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A THERMO-KINETIC VIEW OF ELASTIC STABILITY THEORY 

J. L. ERICKSEN 

Mechanics Department, The Johns Hopkins University, Baltimore, Maryland 

Abstract-It seems to be common to regard thermodynamic stability and mechanical stability as two distinct 
subjects. We here explore the possibility of combining the two in a conceptually clear manner, in a rather 
limited context. Primarily, we work within the contexts of nonlinear elasticity and thermoelasticity theories, 
exploring relations between energy criteria for stability and consequences of a kinetic definition of stability. 

1. PRELIMINARIES 

As A BASIS for our study, we first summarize common attributes of the more conventional 
continuum theories, including those mentioned above. In Cartesian tensor notation, 
there are the laws of conservation or balance of mass, linear momentum and momentum, 
which can be written as 

s ~ 

t2 
pdl’ =O, (1) 

fI 

t, and t, 2 t, being any two times. The integrands are considered as functions of time t 
and material coordinates X,, interpretable as coordinates of particles in a convenient 
reference configuration. For a given body, the reference configuration is a region R, 
independent of time, the region of integration in (l)-(3). On its boundary dR, dS, denotes 
the outward directed vector element of area. Further, p is the mass per unit reference 
volume, xi the present coordinates of a particle, ii its velocity, andfi the body force per 
unit mass. The tensor T, is the Piola-Kirchhoff stress, sometimes called engineering stress. 
Finally, in (3) square brackets denote “the antisymmetric part of”. These integral forms 
apply to most physically acceptable solutions, including what are commonly called stress 
waves and shock waves. 

Particularly in the theories covering thermal effects and to some extent in the rest, 
we use the energy equation 

_i 
p(s+iai*i)dVi:: =j::dt[diT”“,-Q,)dS,+ SPfiiidI’], (4) 

where E is internal energy per unit mass, Q, the heat flux vector, reckoned per unit area 
in the reference’configuration. We exclude the volume sources of heat sometimes included. 
Also, there is the Clausius-Duhem inequality 

I$qdVl;; +/::dt$+dS, 2 0, (5) 
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r] being entropy per unit mass, T absolute temperature. Thermoelasticity theories here 
considered are designed so that this inequality always holds for reasonably smooth 
solutions, though shock waves might sometimes be exceptional. 

To be definite, we concentrate on problems roughly corresponding to what is generally 
called stability under dead loading in elastic stability theory. Various other cases follow 
a similar pattern.* Consider a theory for which (lH5) apply rigorously. Consider a time 
independent solution, hereafter called the rest solution, defined in a region R, with 

T= F=const.>O, fi = fi in R, (6) 

Tk dS, = z dS on BR. (7) 

Henceforth, “hats” always denote quantities associated with it. Consider any other 
solution $2, called a disturbance, defined in R for times in some interval t3 I t I t,. 
For t > tl, we adjust the forces and surface temperature as follows: 

T= t .TtidS, = $dS on dR, t > t, (8) 

fi=AinR, t > t,. (9) 

Assume there is at least one solution Y, called a transient, with Y = ~2 for t, I t I t,, 
satisfying (8) and (9) for t > t,. For Y, we have from (4), (5), (8) and (9) 

(10) 

Now assume that, as t + co, Y converges to the rest solution. Bearing in mind that 
quantities bearing hats are independent of time, we obtain 

X - Sp~dI’I~- Sp[(T-~)rl+~~i”i]dVl~=,~ + $zUidS + SpfiuidV< 0, (11) 

where 

cp = E-TV (12) 

is the Helmholtz free energy per unit mass and 

Ui(Xa, t, = xi(xor, t, - IzitxJ (13) 

represents the displacement from the rest position. Here and in the following, we operate 
formally, assuming for example that 

lim 
s 

p~i~idV = lim pri,ti,dl/ = 0. 
1’ 

(14) r+m t+m 

In various ways, one can make precise the statement that “Y converges” so as to validate 
these operations. There are subtle points concerning the most appropriate definition 
which we choose not to investigate. 

* A comprehensive survey of the general theory of elastic stability is given by Truesdell and No11 [l, 9681. 
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It is of course conceivable that a given disturbance would admit no transient. If it 
does, and if every such continuation converges to the rest solution, we say that the rest 
solution is kinetically stable with respect to the disturbance 9. Equation (11) provides a 
necessary condition for this. It, or variations of it provide a basis for energy criteria used 
in elastic stability theory, and extensions of such criteria to more complex theories. 

Strictly speaking, we never have kinetic stability with respect to all disturbances. 
From (2), (8) and (9) we can infer that, for a transient to converge to the rest solution, 

from which 

s I puid~ = 0. 
1=f, (15) 

That is, at time tr, the’center of mass must be in its rest position. Intuitively, for a given 
material, it seems unlikely that a given rest solution will be stable with respect to all 
other disturbances; a sufficiently strong blow may well “destabilize” it. Practically, 
needs to be satisfied by a stability theory do vary, it being one thing to design a structure 
to withstand gentle breezes, quite another when it must survive hurricanes. Commonly, 
we select some set of disturbances, often a restricted set of infinitesimal disturbances, 
then seek to determine whether we have stability with respect to these. An alternative 
which might be more fruitful would involve seeking to characterize the set of disturbances 
with respect to which we do or do not have stability, leaving it to the designer to decide 
whether the destabilizing disturbances are likely to be encountered. We later comment 
on an approach to this problem which may be feasible in some cases. 

Thus far, we have said rather little about the theories to be used. These could incor- 
porate viscoelastic and thermal effects, at least as long as these fall within the framework 
discussed by Coleman [2]. For more detailed exploration, we turn to more special theories 
involving some simplifying features. 

2. THERMOELASTIC STABILITY 

We now turn to nonlinear thermoelasticity theory.* For simplicity, we neglect body 
forces. It would in fact be simpler, but unrealistic to assume they can be varied at will. 
We then have constitutive equations of the form 

CP = (P(xi,., 7’3 X,) = s- TV, (16) 

V = -?cpldT, (17) 

G = p%G&, (18) 

Q, = Qrh,,, TV Ty> X,), (19) 

QaT. 5 0. (20) 
The inequality (20), a consequence of (5), implies thatf 

Q, = 0 when TB = 0. (21) 
l For a modem development of this, cf. Coleman and No11 [3]. 
t Cf. Truesdell and No11 [I, 5961. 
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The governing differential equations are 

L,, = P2i, (22) 

PV = -Qw (23) 

In (16) and (19), xi,= can be replaced by any of the finite material strain measures, cp and 
Q, being insensitive to rigid rotations. 

In particular, for static deformations with T = p= const., such a theory reduces to 
a nonlinear elasticity theory for which W, the strain energy per unit reference volume, is 
given by 

w = W(Xi,a, Xa) = PdXi,a, T x,). (24) 

In the present context, disturbances and transients will be thermoelastic, but not neces- 
sarily elastic solutions. Rest solutions will of course be elastostatic in the obvious sense. 

As a general rule, these thermoelastic equations admit solutions to an initial value 
problem wherein we prescribe xi, ii and T as analytic functions of X, at a given time 
t,. To construct such a solution, we use the governing equations to calculate time deriva- 
tives of all orders of displacement and temperature, thereby obtaining a formal power 
series in the time for these functions of their arguments at values corresponding to the 
given data. Further, examination shows that we should have 

T &//aT # 0 (25) 

for the data given. We can then use the Cauchy-Kowalewski existence theorem to 
establish the fact that the formal power series converges to a solution, analytic in the 
time, for t sufficiently close to t,. This makes it plausible to assume, as we shall, that there 
are disturbances which produce essentially arbitrary smooth values of xi, ii and T at a 
given instant. Clearly, we should avoid singularities in the constitutive equations and 
places where (25) fails. On physical grounds, the left side of (25) might be expected to be 
positive, being proportional to the specific heat at constant deformation. However, one 
should be alert to the possibility that exceptions to (25) may well occur for special choices 
of cp such as obtained from polynomial approximations and these may well imply some 
type of instability, perhaps merely indicating that the range of applicability of the theory 
is exceeded. Reverting to our assumption, we can calculate initial surface tractions and 
surface temperature. In principle, the analytic solution supplies such data as long as it 
exists. Ordinarily this will disagree with that which we desire, given by (8). It may still be 
possible to continue the disturbance in time, in a non-analytic fashion, so as to satisfy (8). 
If the initial data disagrees with (8) any transient necessarily involves a rather strong 
singularity, perhaps involving shock waves, generated by the abrupt change in boundary 
conditions. As a matter of choice we can include or exclude such disturbances. If we 
exclude them, we must restrict initial data so that they satisfy 

ph dS, = z dS, T= $onaR, t = t,. (26) 

We do not expect that these restrictions will rule out strong singularities. Pragmatically, 
we do not know how to accomplish this. * It is rather clear that there are physically 
interesting instability phenomena correlating with this, scabbing and other fracture 

* For various linearized theories, Shield [4] presents conditions on initial data which guarantee that solutions 
have definite continuity properties, granted that they exist. 
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phenomena being reasonably well understood in terms elementary linear elastic wave 
analyses. Said differently, possible breakdowns in existence of relatively smooth solutions 
are likely to be significant.* It does not seem feasible to here explore these existence 
theoretic questions further, so we take a different tack. 

Clearly, a transient interrupted at any particular time, will serve as a disturbance. 
For stability with respect to the original disturbance, we must also have stability with 
respect to this disturbance, so (11) must apply to it. It seems worthwhile to explore to 

what extent (11) might be sufficient for stability. To this end, consider 

(27) 

as a functional of time dependent vector fields, Ui and scalars T - ? For this, we assume 
that the constitutive equations apply and that a fixed rest solution is given, but it is not 
essential that (22) and (23) be satisfied. The guiding principle is that Ui and T- pshould 
be in a function space which includes disturbances and transients which we wish to 
consider. We can limit them by imposing conditions such as are suggested by (15) and 
(26), for example. Suppose that 

X(t) I 0 (28) 

for the functions considered admissible. The value of X then serves as a rough measure 
of the departure from the rest solution, being more reliable if, in (28), the equality holds 
only when there is no departure. For linearized theories, it can be reduced to a quadratic 
integral which, when strictly positive, provides a natural Hilbert space norm. 

When we evaluate X for a thermoelastic solution satisfying (26), we have 

(29) 

=- ~~(QJ',)/T2 dV 2 0 

so X increases monotonically with time, generally being strictly increasing as long as T 
differs from its equilibrium value. As long as (28) applies, and to the extent that X is a 
satisfactory measure of departure from equilibrium, we thus tend to get closer to equilib- 
rium. There is no guarantee that the rest solution is attained. The solution could fail to 
exist after a finite time, possibly go into steady state isothermal oscillation about the 
rest solution. If we have selected the function space unwisely, we may leave it and find 
that (28) no longer applies, etc. In any event (28) has some pertinence with respect to the 
stability problem. In particular, if the strict form of (28) holds, we easily see that if the 
material is initially in the rest configuration and we maintain the boundary conditions 
at rest values, the material must stay at rest. In linearized theories, this amounts to the 

* It seems pertinent to note that the explanation of internal fracture of rubber proposed by Gent and 
Lindley [5] exploits the fact that a certain elastostatic problem has no solution if the load be too large. 
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statement that there is at most one solution of the initial-boundary value problem of the 
type here discussed. 

We further explore (ll), seeking to correlate it with an energy criterion for elastic 
stability. To this end, we introduce a finite Taylor expansion in 

Acp+(T- %I = Pb-(~-nw~~l 
= w++Kp(T- ?)2, 

where W is given by (29) and 

the temperature writing 

(30) 

K = 2p(T- p)-2[(p-(T- I@rp/D-- W/p] 

=- 
[ 
g+(T-T)g * 

1 
(31) 

the star denoting that this quantity is to be evaluated for some temperature between 
T and ? Thus (27)-(28) become 

X = J( @-W)dV+ $$aidS-t Sp[K(T- Q2+tiitii] dV I 0. (32) 

The first two terms are independent of T and tii. Thus if this holds for a sufficiently broad 

set of fields to permit us to vary these independently of ui, or if we may merely set T = 2 
tii = 0 as a possibility, we must have 

j$VV)dV+ j&dSI 0 (33) 

for all admissible displacements. Similarly, another condition is obtained by setting 
Ui = Iii = 0 and granting that T - $ can be varied arbitrarily, viz. 

K (T-F)2 = p[q+(T-p)&p/dT- W]u,=o r 0. (34) v,=o 

From (31) this clearly implies that 

-Fd2cj/6T2 = fd$dT> 0. (35) 

That is, for the rest solution, the specific heat at constant deformation must be non- 
negative. For sufficiently small disturbances, (33) and (34) imply (32). 

From what was said earlier concerning arbitrariness of data for the initial value prob- 
lem, it is not entirely unreasonable to require (33) to hold for essentially arbitrary smooth 
displacement fields. Then (33) becomes the criterion for elastic stability under dead load- 
ing proposed by Pearson [6]. For reasons discussed by Beatty [7], this criterion is in- 
appropriate for analyzing simple buckling problems; it is easily shown that; in cases of 
comprehensive loading, (32) necessarily fails when ui describes a suitably selected rigid 
rotation, no matter how small the load. Experimentally, we must take pains to exclude 
this “misalignment” type of disturbance if we hope to measure a buckling load for a 
beam which is at ah close to the Euler load. This provides a homely example of a case 
where we have stability with respect to some types of disturbance, not with respect to 
others. Beatty [7] proposes that, in such cases (33) be required to hold only for Ui which 
give rise to zero resultant moment, 

4 uli ‘& dS = 0. (36) 
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A comparable assumption in’beam theory is that the ends of the beam are pinned. The 
work of Holden [8] indicates how one can use this to obtain safe estimates of critical 
loads in terms of Kom’s constant, which depends only on the shape of the region. From 
this and Pearson’s analysis, which is likely to give an unsafe estimate, it seems likely 
that, for beams of sufficiently large length to width ratio, the three-dimensional theory 
probably gives a load somewhat smaller but of the same order of magnitude as the Euler 
load. An alternative constraint, suggested in (26), is that we require that the surface 
tractions corresponding to ui match those for the rest solution. This possibility is briefly 
discussed by Truesdell and No11 [l, 0 681, but no predictions have been obtained from it. 
A third alternative obtains as follows: pick one of the necessary conditions for stability, 
as here defined. To be definite, pick (33). Use the left-hand side to divide all displacement 
fields into two sets, according as the value of this functional is positive or not. From 
what has been said, those which make it positive clearly represent’disturbances with 
respect to which we do not have stability. For the remaining set we may have stability. 
It would of course be preferable to isolate those for which we definitely do have stability, 
but we lack useable criteria for this. In any event, this provides a basis for distinguishing 
at least some of the destabilizing disturbances. For estimating how the amplitude of a 
disturbance influences stability, we might proceed naively, writing 

Ui = &Vi (37) 

vi being a fixed vector field, E a parameter. Then the left side of (33) reduces to a function 
of E. If it is negative for small E, we can define a critical amplitude in the obvious manner. 
Since a small disturbance may produce a large transient, etc. such an estimate is trust- 
worthy only from the point of view of establishing some destabilizing disturbances. 
However, I do not know of a completely satisfactory way of treating such problems. 

There is some formal similarity between the inequality (11) and some proposed by 
Coleman and No11 [8], say their (15.6). Theirs have been considered more as restrictions 
on admissible constitutive equations, while we certainly envisage the possibility that ours 
are sometimes violated. I see no compelling physical reason to think that any such 
inequality holds universally. It is natural to expect that any such restriction will tend 
to exclude some instabilities which might otherwise be predicted. Various restrictions 
which have been considered are discussed by Truesdell and No11 [ 1, 0 521. 
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Rhm~-11 semble habitue1 de considerer la stabilite thermodynamique et la stabilite mecanique comme deux 
sujets distincts. Nous explorons ici la possibilite de combiner ces deux sujets d’une man&e absolument tclairee, 
dans un contexte limit?. Principalement, nous travaillons avec les contextes de I’elasticitt non-lineaire et les 
theories de thermotlasticite, explorant les relations entre les crittres d’energie de la stabilite et les consequences 
d’une definition cinttique de stabilitt. 

Zusammenfassung-Es scheint allgemein tiblich zu sein, Thermodynamische Stabihtat und Mechanische 
Stabilitlt als zwei ausdriicklich verschiedene Subjekte zu betrachten. Wir untersuchen hier die Moglichkeit, 
die beiden in einem klaren Begriff eines ziemlich beschrankten Zusammenhanges zu verbinden. Vorwiegend, wir 
arbeiten innerhalb des Begriffes von nichtlinearer Elastizitlt und thermoelatischen Theorien in der Untersuchung 
von Beziehungen zwischen Energie Kriterium fur Stabilitat und Folgen einer kinetischen Erkllrung det 
Stabilitat. 

Ahxpatc-KaxeTcfl 06bl'iHblM PaCCMBTpHBBTb TepMO~LiHBMHWZCKylO YCTOh4BCCTb 11 MCXBHHYeCKYlO 

YCTOiiYYABOCTb, KBK L,Be pB3JWNHbIX TCMbI. %,CCb Mb1 BCCJWl)'eM B03MOmHOCTb COCL,HHCHHB TOI- M 

npyrOr0 CXeMaTM'ieCKM IlCHblM cnoco6oi1 B nOBOJlbH0 OrpBHWIeHHOfi CBB3H. Mb1 pB60TaeM, I-JtBBHbIM 

o6pa3oM B IlpCnCJlBX TeOpllfi HCflHHeiiHOti CJtaCTMYHOCTM H TCpMOCJlaCTH'tHOCTM, HCCJICJQ'B OTHOlUCHWl 

MC~~yKPMTCPMCMCHCprHH~nByCTOiirHBOCTHHCnCnCTBMIIMH KHHeTH'(eCKOTOOflpCACflCHMIlYCTOii9MBOCTH. 


