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Abstract Due to its fundamental role for the consolidation of Maxwell’s equations, the

displacement current is one of the most important topics of any introductory course on

electromagnetism. Moreover, this episode is widely used by historians and philosophers of

science as a case study to investigate several issues (e.g. the theory–experiment relation-

ship). Despite the consensus among physics educators concerning the relevance of the

topic, there are many possible ways to interpret and justify the need for the displacement

current term. With the goal of understanding the didactical transposition of this topic more

deeply, we investigate three of its domains: (1) The historical development of Maxwell’s

reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and

(3) Four lectures devoted to introduce the topic in undergraduate level given by four

different professors. By reflecting on the differences between these three domains, sig-

nificant evidence for the knowledge transformation caused by the didactization of this

episode is provided. The main purpose of this comparative analysis is to assist physics

educators in developing an epistemological surveillance regarding the teaching and

learning of the displacement current.

1 Introduction

Maxwell’s insertion of the displacement current term in Ampère’s law is among the

greatest achievements of the human mind. It was a crucial step for the prediction of

electromagnetic waves that led to the unification of electromagnetism and optics. It can

also be seen as a major innovation in physics’ methods, since the term is deduced within a
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theoretical reasoning—instead of being the mathematical representation of observable

phenomena—and its empirical detection came 20 years later than its proposition.

Consequently, this episode constitutes an unlimited source for debates (many of them

controversial) among philosophers and historians of science, especially concerning the

relationship between observation and theory. According to Poincaré (1958), Maxwell’s

triumph was due to his profound sense of mathematical symmetry. Buchwald (1996) uses

this episode to highlight the intimate and mutual interplay between mathematics and

physics in the nineteenth century. The displacement current insertion is the first example

mentioned by Steiner (1998) to emphasize the crucial role played by ‘‘Pythagorean anal-

ogies’’—i.e. the analogies inexpressible in any other language but that of pure mathe-

matics—in the ‘‘cardinal discoveries of contemporary physics’’. Duhem (1991) cites the

displacement current episode to underline some of the differences between English and

Continental scientists concerning the role given to algebra in logical systems; just to

mention a few examples.

Due to its essential role for the consolidation of Maxwell’s equations, the teaching of

the displacement current is one of the most important topics of any course on electro-

magnetism. However, taking the educational perspective into account, there are many

possibilities for justifying its insertion, which emphasize different aspects and encompass

different views. Solving the charging capacitor problem, evoking symmetry arguments or

highlighting inconsistencies with the continuity equation are some of the possibilities to

justify the need for a change in Ampère’s law. In this work, we draw attention to some

implications of these different didactic approaches according to criteria like historical

accuracy, philosophical position, mathematical pre-requisites and learning goals.

This paper is divided in three sections that address three different spheres of the didactization

of this episode. It begins with a historical overview of Maxwell’s path to the displacement

current proposition. Then, several physics textbooks and articles are analyzed according to the

way the term is presented and the reasons for its insertion. With the goal of investigating these

differences more deeply and in authentic didactic situations, we analyze four physics lectures on

the displacement current term, which were given by four different lecturers in undergraduate

introductory level courses. By adopting a qualitative research approach, we intend to provide a

substantial analysis of the didactical transposition of this episode with the purpose of informing

physics educators in their task of teaching about the displacement current term.

2 Historical Overview

In this section we present a brief overview of Maxwell’s reasoning path that led to the

displacement current term. We follow the traditional analysis of his work in three major

papers, namely On Faraday’s Lines of Force (I), On Physical Lines of Force (II) and A

Dynamical Theory of the Electromagnetic Field (III),1 and his final synthesis A Treatise on

Electricity and Magnetism (IV). This review will help us to compare the didactic

approaches from a historical perspective and identify some problems related to the inad-

vertent mention to Maxwell’s thought in the textbooks and lectures analyzed. Due to the

fact that several studies have already investigated these works in detail (e.g. Whittaker

1910; Bork 1963; Bromberg 1968; Chalmers 1975; Buchwald 1988; Siegel 1991; Darrigol

2000), a succinct and focused presentation shall be enough for the purposes of this work.

1 All the citations from these papers (I, II and III) refer to The Scientific Papers of James Clerk Maxwell,
edited by W. D. Niven (1890).
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2.1 On Faraday’s Lines of Force (1855)

Maxwell’s main goal in I is to give a mathematical formulation of Faraday’s field con-

ception (I, p. 157–158). In order to accomplish that, he makes an extensive use of anal-

ogies, which is a major trait of Maxwell’s reasoning. In this particular work, the analogy

between electric/magnetic phenomena and the motion of an incompressible fluid, previ-

ously investigated by Thomson, is used as a powerful heuristic guide to describe Faraday’s

notion of lines of force mathematically. Instead of seeing the model as a faithful causal

description of reality, Maxwell stresses its precision and descriptive role:

By referring everything to the purely geometrical idea of the motion of an imaginary fluid, I hope to
attain generality and precision, and to avoid the dangers arising from a premature theory professing to
explain the cause of the phenomena. (I, p. 159).

The displacement current term is not mentioned in I. When expressing the magnetic

effect of an electric current, Maxwell presents the relation we know today as Ampère’s law

(J ¼ r�H) as follows:

[…] if we define the measure of an electric current to be the total intensity of magnetizing force in a
closed curve embracing it, we shall have

a ¼ db
dz
� dc

dy
b ¼ dc

dx
� da

dz
c ¼ da

dy
� db

dx

These equations2 enable us to deduce the distribution of the currents of electricity

whenever we know the values of a, b, c, the magnetic intensities (I, p. 194).

Thus, in I the only possible way to relate magnetic forces with electric effects is through

conduction currents. Nevertheless, a remark pointing an apparent limitation of these

equations is mentioned right afterwards:

We may observe that the above equations give by differentiation3

da

dx
þ db

dy
þ dc

dz
¼ 0

which is the equation of continuity for closed currents. Our investigations are therefore
for the present limited to closed currents; and we know little of the magnetic effects of
any currents which are not closed (I, p. 194–195, our emphasis).

For incompressible fluids, this result implies that there exist neither sources nor sinks in

any point in space. Using our modern concept of electricity that relates sources/sinks of

electric field lines with charges, this equation is incompatible with the principle of charge

conservation. Despite the difficulty in identifying Maxwell’s reasons for making this

comment, we notice that he was aware of the limitations of associating magnetic effects

only to conduction currents. In his following papers, he works on changing these equations

(Ampère’s law and continuity equation) by adding a term that we now call displacement

current. In II this term is presented by means of a mechanical interpretation.

2 Where a, b and c are the Cartesian components of the electric current (today we think in terms of the
current density vector) and a, b, c the Cartesian components of the magnetic force (magnetic field in actual
terms). When compared with the actual representation of the components of the curl of a vector field, the
different signs are due to a different orientation of the axes (x–west, z–south and y–upwards).
3 This is equivalent to our current notion of the divergence of a vector field.
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2.2 On Physical Lines of Force (1861)

The displacement current term appears for the first time in II. Maxwell’s goal in this paper

is to investigate the mechanical results of some states of tension and motion in an elastic

medium in order to, analogically, compare these results with the electric and magnetic

phenomena. Following Thomson’s work on the vortical nature of magnetism, Maxwell

expanded it to include electrostatics and optics, which enabled him to express the velocity

of light in terms of electromagnetic quantities (Darrigol 2000). Once again, without

regarding the mechanical model as a direct representation of reality, he stresses the heu-

ristic role of this formal analogy:

The author of this method of representation does not attempt to explain the origin of the observed
forces by the effects due to these strains in the elastic solid, but makes use of the mathematical
analogies of the two problems to assist the imagination in the study of both (II, p. 453, our
emphasis).

The origin of the displacement current term comes from a correlation between electric

conduction (conductors) and electric displacement (insulators) as it is explained in Max-

well’s following quotation:

Bodies which do not permit a current of electricity to flow through them are called insulators. But
though electricity does not flow through them, the electrical effects are propagated through them
[…] Here then we have two independent qualities of bodies, one by which they allow of the passage
of electricity through them, and the other by which they allow of electrical action being transmitted
through them without any electricity being allowed to pass. […] The effect of this action on the
whole dielectric mass is to produce a general displacement of the electricity in a certain
direction. This displacement does not amount to a current, because when it has attained a certain
value it remains constant, but it is the commencement of a current, and its variations constitute
currents in the positive or negative direction, according as the displacement is increasing or
diminishing (II, p. 490–491, our emphasis).

The formal association between electric conduction and displacement is justified since

they both represent some kind of ‘‘electric movement’’. Dynamically speaking, this electric

displacement must be related to an electric force, and this is mathematically expressed by

the equation R ¼ �4pE2h, where R is the electromotive force parallel to the z axis, E a

coefficient depending on the nature of the dielectric and h the electric displacement.

This more general view of electric movements, that considers the variation of electric

displacements dh
dt
¼ �4pE2 dR

dt

� �
as currents, must then appear in the equations that repre-

sent the relation between currents and magnetic forces. This is done (within the context the

elasticity theory) by adding a term (what we now call displacement current) in Ampère’s

law as follows:

[…] a variation of displacement is equivalent to a current, and this current must be taken into account
in equations (9) [Ampère’s law] and added to r. The three equations then become

p ¼ 1

4p
dc
dy
� db

dz
� 1

E2

dP

dt

� �
q ¼ 1

4p
da
dy
� dc

dx
� 1

E2

dQ

dt

� �
r ¼ 1

4p
db
dx
� da

dy
� 1

E2

dR

dt

� �

where p, q, r are the electric currents in the directions of x, y, and z; a, b, c are the

components of magnetic intensity; and P, Q, R are the electromotive forces [in the three

directions respectively4] (II, p. 496–497).

4 Note that now the axes are oriented according to the actual convention.

1640 R. Karam et al.

123



These equations could be expressed with the actual compact notation by

J ¼ r�H � oE
ot

. When comparing with I, it is evident that a term has been added and it is

possible to associate a variation of the electric field5 with magnetic effects. In III, we will

see that due to another way of presenting these equations, this interpretation is not as clear.

The limitation of closed currents pointed out in I is then eliminated by adding a term for

the time variation of the free electricity quantity e (II, p. 496):

Now if e be the quantity of free electricity in unit of volume, then the equation of continuity will be

dp

dx
þ dq

dy
þ dr

dz
þ de

dt
¼ 0

In fact, this continuity equation is very similar to the one we use today to express the

charge conservation (r:J þ oq
ot
¼ 0).

Maxwell’s most known achievement in this work is to suggest that ‘‘light consists in the

transverse undulations of the same medium which is the cause of electric and magnetic

phenomena’’ (II, p. 500). However, his reasons and methods to derive this conclusion are

sources for a rather controversial debate among historians of science. Nevertheless, the

importance of the electric displacement for this mechanical derivation of light lies in its

relation to the elasticity of the medium:

[…] when we find electromotive force producing electric displacement in a dielectric, and when we
find the dielectric recovering from its state of electric displacement with an equal electromotive
force, we cannot help regarding the phenomena as those of an elastic body, yielding to a
pressure, and recovering its form when the pressure is removed (II, p. 491–492, our emphasis).

In this sense, Maxwell supposed that a vibration of the medium could represent light.

More specifically, he considered transverse waves in the elastic medium, related its

coefficients k (elasticity) and m (density) with the electromagnetic constants e and l, and

showed that the velocity of these waves coincides with the ratio between the electro-

magnetic and electrostatic charge units. The value of this ratio, c, was already known from

experiments performed by Weber and Kohlrausch and seemed to agree with Fizeau’s value

for the speed of light, supporting Maxwell’s conclusion. However, as Duhem (1902)

pointed out, Maxwell had overlooked a factor of 2 in his deduction, which gave reasons for

historians to infer that he adjusted his calculations to make the velocity of the waves in the

elastic medium come out close to the observed velocity of light.6

2.3 A Dynamical Theory of the Electromagnetic Field (1864)

In general, this paper is written in a more precise and abstract way, since the mechanical

models found in I and II are replaced by the notion of electromagnetic field. In this sense,

the concrete images previously represented by drawings do not appear and the concise/

abstract language of equations prevails. Nevertheless, concerning his view on the way the

electric and magnetic effects propagate in space, Maxwell insists that one of the main

character of his investigations is to propose a field theory, as opposed to a theory that

conceives action at distance (III, p. 527).

5 The term field is not to be found in this work. In II Maxwell is talking about forces.
6 Different views can be found, for example, in Chalmers (1975) and Siegel (1991). A deeper discussion
about Maxwell’s theory of light is not among the goals of this work.
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Regarding the displacement current term, in this work Maxwell gives a broader defi-

nition of current, which encompasses the conduction current and the electric displacement,

being therefore related to the total motion of electricity. When presenting the twenty

general equations of the electromagnetic field containing twenty variables, the first is

exactly the relation between variations of the electrical displacement, the true conduction

and the total current (III, p. 554):

The variations of the electrical displacement [each component represented by a time derivative] must
be added to the currents p, q, r to get the total motion of electricity, which we may call p0;q0; r0; so that

p0 ¼ pþ df

dt
q0 ¼ qþ dg

dt
r0 ¼ r þ dh

dt

Then, this new concept of total current is incorporated in the equations that describe the

relation between electric movement (total current) and the circulation of magnetic field

(III, p. 557):

dc
dy
� db

dz
¼ 4pp0

da
dz
� dc

dx
¼ 4pq0

db
dx
� da

dy
¼ 4pr0

Maxwell called these the equations of Total Currents and it is worth noticing that, in

this form, the relation between a changing electric field and a circulating magnetic field

(using today’s terms) is no longer evident as it was in II.

In a chapter called Electromagnetic theory of light, Maxwell combined his field

equations to obtain a wave equation, in a similar way we are used to in today’s physics

lectures. As opposed to II, in III he reached a truly electromagnetic optics in which light

became a waving electromagnetic field (Darrigol 2000).

2.4 Treatise on Electromagnetism and Electricity (1873)7

In the Treatise Maxwell presents a comprehensive version of the theoretical investigations

on electromagnetism in an extremely didactic style, with its structure resembling a classic

physics textbook. When the general equations of the electromagnetic field are given

(Chapter IX, volume 2) Maxwell refers to the historical development of the displacement

current and presents his reasons for its proposal:

This equation [Ampère’s law] is true only if we take u, v, and w [current’s Cartesian components] as
the components of that electric flow which is due to the variation of electric displacement as well as
to true conduction. We have very little experimental evidence relating to the direct electro-
magnetic action of currents due to the variation of electric displacement in dielectrics, but the
extreme difficulty of reconciling the laws of electromagnetism with the existence of electric
currents which are not closed is one reason among many why we must admit the existence of
transient currents due to the variation of displacement. Their importance will be seen when we
come to the electromagnetic theory of light (IV, v. 2, p. 231, our emphasis).

This passage confirms that the displacement current term is added mainly due to the-

oretical (instead of empirical) considerations and that its crucial role is due to the possi-

bility of unifying optics and electromagnetism. This may explain why the displacement

current has been such a fruitful case study for both historians and philosophers of science.

Evidently, Maxwell has not only formalized the electromagnetic knowledge available in

his time—in the sense of merely translating what was already known into a mathematical

language—but he also gave original and crucial contributions to the theory. This involves

7 The page numbers for IV refer to Maxwell, J. C. (1878).
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the proposal of a broader notion of current encompassing the displacement current term.

Maxwell’s recognition of his own contribution concerning such amplification is made clear

in the following quotation (IV, p. 232–233, our emphasis):

We have now determined the relations of the principal quantities concerned in the phenomena
discovered by Ørsted, Ampère and Faraday. To connect these with the phenomena described in the
former parts of this treatise, some additional relations are necessary. […] One of the chief
peculiarities of this treatise is the doctrine which it asserts, that the true electric current G, that on
which the electromagnetic phenomena depend, is not the same thing as <, the current of conduction,
but that the time-variation of D, the electric displacement, must be taken into account in estimating
the total movement of electricity, so that we must write,

G ¼ <þ _D Equation of True Currentsð Þ

In IV we find Maxwell expressing the electromagnetic equations not only in terms of its

components, but also with the synthetic language of Hamilton’s quaternions (in this work,

vectors are denoted by German capital letters). What we learn today as the Ampère-

Maxwell law r� B ¼ l0J þ l0e0
oE
ot

� �
was in the Treatise written as 4pC ¼ VrH, where

C represent the true currents (conduction < ? displacement _D), H is the magnetic force

and Vr indicates that only the vector part of the result of the operation r is considered,

which represents our actual curl operator.

2.5 Educational Implications

This brief historical overview highlights the complexity of Maxwell’s reasoning and the

difficulty to trace the path that led him to the proposal of the displacement current.

Following Maxwell’s thought becomes even more difficult considering that we are trained

in the actual vector calculus notation (div, curl, grad) and that the abstract idea of a field

(electric and magnetic) propagating through empty space is introduced in the very

beginning of every course on electromagnetism.

Exactly due to the lack of clarity in defining and justifying the displacement current

term, many critical remarks are addressed to this topic. Among them, Larmor (cited in

Bromberg 1968) accuses Maxwell of ignoring the theory of dielectric polarization of

Poisson and Kelvin. Chalmers (1975, p. 49) even claims that Maxwell was driven by the

possibility of deducing a truly electromagnetic theory of light and ‘‘juggled with his theory

until he found the form of the displacement current that would enable him to derive a wave

equation’’. Duhem (1991, p. 79) also strongly criticizes Maxwell’s approach by asking:

‘‘How can we explain this almost complete absence of definition even when it is a question

of the most novel and most important elements, and this indifference to setting up the

equations for a physical theory?’’

Other authors defend Maxwell’s approach. Among them, Bromberg (1968) remarks that

the main difficulty for Maxwell’s successors to understand his thought lies in the fact that

he first introduced the displacement in the sense of Faraday’s dielectric polarization, but

then changed its original meaning in the course of his work, creating a totally new quantity.

Similarly, Siegel (1991) suggests that it is necessary to consider Maxwell’s work as a

whole in its British context instead of giving attention mainly to the signs in the equations.

The non-triviality of this episode—emphasized both in the historical overview and in

the controversial debates between historians and philosophers of science—highlights some

of the challenges faced by those who intend to teach about the displacement current in a

historically accurate way. In fact, it seems impossible to focus on the theoretical impli-

cations of this insertion and at the same time give a precise view of its historical
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development. From a didactical/pedagogical perspective, the choices made by lecturers are

strongly dependent on their learning goals. In the next section, we investigate the argu-

ments used by several textbooks and articles to justify the displacement current insertion.

Both the historical overview and the philosophical debates presented in this section will

provide us with a critical lens to analyze these different approaches.

3 Didactic Transpositions in textbooks

Although textbooks usually have an important role in all educational areas, they play a

distinguished one in science. Since the early nineteenth century, collections of consensual

knowledge were organized with the purpose of training future scientists. The dissemination

of these collections was responsible for a gradual extinction of the educational use of

original texts. Kuhn remarks that the emergence of science textbooks is actually a con-

sequence of epistemological peculiarities of the scientific knowledge. According to him,

the very existence of textbooks reinforces the paradigmatic character of the experimental

sciences. In Kuhn’s words:

Perhaps the most striking feature of scientific education is that, to an extent quite unknown in other
creative fields, it is conducted through textbooks, works written especially for students. […]
Apparently scientists agree about what it is that every student of the field must know. That is why, in
the design of a pre-professional curriculum, they can use textbooks instead of eclectic samples of
research. (Kuhn 1963, p. 350–51)

This consensus among scientists (materialized in textbooks) does not allow, however, to

regard textbooks as faithful representatives of their research field. As much as they try to

remain faithful to the original context, these books are didactic productions inserted in a

specific educational project. This means that particular features and requirements of this

education system must be taken into account when compared with the original episte-

mological context of the scientific knowledge. Chevallard (1991) clarifies this point by

arguing that ‘‘school knowledge’’ is the result of a process he calls ‘‘didactic transposi-

tion’’, which transforms the academic/scientific knowledge (savoir savant) in a didactized

one (savoir a enseignant).

Far from being an absolute critic, the differentiation between school and scientific

knowledge should be seen as a warning against a robust consensus.8 Unsurprisingly, this

transformation is often responsible for mistakes, over simplifications and distortions. This

becomes especially problematic when textbooks make ‘‘attempts’’ to contextualize their

approach historically. The inevitable tension between introducing the scientific paradigm

and inserting historical remarks leads not just to a superficial, but mainly to an incorrect

historical presentation. Whitaker calls this kind of approach quasi-history9 and describes it

as follows:

[quasi-history is] a result of the large numbers of books by authors who have felt the need to enliven
their account of this [as well as others] episode[s] with a little historical background, but have in fact

8 According to Chevallard (2007, p. 11), the admission of this very transformation of knowledge can be a
traumatic process for the ones involved in teaching. In his words: ‘‘Knowledge is not a given […] it is built
up, and transformed, and—such was the keyword—transposed. The wound was twofold. For some people,
especially for teachers, the statement was a threat to the unconscious belief that the world of knowledge was
homogeneous, isotropic and indefinitely unblemished—therefore unquestionable. To others, […] who
regarded themselves as the true masters of knowledge [scholars], to them, the transposition principle came
as a repudiation of their as yet unchallenged authority.
9 See also the term pseudo-history in Allchin (2004).
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rewritten the history so that it fits in step by step with the physics. Because the description of the
physics is logical and orderly, the impression is necessarily given that this was also the way in which
the ideas emerged historically (Whitaker 1979, p. 109, our emphasis).

The literature is vast with analysis of similar problems in textbooks and there is no need for

a review here. For the following analysis, it is important to be aware not only of the process,

but also of some of the consequences of a didactic transposition. As we will see, in the

didactization (transformation) of the displacement current episode, several historical aspects

(presented in Sect. 2) are not considered. Based on the analysis of textbooks and articles,10 in

this section we present a synthesis of the different lines of reasoning used to justify the need

for the displacement current term and discuss some of their educational implications.

3.1 The Charging Capacitor Problem

The most common way to justify the need for the displacement current insertion is the

charging (or discharging) capacitor problem (see Fig. 1). The problem is normally

approached to show a contradiction in Ampère’s law, since the application of the law gives

different results for the circulation of magnetic field (
H

B � dl), depending on the choice of

the surface bounded by the same path (
H

B � dl ¼ l0I for S1 and
H

B � dl ¼ 0 for S2). The

situation can also be seen as in disagreement with Kirchhoff’s current law, since there

would be current flowing before (and after) the capacitor plates, but not between them. In a

more general way, the charging capacitor problem is used as an exemplar to highlight the

incompleteness of Ampère’s law in dynamic situations.

In introductory level textbooks, Maxwell’s equations are commonly presented within

the integral formalism, which also seems to constrain the possibilities of explaining the

need for the displacement current term. Possibly related to this limitation, references to

charge conservation, when found, are not fully exploited. Another possible approach is to

Fig. 1 Charging capacitor
(public domain)

10 The sample of the textbooks consists mainly of traditional and well established collections (e.g. Halliday
et al. 2011; Tipler 1982), the ones used as references in some of the lectures analyzed (Giancoli 2000;
Serway and Jerwey 2008) as well as other famous ‘‘unorthodox’’ approaches such as Feynman et al. (1964)
and Purcell (1985). The articles mentioned are based on a literature review we conducted (mainly in the
AJP) of papers where alternative ways to justify the displacement current insertion are presented.
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insert the displacement current as an ad hoc hypothesis and treat the charging capacitor as

an application. In this case, its validity is established by its success in giving agreement to

previously observed electromagnetic phenomena and in predicting new phenomena sub-

sequently checked by experimental observation.

Due to the possibility of justifying the insertion of the displacement current term in a

clear and rational way (and also within the integral formalism), the charging capacitor

problem has proved irresistible11 for many physics textbooks and is strongly established in

the didactic transpositions of the displacement current. Nevertheless, when we look for this

example in Maxwell’s work, we do not find such an important role in his argumentation,

but a more speculative result of an empirical situation where the displacement current

would be applied. In the Treatise we found the following remark:

The current produces magnetic phenomena in its neighborhood. If any closed curve be drawn, and
the line-integral of the magnetic force taken completely round it, then, if the closed curve is not
linked with the circuit, the line-integral is zero, but if it is linked with the circuit, so that the current
i flows through the closed curve, the line-integral is 4pi […] Note—The line-integral 4pi depends
solely on the quantity of the current, and not on any other thing whatever. It does not depend on the
nature of the conductor through which the current is passing, as, for instance, whether it be a metal or
an electrolyte, or an imperfect conductor. We have reason for believing that even when there is no
proper conduction, but merely a variation of electric displacement, as in the glass of a Leyden
jar during charge or discharge, the magnetic effect of the electric movement is precisely the
same. (IV, v. 2, p. 142–144, our emphasis).

The hypothetical character of Maxwell’s statement about the charging capacitor prob-

lem—stressed in the sentence ‘‘we have reason to believe’’—shows that this conclusion is

plausible within the theoretical framework of the Treatise, but implies that an experimental

confirmation of this magnetic effect should be pursuit.

Experiments that aimed at providing evidence for the existence of the displacement

current by measuring the magnetic effects between the plates of a charging (or discharging)

capacitor were indeed made.12 The technical difficulties related to the measurement of such

a negligible effect are normally surmounted by using materials with high dielectric con-

stants and inserting a toroidal coil between the capacitor plates.

Although the results of these experiments have been successfully reproduced, some

authors criticized their interpretation as an evidence for the existence of the displacement

current. The main problem lies on the causal assertion that the displacement current is

responsible for the magnetic field. French (2000) defends that this interpretation is

incorrect, since the magnetic field inside the plates could be ascribed entirely to conduction

currents if one applies Biot-Savart’s law and takes the fringing field effects into account.13

The situation is much more complex if a dielectric is inserted between the plates due to the

oscillatory movement of charges under the application of an alternating electric field.

3.2 Charge Conservation

Using the differential formulation of Maxwell’s equations, some textbooks (e.g. Feynman

et al. 1964; Demtröder 2009) relate the insertion of the displacement current term with an

11 This expression was used by Holton (1969) to justify the didactic use of the Micheslon-Morley exper-
iment in the teaching of Special Relativity, despite its dispensable role for Einstein’s theory.
12 The first record of such experiment goes back to 1899 in the report ‘‘On the Magnetic Action of
Displacement-currents in a Dielectric’’ written by Silvanus P. Thomson. Similar experiments are found in
(Meissner 1964; Carver and Rajhel 1974; Rizotto 1999).
13 The situation is discussed in detail in Purcell (1985, pp. 328–330) and in French and Tessman (1963).
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attempt to make Ampère’s law coherent with charge conservation (expressed in the con-

tinuity equation) and with Gauss’s law. This line of argumentation is used in Feynman’s

lectures as follows:

He [Maxwell] then noticed that there was something strange about Eq. (18.1) r� B ¼ j
e0c2

h i
. If one

takes the divergence of this equation, the left-hand side will be zero, because the divergence of a curl
is always zero. So this equation requires that the divergence of j also be zero. But if the divergence of
j is zero, then the total flux of current out of any closed surface is also zero.
The flux of current from a closed surface is the decrease of the charge inside the surface. This
certainly cannot in general be zero because we know that charges can be moved from one place to

another. The equation r � j ¼ � oq
ot

has, in fact, been almost our definition of j. This equation

expresses the very fundamental law that electric charge is conserved—any flow of charge must come
from some supply. Maxwell appreciated this difficulty and proposed that it could be avoided by

adding the term oE
ot

to the right-hand side of Eq. (18.1); he then got c2r� B ¼ j
e0
þ oE

ot
(Feynman et al.

1964, 18-1).14

In other words, the main argument is that since the term r� B is ‘‘divergence free’’ by

virtue of its mathematical structure (the divergence of the curl is always zero), this means

that Ampère’s law is only applicable to closed circuits. It seems easier to make this

inconsistency plausible within the vector differential formalism.15 This highlights the

difficulties faced by didactic approaches that present only the integral formulation if they

intend to mention Maxwell’s concern with the continuity equation. According to Siegel

(1991) this problem is indeed in the center of Maxwell’s reasons for inserting the dis-

placement current:

Maxwell did basically what the standard account says he did: He modified Ampère’s law in order to
generalize it to the open circuit, in a manner consistent with the equation of continuity and Cou-
lomb’s law [we have referred to r � E ¼ q

e0
as Gauss’s law]. His goal in that, however, was not a

complete and consistent set of electromagnetic equations for its own sake, but rather a complete and
consistent mechanical model of the electromagnetic field. (Siegel 1991, p. 97).

If consistency with the continuity equation (charge conservation) is such a fundamental

principle, then it seems plausible to consider the possibility of deriving the displacement

current through an inverted reasoning, i.e. by imposing its validity and obtaining the oE=ot

term as a consequence. This is the line of reasoning used by Mello (1972) to obtain the

displacement current term from Biot-Savart’s law. Although the formalism needed to

follow this derivation is normally beyond introductory level courses, the main idea behind

it seems to be pedagogically relevant also for the students’ first contact with the electro-

magnetic theory.

Many elementary textbooks begin the study of magnetostatics with Biot-Savart’s law,

similarly to Coulomb’s law in electrostatics. There is indeed an analogy between these

laws (Coulomb and Biot-Savart), since the fields are inversely proportional to r2 and

directly proportional to their sources (Weber and Macomb 1989). Moreover, in electro-

statics chapters it is very common to find Coulomb’s law being derived from Gauss’s law

(or the contrary, Gauss’s law from Coulomb’s), which stresses the equivalence between

14 It is important to mention that Feynman clearly states that Maxwell did not reason this way. The
sequence of this passage shows Feynman’s careful position concerning assertions about Maxwell’s thought:
‘‘It was not yet customary in Maxwell’s time to think in terms of abstract fields. Maxwell discussed his ideas
in terms of a model in which the vacuum was like an elastic solid. He also tried to explain the meaning of his
new theory in terms of the mechanical model’’.
15 Gauthier (1983) proposes a method that exploits the general implications of electric charge conservation
and is formulated in the integral representation of Maxwell’s equations. However, we were not able to find
textbooks using this method.
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these two laws (at least for static situations). Preserving this analogical reasoning, it is

plausible to expect some sort of equivalence between Ampère’s and Biot-Savart’s law.

Considering Biot-Savart’s law as16:

B ¼ l0

4p

Z

C

Idl0 � r̂

r2
¼ l0

4p

Z

V

J r~0ð Þ � r̂

r2
dV 0:

The first term is applied to a steady line current whereas the second one to a volume

current. In order to obtain Ampère’s law from it, the curl operator is applied on both sides

of the equation (volume integral) and, after some manipulation,17 the following result is

obtained:

r� B ¼ l0

4p
r�

Z

V

J r~0ð Þ � r̂

r2
dV 0 ¼ l0J r~ð Þ

which is the expression of Ampère’s law, the analog to Gauss’ law in electrostatics. In the

process of this derivation, the physical assumption of steady-state magnetic phenomena

(r � J ¼ 0) has to be made. However, what Mello (1972) shows in his paper is that if this

assumption is not made and instead the charge conservation is imposed (r � J ¼ �oq=ot),

then the displacement current term arises from the derivation.

The other way around, i.e. the derivation of Biot-Savart’s from Ampère’s law, is made

possible by a mathematical way of representing the magnetic field using the vector

potential formalism. Considering the non-existence of magnetic poles (r � B ¼ 0) one can

write

B ¼ r� A

where A is the vector potential. Then, substituting in Ampère’s law (differential form)

r�r� A ¼ r r � Að Þ � r2A ¼ l0J:

To solve this differential equation one needs to choose a r � A dependence, the simplest

choice being r � A ¼ 0.18 Then, the solution becomes

A ¼ l0

4p
J

r
dV 0

whose rotational is exactly Biot-Savart’s expression. Most textbooks that introduce the

vector potential contain this demonstration.

In another attempt to underline the relation between Biot-Savart’s and Ampère’s laws,

Weber and Macomb (1989) investigated different solutions for the following problem:

Suppose we have two point charges of equal magnitude but opposite charge placed on the z axis
at ± L/2. Find the value of magnetic field B at any point in the midplane defined by z = 0 due to a
steady current between the two point charges (Tipler 1982, p. 750–751).

16 r~ represents the distance between the wire element and the point at which the field is calculated (given

that r~0 ¼ 0) and dl0 is a vector whose magnitude is the length of the differential element of the wire and
whose direction is equal to the conventional current.
17 A detailed presentation can be found in Greiner (1998).
18 The differential equation describing a propagation of the vector potential was derived by Maxwell, who
defined A as electrokinetic momentum and his choice was r � A ¼ 0; called afterwards Coulomb’s gauge
(Buchwald 1988, p. 103).
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First, the authors applied Ampère-Maxwell’s law (i.e. with the displacement current

term) together with Coulomb’s law to carry out the calculation of B. Next, they used Biot-

Savart’s law for the same purpose and noted that nothing but conduction current was

needed to obtain the same solution. In their conclusion, the authors highlight the impor-

tance of emphasizing the equivalence between the two laws at the introductory level, to

assure students that both laws embody the same physics.

Before we present another common way of justifying the displacement current, an

important remark is needed. The overall argument used in the previous subsections imply

the idea that Maxwell modified Ampère’s law to accommodate the charging capacitor

problem (3.1) and/or to make it coherent with the continuity equation (3.2). From a

historical perspective, this is however untrue, since Ampère’s law (in the way proposed by

Ampère) was in fact a force law between two circuits transporting electric currents

(Whittaker 1910). In other words, Ampère’s theory was developed within a complete

different theoretical framework—based on the idea of action at a distance—whereas

Maxwell follows Faraday’s tradition and proposes a field theory. According to Buchwald

(1988), this is in fact Maxwell’s greatest contribution to modern physics:

Modern theory seeks unified explanations in an unmodifiable set of field equations coupled through
electron motion to intricate microphysical models. Maxwellian theory sought unity through a highly
plastic set of field equations coupled to Hamilton’s principle […]. In modern theory, charge is the
source of the electric field, and current is a source of the magnetic field. In Maxwellian theory, charge
is produced by electric field; current, in the usual sense of rate of change of charge over time, is only
indirectly related to the magnetic field (Buchwald 1988, p. 23).

The fundamental step toward the displacement current was taken in the context of

Maxwell’s attempt to link the equations related to electric currents with the electrostatics

ones, through the continuity equation. Maxwell’s interpretation of electromagnetic phe-

nomena established a chain of parallel linkages between the mechanical and electromag-

netic levels that provided a connection, in the theory, between magnetic and electrical

fields, which were understood as fundamental. Charges and currents belonged to another

sort of tradition, the Continental one, which regarded these concepts as primary. According

to Siegel (1991), Lorentz constructed a dualistic theory giving charges, currents and fields

the same importance.

3.3 Symmetry Arguments

In the search for plausible reasons for Maxwell’s proposal of the displacement current

term, some authors claim the need for symmetry between E and B in the curl equations.

The argument is presented in two textbooks as follows:

In Chapter 30 you saw that a changing magnetic flux induces an electric field, and we ended up with
Faraday’s law of induction in the form

I
E � ds ¼ � d/B

dt
ðFaraday’s law of inductionÞ

Here, E is the electric field induced along a closed loop by the changing magnetic flux /B encircled
by that loop. Because symmetry is often so powerful in physics, we should be tempted to ask
whether induction can occur in the opposite sense; that is, can a changing electric flux induce a
magnetic field? (Halliday et al. 2011, p. 863, our emphasis).

Is it possible that magnetic fields could be produced in another way as well? For if a changing
magnetic field produces an electric field, as discussed in Section 29–7, then perhaps the reverse
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might be true as well: that a changing electric field will produce a magnetic field. If this were true, it
would signify a beautiful symmetry in nature. (Giancoli 2000, p. 788, our emphasis).

Despite the eventual pedagogical usefulness of this argument, it is very unlikely that

symmetry considerations played an important role in Maxwell’s insertion of the dis-

placement current. According to Bork (1963), it was Oliver Heaviside the first physicist to

explicitly refer to the symmetry of Maxwell’s equations. Moreover, if symmetry were to

play such an important role, the same claim would have to be demanded from Gauss’s

electric and magnetic laws. However, the textbook authors who emphasize the need for

symmetry in the curl equations, do not seem to interpret or even to mention the lack of

magnetic charge as an asymmetry in Maxwell’s equations.

Nevertheless, it is indeed possible to justify the displacement current term using more

convincible arguments that are related to deeper symmetries connecting the whole theo-

retical framework described by Maxwell’s equations. One possibility19 is to consider all

the quantities involved in the equations (charge density q, current density J, the electric

and magnetic fields E and B) as well as their derivatives both in space and in time (rq,

qq/qt, r�J, qJ/qt, r�E, r 9 E, r�B, r 9 B). Assuming the Newtonian paradigm that the

basic laws of Nature are differential equations in space and time, one can arrange the

quantities according to its tensorial character (scalar, pseudoscalar, vector or pseudovector)

to preserve parity. Charge is considered to be a scalar due to space isotropy. E is a vector,

since its direction is parallel to the electrical force, whereas B is a pseudovector, since the

magnetic force is perpendicular to it. We still need to consider time invariance, the

symmetry under time reversal.20 Table 1 summarizes these considerations and displays the

result of this clustering.

Arranging the terms according to these criteria, the easiest choice is linearly indepen-

dent combination resulting in first order differential equations. Besides being the simplest

choice, it also satisfies the superposition principle, which is actually one of the core

assumptions of the electromagnetic theory. We obtain Maxwell’s equations in the first four

lines of Table 1 (complementing them with suitable coefficients21). The fifth line is lin-

early dependent from the previous ones and corresponds to the continuity equation. The

sixth possible equation is not considered because it is nonlinear (the coefficients to arrange

the equation are speed dependent). The linear combination in the last line of Table 1

Table 1 Symmetries in physics
quantities of electromagnetism
(Chaves 2001)

Parity Time reversal

q, r�E Scalar Symmetric

r�B Pseudoscalar Symmetric

r 9 E, qB/qt Pseudovector Symmetric

r 9 B, qE/qt, J Vector Anti-symmetric

r�J, qq/qt Scalar Anti-symmetric

rq, E, qJ/qt Vector Symmetric

r 9 J, B Pseudovector Anti-symmetric

19 We found this line of reasoning in Chaves (2001). A detailed and very didactic presentation can also be
found in Diener et al. (2013).
20 Time reversal symmetry is considered when the variable t is substituted by –t and the quantity remains
invariant or not (symmetric or anti-symmetric, respectively).
21 See Diener et al. (2013) for the process of obtaining these coefficients.
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cannot be always valid, since it is restrict to superconductors. Electromagnetism (Max-

well’s equations) is the unique manner to obtain a force originated by two fields (a vector

and a pseudovector), which depends on a scalar conservative charge and its currents, and

satisfies the superposition principle, parity and time (and space) symmetries (Chaves

2001). Following this procedure, the displacement current term arises straightforwardly in

the fourth line.

Another possibility of deriving the displacement current term from profound symmetry

arguments22 is proposed by Yano (1968) and is based on the approach used in Purcell’s

famous textbook on electromagnetism (Purcell 1985).23 The starting point for the deri-

vation is a set of five postulates, fundamentally derived from experiment: (1) Gauss’s law;

(2) Superposition principle; (3) Charge invariance; (4) Special relativity; (5) No magnetic

poles.

According to Yano (1968) these postulates are sufficient to derive the displacement

current without any reference to charge conservation. Consider two inertial frames (S and

S0), where S0 moves relatively to S with velocity v. In S, there is only an electric field

independent of time, but due the relative movement between the frames, a magnetic field

will be detected in S’, which is expressed by B0 ¼ 1=cð Þv� E0 (Yano 1968, p. 599).

Considering Special relativity, Gauss’s law and Charge invariance, the transformation

properties between the frames are E0? ¼ cE? and E0k ¼ Ek; where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q
and the

symbols k \ represent the parallel and perpendicular directions of the field components

compared to the velocity direction, respectively. Differentiating these equations in respect

to time, the relation oE0

ot
þ v � rr0ð ÞE0 ¼ 0 is obtained. Taking the curl of B0 in the equation

B0 ¼ 1=cð Þv� E0, and combining it with the result of the time differentiation, Yano (1968)

was able to obtain the Ampère-Maxwell law24 and the displacement current arose naturally

in this derivation.

In this section we presented different ways to justify the insertion of the displacement

current term found in textbooks and articles (knowledge to be taught). Within the three

main approaches (charging capacitor, charge conservation and symmetry arguments) we

not only contrasted them with the historical development of Maxwell’s reasoning (Sect. 2),

but also highlighted several nuances concerning issues related to the interpretation of the

term, experimental evidence of its existence, implications of the used notation, among

others. Much evidence for the knowledge transformation through didactization were found

and commented. The analysis of these didactical approaches, as well as their controversies

and implications, adds another level of complexity to the apparent routine task of an

informed professor preparing his/her lecture to present the displacement current term in

introductory level. If trying to remain faithful to the historical development of Maxwell’s

work seemed to be an impossible (even undesirable) task, now the professor is confronted

with a broad spectrum of teaching approaches, which encompass different formalisms and

worldviews. In the next section, we analyze four lectures given by four different physics

22 Here symmetry is seen as invariance of an object or system to a set of changes/transformations (Le-
derman and Hill 2004).
23 In his book, Purcell focuses on relativistic discussions from the very beginning. When analyzing the way
the fields (electric and magnetic) transform from one frame of reference to another, a deep symmetry
between these fields is highlighted. See Purcell (1985, pp. 235-240) for a detailed approach.

24 rr
0 � B0 ¼ 1

c
v0 rr

0 � E
� �

� v0 � rr
0

� �
E0

� �
¼ 1

c
v0 4pqð Þ � o

ot
E0

� �
¼ 1

c
4pJ � oE0

ot

� �
. Different constants are

due to unit systems choice.
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professors in introductory electromagnetism courses and evaluate how these different

aspects come into play in authentic classroom situations.

4 Teaching Approaches in Lectures

Another significant transformation takes place when the didactized knowledge (to be

taught) reaches the classroom (knowledge taught), a process called internal transposition

by Chevallard (1991). In this second transformation, other factors like educational goals,

teachers’ conceptions/beliefs/expertise, students’ previous knowledge and conceptions

(among many others) are subject to exert influence.

In order to investigate the didactic transposition of the displacement current episode in

this dimension, four different lectures are examined. Considering that the displacement

current is a consolidated topic of every electromagnetism course, there are numerous

lectures about it available in the Internet, which are provided by physics professors from

reputable universities. Due to our purpose of correlating these three dimensions (historical,

didactical materials and actual teaching approaches), we do not aim at deriving any kind of

representative/general conclusion about ‘‘the way’’ this topic is taught in university level.

Our main interest is to understand these cases (4 lectures) more deeply in the light of what

was discussed in the two previous sections. The important thing is, of course, to maintain

the same context (first course on electromagnetism in undergraduate level) and to define

clearly the beginning and end points of the analysis.

The excerpts of the four lectures examined in this section were selected according to the

following criterion: the analysis begins when the displacement current term is introduced

for the first time and ends when the focus is changed (another problem/topic/experiment is

approached or when the lecture simply ends). In other words, our focus is to understand

how the term is introduced and its insertion justified. The previous section shall guide our

analysis, since it enables us to perceive how the broad variety of possibilities to introduce

the displacement current (knowledge to be taught) influences the professors’ didactic

choices (knowledge taught). It may also be fruitful to compare the professors’ teaching

approaches with the ones found in the textbooks indicated as references to the students.

4.1 Lectures’ Description and Analysis

4.1.1 Lecture A

Duration: 24 min

Students: 1st year (2nd semester)—Engineering and Science majors

Textbook: Giancoli (2000) ? Lecture notes

Lecturer25: Prof. Walter Lewin-MIT

The charging capacitor problem is presented in the very beginning of the lecture to

introduce the topic. The changing electric field between the circular plates (radius R) of the

capacitor (see Fig. 2) is mentioned and a relation between dE/dt is derived as follows:

25 When asking for permission for using his lectures with research purposes, Prof. Walter Lewin explicitly
demanded that his name should be mentioned. The names of the other lecturers will not be mentioned to
preserve confidentiality according to ethic standards in qualitative educational research.
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E ¼ sfree

je0

¼ Qfree

pR2je0

since I ¼ dQfree

dt
; then

dE

dt
¼ I

pR2je0

The problem to be solved is then formulated: ‘‘How can we calculate B here (P1) and here

(P2) now that we have this opening in the wire?’’ (A, 3:00). Biot-Savart’s law is considered

as a possible solution, but quickly disregarded due its technical difficulty. Then, Ampère’s

law (integral form) is applied to calculate the magnetic field (B) in P1 and P2, which results

BP1
¼ l0I

2pr
and BP2

¼ 0. This last result (no magnetic field at P2) is presented as problematic

with sentences like ‘‘This is absurd. It cannot be’’ (A, 5:20). Afterwards, another surface is

used to determine BP1
and the traditional paradoxical situation (different values for BP1

depending on the chosen open surface to apply Ampere’s law) is emphasized.

The insertion of the displacement current term by Maxwell is justified by the symmetry

argument as the following quotation (A, 7:30–7:45) shows:

What is so special about in between the capacitor plates is that there is a changing electric field. And
Maxwell reasoned: Gee, Faraday’s law tells me that a changing magnetic flux gives rise to an electric
field. So, he says, maybe a changing electric flux gives rise to a magnetic field.

The displacement current term is then inserted and the amended law is presented asH
B � dl ¼ l0 I þ je0

d
dt

R
E � dA

� �
, which is then applied to the charging capacitor problem

again to show that the previous inconsistency (different values for BP1
depending on the

chosen open surface) are solved. The assumption of neglecting fringe fields is clearly

stated.

The charging capacitor problem is finished with the calculation of the magnetic field

between the plates, resulting in the expression BP2
¼ l0Ir

2pR2. A diagram relating BP2
and r is

plotted and once again the fringe effects neglect is discussed in the transition from r \ R to

r [ R.

The presentation of the displacement current ends with the remark that with this

insertion Maxwell was able to predict the existence of electromagnetic waves, which were

later detected experimentally by Hertz. The name ‘‘displacement’’ is also justified by

Maxwell’s original idea of dielectric polarization.

In Lecture A, we notice a combination of symmetry arguments and the charging

capacitor problem (motivation) to introduce the displacement current. Biot-Savart’s law is

briefly mentioned, but not deeply explored. When compared with the reference textbook

(Giancoli 2000), it is possible to identify several similarities. This does not mean, of

course, a passive textbook reproduction, but the line of argument and the problems solved

R

P
1

r

P
2

I

Fig. 2 Charging capacitor
problem—Lecture A
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are indeed very similar. In a general way, we can say that the professor made ‘‘modula-

tions’’ of the textbook knowledge in the displacement current introduction. In fact, we

perceive a more careful and detailed presentation in what concerns the limits/simplifica-

tions of the charging capacitor problem (fringe fields). It is also worth noticing that

expressions referring to Maxwell’s reasoning, although historically inadequate, are com-

monly found.

4.1.2 Lecture B

Duration: 35 min

Students: 2nd year—Engineering and Science majors

Textbook: Serway and Jewett (2008) ? Lecture notes

What we traditionally call Ampère-Maxwell law is presented in the beginning of the

lecture without any further justification (also without reference to Maxwell). After writing

the expression
H

B � dl ¼ l0iþ l0e0
dUE

dt
on the blackboard, the lecturer stresses that the

first part (conduction current) was already studied and that now they were going to focus

on the new element (displacement current). The meaning of the formula is then explained

(B, 1:20)

So what this [expression] is telling you is: besides current producing a magnetic field, if the electric
field is changing as a function of time, then it creates a magnetic field as well.

By multiplying the values of l0 and e0 the professor highlights the numerical difference

between the two terms and emphasizes how small the displacement current term is

compared with the conduction current term. This fact is used to justify the assumption that

in most cases when there is current in a wire, the effect (B) caused by the conduction

current ‘‘dominates’’ the one caused by the displacement current.

Next, the focus is driven to the units of e0
dUE

dt
. Since it adds to a current in the

expression, this term should also have current units. This is the reason why we call it also a

current, ‘‘whatever this thing means’’ (B, 3:15). In other words, when the electric field

changes ‘‘it acts as a current’’ (B, 3:40).

The topic of the next chapter (Faraday’s law) is then briefly introduced with the goal of

showing the formal similarity between Faraday’s and Ampère-Maxwell laws. The sym-

metry argument (flux variation implies field generation) is given and analogical relations

(both similarities and differences) between the two laws are highlighted as follows:

You can see how close this [Faraday] is to that [Ampère-Maxwell]. It is almost like they are brother
and sister. This one [Faraday] is saying that if you change the magnetic flux as a function of time, it
creates an electric field that circulates around it […] So in order to create an electric field, instead of
just putting two charges together, I can simply get a magnet and move it in [gestures] and out of a
coil, then I will have an electric field circulating in that coil […] Now this one [Ampère-Maxwell] is
the counterpart of this [Faraday]. But the reason this term [displacement current] is not as noticeable
and as applicable is because: Firstly the e0 makes it too small […] and secondly because usually if
you want to create a magnetic field you either use a magnet or you run a current in a wire, we don’t
really need to do this [points at the displacement current] in order to create a magnetic field. (B,
5:00–7:05)

The resolution and discussion of two numerical problems are conducted in the following

27 min. The first problem presents a simple AC circuit (AC source V = 120
ffiffiffi
2
p

:sin2pft

and a resistor R) and the main goal is to determine if there is a magnetic field in the exact

instant when there is no current flowing in the circuit.
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The solution and discussion of this problem takes 17 min. The professor argues that

when i(t) is not zero, then the magnetic field at a distance r from the wire is easily

calculated using only the first part of the expression as follows:
H

B � dl ¼ l0i, since i ¼ V
R

and due to the symmetry of the problem the magnetic field at a distance r from the wire is

equal to B ¼ 4p:10�7

2pr
: 120

ffiffi
2
p

R
:sin2pft. However, when i(t) = 0, then it is necessary to use the

displacement current term in order to calculate the magnetic field. After some numerical

calculations (values for the resistance of the wire and its dimensions are given) a function

B(r) is obtained and its extremely small magnitude is highlighted.

The second problem, which is solved in 10 min, is the charging capacitor and once

again numerical values for the main variables involved are given (C = 2 lF, R = 10X,

V = 12.e�t=RC). The goal of the problem is to calculate the magnetic field between the

capacitor plates during the charging process. Since there is no conduction current between

the plates, it is the displacement current (id) the one responsible for the magnetic field.

After calculating the expression for the displacement current (id ¼ 12
R

e�t=RC) the lecturer

highlights that this is the exact same expression of the conduction current, which reinforces

his argument that a changing electric field is equivalent to a current. It is worth noticing

that the charging capacitor problem was not used to show a limitation of the application of

Ampère’s law (which was the case in Lecture A).

Lecture B is focused on dimensional and numeric analysis. The didactic approach,

although not completely opposite to the one found in the textbook used as reference, does

differ from it in several aspects. The charging capacitor problem is solved as an application

of a given relation (Ampère-Maxwell law)—instead of being used to show a limitation of

Ampère’s law (textbook presentation)—and much attention is given to technical/techno-

logical aspects. Additionally, the symmetry arguments found in the lecture are not present

in the textbook, neither is the strong emphasis on the numerical difference between the two

terms (conduction and displacement currents). It is also worth mentioning that no reference

to Maxwell (or his reasoning) is made during the lecture.

4.1.3 Lecture C

Duration: 80 min

Students: 2nd year—Physics majors

Textbook: Lecture notes

The lecture begins with a summary of what has been studied so far in the course. On the

left side of the blackboard, a table is presented, which contains the 4 Maxwell’s equations

represented in different ways (words, drawings, equations in the integral and differential

forms), the expressions of the Lorentz force and the continuity equation. The professor

announces that the goal of the lecture is to show an inconsistency in the whole theoretical

system expressed by the table and to solve it. During this 80-min excerpt, much time is

spent with philosophical discussions about several issues concerning the development of a

physical theory, as it is exemplified in the following quotations:

A physical theory has to be coherent. […] This is related to a big conviction we have that the world is
coherent. Therefore, in many difficult situations we look for coherence, we even impose it, and when
we do that our theory moves forward (C, 1:00–3:30)

The mentioned incoherence is that Ampère’s law does not satisfy the continuity

equation. The problem is presented as follows:
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r� B ¼ l0J Amp�ere’s law

r � ðr � BÞ ¼ l0ðr � JÞ ¼ 0; therefore r � J ¼ 0

which is inconsistent with the continuity equationr � J ¼ � oq
ot

In order to solve this problem, the term l0e0
oE
ot

� �
is added to the expression. Then, the

professor shows that this new expression (Ampère-Maxwell law r� B ¼ l0J þ l0e0
oE
ot

)

is coherent with the continuity equation.

This apparent arbitrary insertion gives rise again to a provocative philosophical dis-

cussion, which was conducted with an intense participation of the students:

Is it ugly what I just did here? Simply insert the term and show that now the problem is solved? […]
Well, you can find this ugly or beautiful, but this is what we do all the time. This is what gives Nobel
Prizes to people. They take something that is not working and make it work! In a sense, Maxwell
made it work. (C, 14:40–17:00)

This remark motivates a 10-minute discussion with the students about the relation

between theory and experiment, the legitimacy of the mathematization of physics, and

other issues. Although we identify explicit references to Maxwell during the lecture, it is

important to notice that when talking about Maxwell’s achievements and methods, the

professor seems to take a careful position, which is illustrated by the following statement:

Maxwell did not insert the term this way. His reasoning was different. It is hard for us to deeply
understand Maxwell’s thought taking into account what we know and learn today. Maxwell believed,
for example, that the space was filled with matter. […] What we are learning in this course is a post
Einstein version of the electromagnetic theory, so the concepts are somehow different. (C,
9:00–11:20)

In the last 45 min of the lecture, the charging capacitor problem is approached. The

inconsistency originated from the application of Ampère’s law (different values for the

magnetic field depending on the chosen open surface) is highlighted and the new

expression (with the displacement current term) is used to show how such inconsistency is

solved. Next, Gauss’s law and the current definition are used to show the equivalence

between the changing electric field and the current, in other words, to show that the

displacement current term indeed corresponds formally to a current. Then, the magnetic

field between the plates is determined and a function B(r) is plotted. The consequences of

choosing different open surfaces are extensively discussed and the fringe effect neglect is

briefly mentioned.

In Lecture C the displacement current term is included as an ad hoc hypothesis, within

the framework of an epistemological discussion about the construction of physics theories.

The use of the differential formalism allows the professor to present and discuss the charge

conservation problem (inconsistency between Ampère’s law and the continuity equation)

and use it to motivate the need for the displacement current. Moreover, the formalism also

enables a solution of the capacitor problem that highlights the principle of charge con-

servation. The professor adopted a careful position concerning historical information and

explicitly referred to differences between Maxwell’s reasoning/formalism and the modern

interpretations. No textbook is formally adopted in this course, but lecture notes made by

the professor, which leads to a different kind of transposition that diverges from the more

traditional ones, especially in what concerns philosophical discussions. This may suggest

that the textbooks available do not satisfy the professor completely. It is also worth

mentioning that this lecture is by far the most dialogical one (in terms of interactions

between the lecturer and the students).
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4.1.4 Lecture D

Duration: 13 min

Students: 2nd year—Engineering and science majors

Textbook: Lecture notes and PowerPoint presentations

Lecture D is dedicated to an overall presentation of Maxwell’s equations. The last 13 min

are devoted to the Ampère-Maxwell law, which is presented as follows:

The circulation of the magnetic field vector around any amperian loop is proportional to the sum of
the total conduction current and the displacement current through any surface bounded by the path.
(D, 0:00-1:40)

The law is presented without further justification
H

B:dl ¼ l0 I þ e0
dUE

dt

� �� �
and the

professor emphasizes that up until that moment in the course only the conduction current

has been discussed. Then, the difference between conduction and displacement current is

explained:

Conduction current is an electric current which is associated with the motion of charged particles. If
charge is transferred from one place to another place, this is conduction current. For example current

in a wire is an example of conduction current. Now, the second term here e0
dUE

dt

� �
is called dis-

placement current. It is also an electric current, but this current is not associated with the transfer of
charge. It is associated only with the change of electric field. (D, 2:20-3:10)

The Ampère-Maxwell law is explained in a very general manner. A surface, considered

to be somewhere in space, is crossed by a current (charged particles) and electric field

lines. If the electric field is changing in time, this means that a displacement current is also

flowing through the surface. The conventions (right-hand rule) are mentioned in order to

get the direction of the magnetic field created by both currents.

The charging capacitor problem is approached in the last 8 min of the lecture (fringe

fields neglect is briefly mentioned). However, instead of using it to show any paradoxical

situation when applying Ampère’s law, the main focus is to derive the formal equivalence

between displacement current and conduction current. Analyzing the situation where the

plates of a capacitor are being charged by a current I, the lecturer calls attention for the fact

that there is no conduction current flowing between the plates (briefly mentions that there

would be conduction current if the electric field were strong enough to overcome the

dielectric strength of the medium between the plates). Then, the equivalence between

conduction current and displacement current is presented as follows:

Id ¼ e0

dUE

dt
¼ e0

d Q
e0

	 


dt
¼ dQ

dt
¼ I

The displacement current flowing through this surface is equal to the rate at which the capacitor is
being charged. And this rate actually is related to how fast charged particles are delivered here. […]
In fact, they are equal! My conclusion is that the displacement current which flows between the two
plates is equal to the conduction current in the leads to the conductor. So right now we closed a loop
for the current. Current now flows everywhere. It happens that at some places of the circuit current
flows as the conduction current and in some places it flows as the displacement current (D, 11:20-
13:00)

The lecture ends with the general idea that ‘‘current flows everywhere’’, which allows us

to understand how the electric signals are transmitted from broadcasting stations, i.e. due to

the ‘‘displacement currents flowing between the antennas’’.
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In Lecture D, the displacement current is introduced within the theoretical framework of

Maxwell’s equations. Even though the professor uses self developed teaching materials,

the presentation is indeed relatively similar to what can be found in traditional textbooks.

Similarly to Lecture B, in D the capacitor problem is treated as an application of a given

law (no justifications for the displacement current term). However, the problem is solved in

an analytical (not numerical) way and has the goal of showing a formal equivalence

between conduction and displacement current (instead of relating it to limitations of

Ampère’s law). The difference between conduction and displacement current is strongly

emphasized and technological applications are mentioned. No direct remark about Max-

well’s reasoning was found.

It is not among the goals of this work to make any kind of judgment concerning the

quality of the lectures, but rather to highlight some significant differences in their pre-

sentations, which confirms the assumption that several factors (e.g. learning goals,

teachers’ conceptions, students’ previous knowledge, among many others) come into play

in the level of internal transposition (i.e., the knowledge actually taught in classroom). A

summary of some of these differences is presented in Table 2.

5 Concluding remarks

In this work we analyzed the didactic transposition process of one core episode in the

history of electromagnetism—the displacement current term insertion—in two stages: from

Maxwell’s original work (Sect. 2) to textbooks (Sect. 3) and from them to the classroom

(Sect. 4). We were able to highlight several differences between these spheres, which

testify the knowledge transformation produced by the didactization of this topic (Che-

vallard 1991).

Taking into account the relation between the historical dimension and textbooks’ pre-

sentations, we notice that many aspects are lost (and, of course, others are added) in

didactic discourses. The development of Maxwell’s reasoning, with its different models

and conceptualizations of the displacement current, is not found in textbooks, neither are

the philosophical debates about the interpretation of this term and the validity of the

methods utilized in its proposition. What we usually observe are logical/rational presen-

tations that display straightforward lines of reasoning. This is in accordance with Kuhn’s

view of science (especially physics) textbooks as representatives of the paradigmatic

nature of the scientific knowledge.

Nevertheless, we do find considerable differences in the way the displacement current

term is justified in the textbooks and articles analyzed. We identified three main arguments

(charging capacitor problem, continuity equation and symmetry considerations) used to

introduce the topic and discussed both their advantages and shortcomings. One important

aspect is the chosen formalism, which seems to constrain the possibilities of justifying the

term insertion. Furthermore, we notice that the (dis)charging capacitor problem is highly

established in the didactic transpositions of the displacement current. It was solved, either

as an introduction or as an application, in all textbooks and lectures analyzed. Despite its

secondary importance in Maxwell’s work, it has become ‘‘pedagogically irresistible’’

probably due to the fact that it enables a rational introduction of the displacement current

within the integral formalism.

The analysis of four introductory lectures on the displacement current enabled us to

identify several peculiarities of the internal transposition, i.e. the knowledge transforma-

tion from textbooks to the classroom. We clearly see that different messages are implicitly
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given and different aspects of this episode are stressed, which are probably related to

different learning goals set by the lecturers. Although we may identify an overall similarity

between their presentations and the ones found in textbooks, Lecture C appears to be an

exception, mainly due to the professor’s use of this episode to conduct epistemological

discussions about the theory–experiment relation as well as other aspects related to the

sociological character of physics, which are not commonly addressed in typical textbooks.

When comparing the teaching approaches (Sects. 3 and 4) with the nuances of the

historical development of this concept (Sect. 2), it is quite clear that focusing on the history

of the displacement current would not fulfill the traditional goals of a course designed to

teach engineers and science majors the products of science (context of the lectures ana-

lyzed). However, we might wonder what kind of influence would this historical knowledge

have on the didactic discourse of a lecturer. In order to speculate in this direction, the

notion of epistemological surveillance (Chevallard 1991) seems to be quite useful. Che-

vallard remarks that the didactical transposition is for the teacher:

[…] a tool that allows revised, take away, to question evidences, doubt about the simple ideas,
abandon familiarity, hence misleading its object of study. In a word, is what enables exercising its
epistemological surveillance. (Chevallard, 1991, p. 16)

In this sense, the epistemological surveillance involves one adopting a careful posture

when speaking about the historical development of the knowledge that is being taught. This

ability should allow professors/teachers not only to recognize oversimplifications, myth-

ifications, distortions and mistakes in textbooks, but also to avoid incurring in them during

their lectures. In the displacement current case, such posture would prevent oversimplified

or inadvertent reference to Maxwell’s reasoning.

This work has pointed out the enormous complexity involved in the teaching of a

crucial topic of the electromagnetic theory. It presents a broad variety of possibilities to

justify the need for its insertion—which is associated with Shulman’s notion of Peda-

gogical Content Knowledge (Shulman, 1986)—and gives an overview of some of the

consequences of its didactization process—which should foster the development of an

important ability called epistemological surveillance (Chevallard, 1991). These are both

fundamental conditions for the development of an effective and well-informed physics

education.
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Pensée sauvage.
Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research

Journal, 6, 9–27.
Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. New York: Oxford University Press Inc.
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