to the same extreme values of input are congruent. More explicitly, if it is the case
that v(t) oscillates between v, and vM, then for all initial states the resulting loops are
congruent.

W

Vm VM V

FIG. 11

Unfortunately, Property B is not valid in general for electromagnetic hysteresis.
Usually, the higher the initial value of output w(to) f[v(to)], the smaller the hysteresis
loop (the upper loop in Fig. 11). In practice it can take many cycles for a trajectory to sta-
bilize so as to be indistinguishable from a fixed periodic loop (see Kadar and Della Torre
[31]). Several authors have proposed models for circumventing this problem (see [62],
[3], [52], [43]). One idea is to replace #(c, 3) by either #(c,/, v(t)) or by/z(c, 3, (t))
(v(.) the input, w(.) the assumed differentiable output) and also to add to the integral a
term related to the output w(.) at the points where )(t) last changed sign. As we shall
discuss below, it is quite easy to see how to experimentally determine #(c,/) in the basic
Preisach model (7); it is not so clear in the more complex models.

To circumvent this particular problem, Mayergoyz has proposed using #0(c,/) +
#1 (o, fl)z/3(t) as an approximation to #(c, fl, (t)); this permits experimental determina-
tion of #0, #1. Sailing and Schulz [52] propose shifting the (finite) domain of the Everett
integrals (18) as the input v increases and decreases.

To model a given physical situation, the determination of #(c, fl) from experiment
is of critical importance and is carried out as follows. For various a, b (a < b) one uses
an input with v(0) -, v(.) increasing to the value b, then reversing and decreasing
to the value a.

W

FIG. 12

The output when v(tl) b is labelled Wb, and the subsequent output when v(t2) a is
labelled Wba. It is easy to see that
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MATHEMATICAL MODELS FOR HYSTERESIS 109

(19) Wb Wba
# #(x, y)dx dy,

(a,b)

where T(a,b) {(x,y)la < x <_ y, a <_ y < b} (Fig. 9). Thus 2#(a,b)
02(Wb Wba)/OaOb. Unfortunately, numerical differentiation is highly inaccurate,

so a better method is needed.
Barker et al. [3] and Doong and Mayergoyz [18] have shown that we can reduce

the numerical difficulties by noting that the function p(a, b) (Wb Wba)/2 generates
the output for any input (with successively decreasing (respectively, increasing) maxima
(respectively, minima)) by the following formula:

(20)
n

w(t) -p(a0, bl) + 2 9(ak, bk) p(ak, bk+l )],
k=l

where {ak}, {bk} are, respectively, increasing and decreasing sequences of the a (re-
spectively, b) coordinates of the corners on L(t), and n is the number of horizontal links
of L(t). Thus one can avoid numerical differentiation.

To further refine the Preisach model, Mayergoyz [43] suggests the more complex
model

(21)
f #(c,/3, v(t))PZ[v](t)dadtill(t)

+ A(c)[v](t)dc,

where [v](t) -1 if v(t) < ce, +1 otherwise, and ,k(-) is an unknown weight function
representing the reversible part of the process. This reversible part is related to physical
effects like "domain wall bowing" in which the elementary hysteresis domains change
shape.

Szpunar, Atherton, and Schonbachler [54] and Atherton et al. [1] have outlined
methods for overcoming various deficiencies in the Preisach model. If a material is mag-
netized with w(0) B(0) 0, v(0) H(0) 0 (B magnetization, H applied
field), then the initial susceptibility

dB
1(0,0) 0,

dH

whereas the Preisach model in general predicts a nonzero value. Also, the loops in Fig.
11 are in practice not always closed, contrary to the model. These two papers provide an
excellent overview of efforts by the engineering and physics community to develop more
accurate models, and raise a number of interesting mathematical questions.

Kadar and Della Torre [31], [32] propose a "product" model based on the represen-
tation

(22)
dw*

R(w*) 2Q(c,/3)dc,
dv

where w* is the reduced magnetisation W/Wsat, Wsat is the saturation value (the assumed
constant value of hu(v) in Fig. 1 for v large), vl is the input value at the last extremum
of v(.), Q is a Preisach-type weight function, Q(c,/3) Q(/3, c), R(w*) R(-w*). As
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110 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

an example they choose R(m) 1 m9, which gives noncongruent loops. This type of
model seems ripe for deeper mathematical analysis.

Wiesen and Charap [61], [62] propose a practical improvement ofthe Preisach model
which allows noncongruent loops and zero initial susceptibility. In practice one is inter-
ested in determining w(t) after v(.) has gone through a finite number of maxima and
minima (turning points). Let (v0, w0) be an initial state on either of hL(’), hu(.) and
/ {v0, v,..., vn} be the list of successive turning points. Then the change Aw as
v(.) goes from v to v(t) (v, v+] would ideally be a function D(, v, v(t)), which
depends on v, v(t) and the previous history/2 {v0, Vl,..., v_}. In contrast, the
standard Preisach model only uses the history since the last turning point v. In practice
Wiesen and Charap propose to approximate their ideal model by the following.

(1) Initially treating onlyfirst-order curvesthose extending from one turning point
to the next, using the standard Preisach model to compute Aw(vk, Vk+l) (Fig. 13).

V2 V3/ Vl

hL(v)

hu(v)

FIG. 13

For any list of turning points, these first-order approximations AW(Vk, vk+1) can be
determined experimentally. They propose two axioms to carry the model further:

(i) D(Z::, v, v*) -D(-Z:,-v, -v*);
(ii) D(, v, v*) -n(z: U {v}, v*, v).
The first axiom guarantees symmetry with respect to field reversal, the second guar-

antees closed loops when the applied field cycles between v and v*.
(2) To determine the change in magnetization as v moves from v to v2 in Fig. 13,

the standard Preisach model would ignore the history previous to v.
They instead define

i’fl)(Vl,V2.__) ] ito(-Vl,--v2)D(, Vl, V2) --GEZ-TVl)
and for the next phase,

n(.2, v2, v3 [ Aw(v2, -V-l i

The idea being that they scale the first-order (Preisach) computation by the factor
in brackets to account for magnetization history.

There presently does not exist any embedding of this scaling technique into the mod-
ified Preisach models described earlier.
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MATHEMATICAL MODELS FOR HYSTERESIS 111

Wiesen and Charap also develop a model based on a factorization of the measure
in the Everett integral. For the operator

fv(t) faW[vl(t) E(vl, v(t)) #(a, b)dbda,
dVl

they assume #(a, b) p(a)p(-b). (Biorci and Pescetti [6], [7] assume a more general
factorization.) Here v is the input value at the last change in monotonicity of the input
v(.). We can then write p(v) x/ q(v), q 0 for v a, the left intersection of hz
and hv, while q(/3) v/2hv(/3) at the right intersection point/3 (Fig. 2).

This leads to the exact formula

E[v, v(t)] [q(v(t)) q(vl)][q(-vl) q( v(t))],
which yields a quadratic equation for q(v) and the requirement that for q(v) to be real-
valued,

Ibm(Z)+ Will(t)+ W[-v](t)] + 1/4 > o.

(They assume a -/3 and Wsat. _= hL(v) hv(-v) for v I-a, a].)
Finally, we mention the work of Beardsley, Ortenburger, Potter, and Schmulian in

various combinations [47]-[49]. They propose a self-consistent numerical approach to
determining #(a,/3) which avoids numerical differentiation.

Continuity properties of the Preisach model. If we are dealing with a problem in-
volving an ordinary or partial differential equation with a hysteresis term, then the con-
tinuity properties (as a map between function spaces) of the hysteresis operator are im-
portant for proofs of existence, uniqueness, and qualitative properties. The principle
work on continuity properties has been carried out by Krasnosel’skii and collaborators
[36], Visintin, and Brokate and Visintin [57]-[60], [11], [12]. The recent definitive papers
of Brokate and Visintin [12] and Brokate [11] provide a good summary. We present a
sampling of their results. We use a Borel measure d# in place of #(c,/)da d/.

Let P {(c,/3) ]a <_/3}, and let tt be a finite Borel measure on P. We define

(23)

where/ is a simple hysteresis relay, defined by (1) with hL(v) --1, hu(v) =-- +1.
As before, we must choose/[v](t) when v(s) (a,/3) for 0 < s < t. Thus/
is really a mapping from continuous functions to a pair (w(-), 4-1), the latter entry re-

Jecting our choice of w(0) if v(0) (c,/3). To keep this clearly in mind we can write

F(v(.), r/(a,/3)), where r/is a measurable function from P into {-1, +1}, reflecting
our choice of output as +1 or -1 when v(0) (c,/3).

Here are some of the basic continuity results.
(1) If I l(e) 0 for every horizontal or vertical straight line g, then F maps C([0, T])

into C([0, T]) and is continuous in the uniform topology.
(2) Let p (/3 c)/2, q (c +/3)/2 be rotated coordinates in the (a,/3)-plane,

so P becomes {(p, q)lP > 0}. For a curve q (p) from XI/1 {ID C[0, oo),
has bounded support, and is Lipschitz continuous with constant < 1}, define

N(, e) {(p, q)lp >_ 0, (p)-e<q<(p)+
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112 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

Then F- C([0, T]) C([0, T]) is Lipschitz continuous if and only if there exists
a K such that for all e > 0,

sup I1 (N(, )) <_ K.

(3) Let # > 0 satisfy #(P) < with #(e) 0 for any vertical or horizontal line (in
(a, ) coordinates). Let A E R, > 0, and define R(A, A + ), R(A, A +) as
the horizontal, respectively, vertical strip defined by ), <_ a <_ A4-, respectively,
A _< fl _< A+. Define k() sup{#(R)[u a,/3; A E R}. Assume k() _< C
for all fl >_ 0. Then H maps the Sobolev space W1,8 (0, T) into itself for i _< s _<
c, and for s > i it is sequentially weak-star continuous.

The above results clearly give powerful tools for existence theorems for problems
involving ordinary or partial differential equations--for examples, see [57], [37], [34].

3.4. Properties ofthe Krasnosel’skii-Pokrovskii hysteron. Continuity properties of
the Krasnosel’skii-Pokrovskii hysteron described in Fig. 7 can be summarized as follows:

(a) F maps C([0, T]) into C([0, T]);
(b) For a point M in the hysteresis region 7-/let 7r(v, M) denote the curve from

Property 3 which passes through M.
Define the graph of possible outputs for monotone input v(.) with v(0) M

(24) T(v;M) 7r(v; M)

for v < vL(M),
for vL(M) <_ v <_ vR(M),
for v > vR(M),

where (Fig. 7) vL(M) and vR(M) are the v-coordinates of the endpoints of 7r(v; M). If
M (v0, w0), then we ask that T(v; (vo, wo)) satisfy a Lipschitz condition with respect
to (v0, w0, v) and assume that the functions z and R satisfy a Lipschitz condition.
Then F[v] satisfies a Lipschitz condition as a map from C([0, T]) into C([0, T]).

(c) Assume thatz and intersect only at aa and bz (Fig. 7), that they are locally
absolutely continuous, and for any sequence {M} c , M M , the
function 7r(v, Mn) satisfies a uniform Lipschitz condition.
We define a truncated version of T(v; M) (Fig. 14)

bL[VL(M)]
X(v, M) 7r(v; M)

(bR[vR(M)]

for v < vL(M),
for vL(M) <_ v <_ vR(M),
for vR(M) < v.

Then F is continuous from AC([0, T]) to AC([0, T]) if and only if for any sequence
{Mn} C 7-/, with M, --+ M E 7-/, the functions X(v; Mn) form a precompact set in
AC([tx, t2]) for any (tl, t2) C [0, T].

(d) Assume that 7r(v; M), L(v), R(v) are all H61der continuous with exponent
7. Then F is a continuous map from H into HZ for 0 < < aT, 0 < a < 1,
with respect to the H61der norm defined for H by

I1 11 Iv(t0)l + sup
riE[0,T] IT1 w2l

Krasnosel’skii and Pokrovskii prove that their hysteron is vibrocorrect under rea-
sonable conditions on z, and the family 7r(-).

D
ow

nl
oa

de
d 

08
/2

9/
14

 to
 1

28
.1

96
.1

32
.1

73
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MATHEMATICAL MODELS FOR HYSTERESIS 113

W

7 (v, M

(R(V)

FIG. 14

4. Vector models of hysteresis. There have been several suggestions for extending
hysteresis models beyond the scalar case (any or all of t, v(-) and w(.) vector-valued).
One clear and easy extension is the case when t E R, v(t) Rp, w[v(.)](t) Rq with
each component wj[ exhibiting hysteresis in its dependence on a single component
vu)(’).

Since Krasnosel’skii and Pokrovskii characterize their scalar active hysteresis model
as F[v](t) f(v(t),P(Fi, Fn)[v](t)) with P a eneralizd play (2.4), they extend this
characterization to hiher dimensions.

"For v(t) and w(t) both in R, for example, their idea is to replace the one-dimensional
piston by a two-dimensional convex body, in the simplest case a 2hl 2hu rectangle as
in Fi. 15.

w2(t)

Wl(t)

FIG. 15

The coordinates of the center of the rectangle are the output, and we can require

(t) Ph, [v](t), :(t) Ph.[v:](t),

i.e., you can only move the rectangle parallel to the axes, and you have slack in both
directions. This is exactly the situation described in paragraph 1 of this section in that
each component of w(.) exhibits hysteresis dependence on a single component of v(.).

A more general idea is to use a finite closed convex body Z c Rp. The play with
characteristic Z is a map P v(.) - w(.) with feasible states

(P) {(v, )1,* e R’, v- e z},
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114 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

with the output w defined as a solution of the differential equation (for v(.) E Ct, say)

(25) d_._w NtK(v(t) w(t)); v’(t)]dt

where K(y) is the normal cone to Z at y; N[K(y); v’(t)] is the vector in K(y) nearest
to v’ (t). (g() 0.)

They show that this defining differential equation has a solution for feasible initial
conditions and a piecewise smooth input. Deeper analysis is quite difficult and there are
many open questions, however, they are able to establish continuity results for the two
cases ofpolyhedral and smooth convex bodies. We refer the reader to Krasnosel’skii and
Pokrovskii [36, Chap. 4].

Wiesen and Charap [61] extend their factorization model (3.3) to a two-dimen-
sional model that uses scalar Preisach models in orthogonal directions, assuming these
models respond to both parallel and orthogonal inputs, i.e., 7[7(.)](t) is a sum of or-
thogonal componentsw [7(.)] (t), w2 [g(.)] (t), each ofwhich is a sum oftwo independent
Preisach functionals (Everett integrals), one involving onlyv (.), the other involving only
v2 (.). This approach seems to have good potential as a model for recording on tape.

Mayergoyz (see [43]) extended ideas of Stoner and Wohlfarth [53] to suggest the
two-dimensional model

(26) /[g ](t) s(O)goFo[go, v(.)](t)dO

where ’0 (cos 0, sin 0) and Fo [.] is a scalar Preisach hysteresis operator (7) varying with
O; s(O) is a (scalar) function to allow anisotropy. In three dimensions this model would
become

(27) /[ ](t) s(O, )o,Fo,[o,. g(.)](t)dO de,

and the extension to higher dimensions is clear. In [44] Mayergoyz showed how to an-
alyze the three-dimensional model using an irreducible representation of the rotation
group.

From an engineering point of view, of paramount importance is the identification
problem of finding the measure d#, given/[g ](t) for a large number of diverse inputs
(.). Mayergoyz and Friedman showed thatwhen s(O) 1 in the two-dimensional model,
then

(28) 2 cos0 d#(pl, p2) dO =_ H(b, a)
o (a,b,O) 2

where Wb, Wba were defined in the discussion leading to (19), while (a, b, 0) is the tri-
angle T(bcosO, acos0) defined as in Fig. 9, and as before 02H/ObOa d#(a, b). They
were able to convert this identification problem to an integral equation. First we write

So (is.(29) 2
bv/b2 x2 (,,,) 2

with .k a/b, x bcos. Then, defining N(x) x f fT(,) d#(p,p2), R(b)
bH(b, ,kb)/2, we have

(30) N(x)(b2 x2)-ll2dx R(b).
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MATHEMATICAL MODELS FOR HYSTERESIS 115

Using standard techniques, we obtain

N(b) 2dfoo
b

7r db
tR(t)(b2 t2)-/2dt’

so

(31) ffT d#-lf0b [ ]H(r, Ar)
d /2r -rH(r, Ar (b2-r2) dr.

(b,)b) 71"

By varying b and a (e.g., A) over a sufficiently wide range we can experimentally deter-
mine H, and then (30) will allow the determination of the measure d#.

Damlamian and Visintin in [15] proposed two different models for two-dimensional
vector hysteresis, and established a few basic properties. If0 (cos 0, sin 0), and g(.) E
C([0, T], Re), then an elementary hysteresis operator is defined by

whereF is a basic scalar operator defined, for example, below (6). This is exactly the
elementary operator in Mayergoyz’s formulation (26). In fact we have to include initial
values as discussed in the first section, but this is a simple addition. Then we can average
over (a,/) in P to get a Preisach operator, in fact exactly (26) with s(O) 1.

Their second model is based on a convex compact set K in R2. The threshold values
of an input are defined by

It {- e [0, t]lg(T) e OeK},

where OrelK is the relative boundary of K. If/t , then 7[g(.)](t) 7(0). If/t ,
then 7[g(.)](t) ProjK g(TM), where TM supx, T (i.e., the last threshold). Very
little is known of the properties or applications of this model.

There is a need for a systematic and complete vector hysteresis model, since ferro-
magnetic materials are generally two (e.g., recording tape) or three-dimensional. Such a
model needs to be both theoretically sound, i.e., able to predict and model the full range
of possible behavior, and also practical in the sense that, for example, the identification
problem can be numerically solved. The monograph of Mayergoyz [43] should provide
a benchmark for further work.

5. Periodic oscillations in systems with hysteresis. Electrical engineers are inter-
ested in the oscillatory behavior of circuits with hysteresis, a subject which turns out to
be very difficult. The response w(.) to a periodic input v(.) for the basic active or passive
hysteron as sketched in Figs. I and 2 is easily seen to be eventually periodic. However, a
circuit with a hysteresis element might be modelled by

Lm[y](t) F[y](t) + p(t)

with L, an ruth-order differential operator and p(t) a periodic forcing term. Also of
interest is the unforced case when p(t) is absent. In either case the prediction ofperiodic
oscillations is a difficult problem. We describe the small number of known results for
such problems.

Bouc [8], [9] proves the existence of periodic solutions to linear second-order equa-
tions involving the Duhem hysteresis operator (2.1, 3.1):

x"(t) + .T’[x(.)](t) p(t),
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116 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

p(t) periodic, using the Schauder fixed point theorem.
The Method ofHarmonic Balance is a standard method for predicting oscillations in

nonlinear circuits, and this heuristic method has been successful to some extent in pre-
dicting periodic solutions for systems with hysteresishowever, as Tsypkin has pointed
out, the method can make erroneous predictions in such systems [55]. In this approach,
we have a system

(32) (t) Az F[z(-)], z(t) e Rm,

with periodic boundary conditions z(0) z(T), with A an m m constant matrix, F a
nonlinear term (perhaps with hysteresis), and T unknown. We assume a "solution" of
the form

n

E e-ikwt(33) Zn(t) (akeikt+ ak ), ak {n
k=O

(a stands for the complex conjugate of ak), i.e., a truncated Fourier series with vector
coefficients, with w 27r/T. Putting this in (31), we obtain

(34) k(t) Az,(t) F[z,(.)].

Replacing z, and , by using (33), and replacing the function F[zn(.)] by its truncated
’ *e-ik’t with ck c(al, a,) (34) be-Fourier series F[z(.)] =0cei’t + ck

comes the equation of harmonic balance:

(35)
n n

e-ikwtE(ikwI Alakeikt + (-ikwI Alae-ikt E ckeikt + Ck
k=0 k=0

Equating coefficients of each term eikwt, we get a set of algebraic equations for the
unknown ak’S and w. If, however, this set of equations has a nontrivial solution {3

n0, 0, ,..., with -0 [[ > 0}, then under certain conditions we can assert that
the original system (31) has a periodic or "close to periodic" solution. One of the key
assumptions is that the linear circuit described by M[z] Az be a "low-pass filter,"
that is, the inverse ofM with periodic boundary conditions should sharply attenuate the
"tail" of any Fourier series input: the function

M-1 akeikat + ace-ikt
kk=n+l

should be small in an appropriate norm when compared with the norm of

E-ikwtE (akeikt + ak )"
k=n+l

For a full discussion of the heuristic use of the method see [56].
Bergen, Mees, and Franks in various combinations and with others have shown how

to justify the use of the method in nonlinear systems without hysteresis [4], [5], [45].
Braverman, Meerkov, and Pyatnitskii [10] have justified its use to predict "close-to-
periodic" oscillations in the presence of hysteresis under certain assumptions. Macki,
Nistri, and Zecca [40], [41] have given conditions under which the method can be used
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MATHEMATICAL MODELS FOR HYSTERESIS 117

tO predict periodic solutions in the presence of hysteresis. We now describe some of
these results.

Braverman, Meerkov, and Pyatnitskii treat a system of the form

(36) gc(t) Ax + b[F[Xl (.)](t) -+- c sinwt]
with x(t) E Rn; c and w _> 0 are given scalar constants; b E R is a constant vector,
A is a constant n n matrix, and xl (.) is the first component of x(.). They assume the
real-valued operator F[.] is a passive hysteresis operator (Fig. 2) without jumps at a and

They apply the harmonic balance method by assuming that the harmonic balance
equation (35) has a solution of the form

p

(37) 2(t) k sin(kt + 7k),
k=0

k a vector, p > i fixed. Their assumptions are:
(A1) n >_ 2 and A is a stable matrix (all eigenvalues have negative real part).
(A2) hz(.) and hv(.) in Fig. 2 satisfy a Lipschitz condition with constant L.
(A3) The linear system is a low-pass filter; they phrase this assumption in the lan-

guage of Laplace transforms as follows.
If we take the Laplace transform of (36), we can solve for the transform of x(.),

(38) c(s) W(s)bE,[F[Xl (.)] -+- csinwt],

and the first component can be written as 51 (s) l?V(s)[F[xl (.)] + csinwt], where
is a rational scalar function of s.

They then define the following numbers:

dfll>(s+1/2) I-r ITV(jv)ldv
d, (j)ldv

(39

Define also the constants

(40)

(41)

with j x/Z-, l?V l?vr(j), 1/’-- l’(j), etc.
(A4) They assume the following.
(a) If 2(t) satisfies inf 21 (t) > fl, then

(42) inf 21 (t) [/- el/2R(),/ +

(43)

(b) If 2(t) satisfies sup 21 (t) < a, then

sup 21(t) [0 ’l/2R)(ff)), o/if- x/2R(ff)];
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118 JACK W. MACKI, PAOLO NISTRI, AND PIETRO ZECCA

(c) If (t) satisfies inft 1 (t) ( fl ( O ( suPt Yl (t), then both (42) and (43)
hold. A function 1(’) satisfying (a) (respectively, (b),(c)) is called a "motion of the first
kind" (respectively, "second kind," "third kind"), and the assumption ensures that the
first component of any function in a neighborhood of the approximation (.) will pass
through the same thresholds as (.), in the same order.

THEOREM (Braverman, Meerkov, and Pyatnitskii [10]). Under the above assump-
tions, the system (36) has a "close to periodic" solution satisfying

(44) Ix(t)- (t)l < eX/ZR(w) fort E [t0,t0 + S log(I/el/2)].

They also consider the system (36) with a relay hysteresis operator as defined by Fig.
l(b) with hL(v) -M, hu(v) +M. In this case, with A stable, the only interesting
case is for solutions of the third kind (if eventually F[xl (t)] M, or -M, as happens
with motions of the first and second kind, the equation can be integrated). In this case,
let k(t) f_ l(jw)eJWtdw be the pulse transition function. Assume the following.

(A5) There exists t* > 0 such that sgn k(t) -1 for 0 < t < t*.
THEOREM (Braverman, Meerkov, and Pyatnitskii [10]). Assume (A1), (A4), and

(A5) hold for the relay hysteresis operator, and assume the method of harmonic balance
with p I yields a function y(t) sin(ff;t + "7). If L < and e as defined in (A3)
satisfies

{ (Tr 1 (L))e<min -L+xsin +ercsin awcos +arcsinal al

then (36) has a "close to peodic" solution z(.) satisfying I(t) (t)[ _< e/ for

0<t< [ lg(e-1/2) -1] 7r

21og[R(l+K)]

where

K=I+
2M ily(jw)ldw.

al(M COS( -- ) oo

Kamachkin [33] proves existence and uniqueness of a periodic solution for a forced
linear system with a hysteresis term appended; Miller, Michel, and Krenz [46] prove
existence for a forced nonlinear system with hysteresis.

Macki, Nistri, and Zecca [40], [41] have applied the method of harmonic balance to
systems with discontinuities and relay hysteresis as sketched in Fig. l(a). Their approach
is based in part on that developed by Bergen, Mees, and Franks [4], [5], [45] and their
collaborators. The first step is to normalize the unknown frequency a; in (32) to 27r by
writing z(t) x(27rt/T) so (32) becomes

(45) w&- Ax F[x](t), x(0) x(27r).

We invert (d/dt- A) with the periodic boundary condition to get an operator equation
on an appropriate space of periodic functions:

(46) x(t) T[x](t), T w A o F.

The associated harmonic balance equation is

(47) (Pnx)(t) Xn(t) PnTw[xn](t),
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MATHEMATICAL MODELS FOR HYSTERESIS 119

where Pnz is the projection of z(.) onto the first 2n + I terms of its (complex) Fourier
expansion. We then decompose (46) into a pair of equations:

(46’)
(a)

(b)

x.(t) P T [x. + **](t).
x*(t) (I- + x*](t).

where x* (I-P)x. Note that when z* 0, (46’) (a) is just the equation of harmonic
balance (47). We then create a homotopy between (46’) and (47) which, when combined
with a judicious use of fixed point theory and/or degree theory, allows one to argue that
(46’) has a solution if (47) has a solution. Because F[z] has discontinuities and/or relay
hysteresis, we must replace (4if) and (47) by differential inclusions because the disconti-
nuities can be treated by making F[z] a set-valued mapping (multifunction). This is easy
to see in the case when F[z] (t) is a nonlinear function of z(t) with a jump discontinuity
at z0 (Fig. 16).

F Ix]

Xo

FIG. 16

We then define the set-valued map/

/(z) convex hull of {F(z-), F(z+)}.
Under reasonable conditions on the multifunction T, which we will not repeat here

(see [41]), they prove that there exists a solution ofthe inclusion 5:(t) To[z(.)](t), hence
there exists a periodic solution of (45). They use both the theory of Leray-Schauder
degree and the Schauder fixed point theorem for multifunctions.

Krej,i proves the existence ofperiodic solutions topartial differential equations with
an Ishlinskii hysteresis term (see [37] and the references therein).

6. Hysteresis in biological problems. There are models in biology which involve
thresholds in such a way that a hysteresis operator is suggested. As an example, Hop-
pensteadt, J/iger, and P6ppe [29] describe the growth of bacteria in a petri dish by means
of a system of partial differential equations. We present a summary of their model. Let
B(r, t) denote the bacterial population at radius r, with B(r, 0) B0, 0 < r <_ R. A
drop of histidine solution is placed in the center of the dish, so if the histidine level is
denoted H(r, t), then H(r, O) H for 0 < r < R, H(r, 0) 0 for r > R. The histi-
dine diffuses, is taken up by the bacteria, and is also neutralized by acids produced as a
byproduct of cell growth. The bacteria are fixed on an agar gel which contains a buffer
,oncentration G(r, t) needed for growth.

The model they use is

OB OH OG
Ot aVB, Ot

DAH VB,
Ot

D’AG /VB,
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where Au 7 (r o, D’-7) is the Laplacian with circular symmetry; D and are diffusion
coefficients for histidine and buffer, respectively. The "viability" term V is a hysteresis
term representing the dependence of rate of growth of the bacterial population on the
pH of the acid-buffer mix. The bacteria stop growing (V 0) if the pH is less than a
level c, and will not start growing again unless the pH exceeds a larger value/3 (in which
case V 1) (Fig. 17 (a)).

V

(a)
pH G

FIG. 17. This is taken from [25].
(b)

In fact, the threshold of Fig. 17 (a) depends on adequate histidine, that is, there is
a similar threshold phenomenon involving histidine levels. The best way to incorporate
both thresholds is to forego the model in Fig. 17 (a) for a more complicated model (Fig.
17 (b)). The lower curve H 4(G) is the "off" curve and the upper curve H (G)
is the "on" curve. At a given fixed radius r, we track the curve (G(r,t),H(r,t)) as t
increases, using crossings of the "on" and "off" curves as hysteresis-type thresholds.

Experimentally (and numerically) it has been shown (see Hoppensteadt and Jager
[28]) that the growth pattern stabilizes in time as a set ofconcentric rings ofhigh B-values,
with relatively low values in between--a Liesegang phenomenon. There is at present no
theoretical derivation of this phenomenon from the model; it represents an interesting
open question. Visintin [60] and J/iger [30] have shown that the system has a positive
solution, but the prediction of Liesegang rings is still open.

As a general observation both Krasnosel’skii and Pokrovskii [36, 28.6] and Hop-
pensteadt, Jiger, and P6ppe note that a model involving a fold catastrophe (Fig. 18 (a))
can be replaced by a model involving hysteresis (Fig. 18 (b)). (In fact this observation
occurs, for example, in mechanics at least as early as the work of Prandtl [50], and also
in the work of Everett from the 1950s [21]-[25] in the context of adsorption hysteresis.)

W

.unstable

W

(a)
FIG. 18

(b)
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7. References. We make no pretense of listing every paper we have consulted. In
general we have listed the most important and the most recent papers by authors cited.
References to their other work are contained in the cited papers. We mention the useful
extensive bibliographies in [59], [36], [43]. In addition, Visintin has prepared a bibli-
ography with 110 entries, which appears as ’Tk Collection of References on Hysteresis,"
Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pub. No. 621, Pavia,
1988.

Acknowledgment. The authors express their appreciation to the referees for offer-
ing a substantial number of corrections and suggestions for improvements to previous
versions of this work.
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