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Abstract
We try to carry over, as closely as possible, the well-known results for rotational
dragging (Thirring, Brill and Cohen) to dragging due to linearly accelerated
masses. To this end, a spherical, charged mass shell is linearly accelerated by a
(weak) external, axisymmetric and dipolar charge distribution. It is shown that
the interior of this (Reissner–Nordström-like) shell stays flat. The dragging
of neutral test particles inside the shell, defined by their acceleration, scaled
by the overall acceleration of the (rigid) shell, is calculated for the weak field
case for a highly massive but weakly charged shell and for the general strong
field case. The results compare favourably with the corresponding results for
rotational dragging.

PACS numbers: 04.20.Cv, 04.25.Nx, 04.40.Nr.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea that in a relativistic gravitation theory accelerated masses may induce a dragging
effect on test bodies—in analogy with electromagnetic induction—was first formulated by
Einstein in 1912 within a preliminary relativistic scalar gravitation theory [1]. In this paper,
he also introduced for the first time the extremely useful model of an infinitely thin spherical
mass shell. One year later Einstein showed, now in the tensorial Entwurf theory, that
a rotating mass shell induces a Coriolis-type dragging force on the inertial frames in its
interior [2]. (The dragging by a linearly accelerated mass shell within the Entwurf theory
is calculated in the Einstein–Besso manuscript (June 1913) on the motion of the perihelion
of Mercury [3].) As is well known, in final general relativity the Coriolis-type dragging
force was confirmed by Thirring in a paper [4] whose essential results took shape only after
Einstein, in correspondence [5] with Thirring, provided decisive hints and corrections [6].
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(The corresponding Lense–Thirring dragging effect in the exterior of a rotating body is now—
86 years after its theoretical prediction—for the first time directly experimentally confirmed
within 10% by the LAGEOS satellites [7], and a confirmation with better than 1% is expected
from the recently launched Gravity Probe B satellite [8].) For a mass shell with mass M, radius
R and angular velocity ω, Thirring derived in the first orders of M/R and ω a Coriolis-type
force with dragging factor 4M/3R. In second order of ω, an additional force showed up which
was treated by Thirring as a centrifugal force although it had also an axial component and
could not be made zero in the same rotating frame in which the Coriolis-type force vanishes.
In 1966 Brill and Cohen succeeded in extending Thirring’s calculations to arbitrary values of
M/R, but still only in first order of ω [9]. Their main result was that in the collapse limit
of the mass shell the dragging factor attains the value 1, i.e. inertial systems inside the mass
shell are dragged along with the full angular velocity ω of the shell. This result confirms
(at least partly) that for physically reasonable models within general relativity the Machian
postulate of relativity of rotation is fulfilled. An extension of these calculations to higher
orders of ω was performed in [10–12]. By allowing for a nonspherical form of the rotating
mass shell, for a nonspherical mass distribution on it and for differential rotation, it was (for
the first time) possible to derive a correct centrifugal force in its interior, and to realize flat
geometry inside the shell in all orders of ω. The question of whether and how rotating masses
influence properties other than inertial ones, especially of how they influence electromagnetic
phenomena, was taken up in the papers [13–16]. For instance, it was shown that a rotating
mass shell induces (in first order of ω) to a charge in its interior a dipolar magnetic field. The
claim in [15] that some of these effects are ‘Mach-negative or, at best, Mach-neutral’ was
corrected in [17].

The question addressed in the present paper is whether and how all these dragging effects
derived for rotating mass shells carry over from a rotational acceleration to a linear acceleration,
as initiated by Einstein in [1]. A quite general and severe problem with linearly accelerated
bodies is that they need—in contrast to rotating bodies—a perpetual supply of energy in order
to maintain the acceleration. And since in general relativity the equations of motion of bodies
are already contained in the field equations, the energy source (or the motor of the accelerated
system) has to be included in the considered system in order to deal with a self-consistent
problem. This difficulty may be the reason why, besides the historical Einstein paper [1],
only a few articles [18–21] treat (or claim to treat) dragging effects due to linearly accelerated
masses. And even these papers compare only quite poorly to the rotating systems considered
in [4] and [9–17], because they treat only the weak field case or contain special relations
between mass M and charge q of the shell. Furthermore, in some of these papers the source
of acceleration is not really fixed, or is removed to infinity, with the consequence that the
equations of motion are in danger of being violated. And in no model considered so far is it
guaranteed that the geometry inside the shell is flat so that pretend dragging effects cannot be
clearly distinguished from local gravitational effects due to curvature.

In this paper we start (in section 2) with a spherical Reissner–Nordström (RN) shell of
nearly arbitrary mass M, charge q and radius R, and we discuss the (weak and dominant)
energy conditions for the shell material. In the main section 3 we consider a (first-order)
translational acceleration of this RN shell and study the resulting dragging effects. In order to
include the source of acceleration into the system but to disturb electrically neutral test particles
inside the shell as little as possible, it seems appropriate to take as the source of acceleration
a charge distribution outside the shell. This has a further advantage because (at least in the
electro-vacuum regions) the Einstein–Maxwell equations are not much more complicated than
the pure Einstein equations. (We expect, however, that other acceleration mechanisms lead
to similar dragging results.) The simplest nontrivial model obviously is an axisymmetric and
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dipolar charge distribution λσ(r) cos ϑ , treated in first order of the dimensionless smallness
parameter λ. We require that the system is time-symmetric around t = 0, and we treat the
system up to terms of order t2, in order to be able to calculate the acceleration of the RN
shell. (For later times t the system may change drastically because part of the charges σ(r)

will hit the RN shell.) In the case of an appropriate asymptotic fall-off behaviour of the charge
function σ(r) the system is asymptotically flat, like the systems in [4] and [9–17]. For this
model we give (in section 3.1) the complete Einstein–Maxwell equations in first order of λ.
We choose the solutions of the Maxwell equations (on the RN background) such that there are
no magnetic fields up to order t2, and therefore also no electromagnetic waves (which could
violate the time symmetry of the system). We prove that the interior of the RN shell stays
flat in this order, and we give the geodesic equation for neutral test particles in this region (in
section 3.2).

In section 3.3 we discuss the Einstein–Maxwell equations in the exterior region, and
we state (in the ‘invariant’ Israel formalism [22]) the junction conditions between exterior
and interior solutions. In order to fix our model system completely, i.e. to fix all integration
constants of the Einstein–Maxwell equations, we have to specify the geometrical, mechanical
and electrical properties of the accelerated RN shell. We do this in as complete analogy to
the rotating mass shell (in [4, 9]) as possible. Since a mass shell rotating in first order of the
angular velocity ω stays automatically spherical and does not in this order receive corrections
to its mass density and pressure, we demand that our RN shell is (in first order of λ) rigidly
accelerated, and we set the correction terms to energy density and pressure equal to zero.
Furthermore, the shell material is chosen as electrically isolating. With these conditions the
linear acceleration g of neutral test particles inside the RN shell (as measured at infinity),
and also the acceleration b of the RN shell are uniquely determined, and herewith also the
‘dragging factor’ d = g/b. In analogy with the historical development of dragging effects for
a rotating shell in [4, 9, 17], we divide the detailed discussion of our results into three steps:
we begin in section 3.3.1 with the weak field case M/R � 1, and q/R � 1, and we find that
for the simplest power law charge distribution σ(r) ∼ r−5, having a finite dipole moment, the
dragging factor coincides with Thirring’s value 4M/3R. We calculate and discuss the factor d
also for other charge distributions. In section 3.3.2 we consider a shell with arbitrary mass but
small charge, and we find that for σ(r) ∼ r−5 the dragging factor d has a similar dependence
on M/R as for the rotating mass shell in [9]. Especially, in the collapse limit 2M/R → 1
we have d → 1, i.e. total dragging, for arbitrary charge distributions σ(r). In section 3.3.3
we analyse the general strong field case. Since we did not succeed in separating the system
of differential equations, we turn to a numerical integration procedure. We then compare
(graphically) the linear dragging factor, in its dependence on M/R and q/R, with the results
for rotational acceleration in [23].

In total it is now clear that for (first-order) linear and rotational accelerations of a mass shell,
the interior of this shell can be kept flat, and that the dragging effects in this shell exactly mimic
the corresponding well-known ‘inertial forces’ in accelerated reference systems in Newtonian
physics. Since general accelerations can (in principle) be constructed from appropriate linear
and circular accelerations, we have now in hand very good arguments for the validity of
a ‘quasiglobal equivalence principle’ [10] in general relativity: ‘If some finite laboratory
(a flat region in spacetime) is in arbitrary (weak) accelerated motion relative to the fixed stars,
then all motions of free particles and all physical laws, measured from laboratory axes, are
modified by inertial forces. It is argued that exactly the same modified motions and laws can
be induced (at least for some time) at all places of a laboratory at rest relative to the fixed
stars, by suitable and suitably moving masses outside the laboratory (e.g. in a mass shell).’ In
this connection it may be remarked that already in the dawn of general relativity, in the years



4746 H Pfister et al

1912–1913, similar ideas arose in discussions of Einstein with Ehrenfest [24] and Mie [2].
But at that time the participants were quite sceptical about such a ‘macro-equivalence’.

2. The Reissner–Nordström shell

Our zero-order model is a spherical and static Reissner–Nordström (RN) shell. In the standard
RN coordinates (x0, x1, x2, x3) = (t, r, ϑ, ϕ) this is given by the metric

ds2 = gµν dxµ dxν = −F(r) dt2 + F(r)−1 dr2 + r2( dϑ2 + sin2 ϑ dϕ2), (1)

with F(r) = 1 − 2M/r + q2/r2 for r > R, and F(r) = 1 for r < R. The Ricci
tensor of this metric is of course identically zero for r < R, and has components
R0

0 = R1
1 = −R2

2 = −R3
3 = q2/r4 (and therefore Ricci scalar zero) for r > R. The

electromagnetic field tensor Fµν is identically zero for r < R, and has only one non-zero
component F10 = −F01 = q/r2 for r > R. For the calculation of the energy–momentum
tensor of the RN shell at r = R we use the Israel formalism [22] which expresses this tensor
in a purely geometrical way by the extrinsic curvatures of the embeddings of this shell � in
the different spacetimes V + for r > R, and V − for r < R, and does not ask for a continuous
metric across the shell. (For an extension of the Israel formalism to charged shells, see [25].)
In contrast to Israel and Kuchař, we define the signs of the Riemann tensor and of the extrinsic
curvature according to the convention in modern textbooks. Let (τ, ϑ, ϕ) be the intrinsic
coordinates in the shell, with τ = t− = √

F(R)t+. (The RN time t is discontinuous at r = R!)
As basis vectors in � we choose e+µ

τ = (F (R)−1/2, 0, 0, 0), e−µ
τ = (1, 0, 0, 0), e+µ

ϑ = e−µ
ϑ =

(0, 0, 1, 0), e+µ
ϕ = e−µ

ϕ = (0, 0, 0, 1). Then the unit normal vectors to � in V + and V − are
n+µ = (0, F (R)1/2, 0, 0) and n−µ = (0, 1, 0, 0). The symmetric extrinsic curvature 3-tensors
(in V + and V −) are then given by

Kab = nµe
µ

a;b, (2)

with a, b ∈ (τ, ϑ, ϕ), and where the covariant derivatives are calculated from the 3-metric
gab = diag(−1, R2, R2 sin2 ϑ) in �. The resulting non-zero components of Kab are

K+
ττ = F ′(R)/2

√
F(R), (3a)

K+
ϑϑ = K+

ϕϕ/ sin2 ϑ = −R
√

F(R), (3b)

K−
ϑϑ = K−

ϕϕ/ sin2 ϑ = −R, (3c)

with F ′(R) = d
dr

F (r)
∣∣
r=R

= 2M/R2 − 2q2/R3. With the tensor γab = K+
ab − K−

ab, the
energy–momentum tensor Sab of the shell � is, according to Israel [22], given by 8πSab =
γab − gabγ

c
c , with the results

8πSτ
τ = 2

R
(
√

F(R) − 1) = 2

R
(
√

1 − α + β − 1), (4a)

8πSϑ
ϑ = 8πSϕ

ϕ = 1

R
√

F(R)

(
R

2
F ′(R) + F(R) −

√
F(R)

)

= 1

R
√

1 − α + β

(
1 − α

2
−

√
1 − α + β

)
, (4b)

with the useful, dimensionless abbreviations α = 2M/R and β = q2/R2. Obviously, the
stresses in the shell vanish in the extreme RN case β = α2/4, and they diverge in the collapse
limit β = α − 1.
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Figure 1. In the variables α = 2M/R and β = q2/R2 are shown: (a) in white: the region
where both the weak and the dominant energy conditions are fulfilled, (b) in light grey shading:
the region where the weak energy condition is violated, (c) in dark grey shading: the region where
the dominant energy condition is violated. The dashed parabola β = α2/4 represents the extreme
RN case.

In addition to the conditions α � 0, β � 0 and β � α − 1, one may wish that the
charged shell material has ‘reasonable physical properties’, and that therefore the dragging
induced on neutral test particles in the interior of an accelerated shell (in section 3) fulfils
reasonable physical expectations. Standard conditions for a ‘reasonable shell material’ are
the fulfilment of the weak energy condition and of the dominant energy condition [26].
(For rotational acceleration, it was shown in [16, 23] that at least in part of the parameter
region (α, β) where these energy conditions are violated, one has counterintuitive effects
such as anti-dragging. Therefore, we would like to discuss similar questions also for our
linearly accelerated RN shell in section 3.3.3.) The weak energy condition Sabu

aub � 0
for all timelike vectors ua (in �) consists, in our case, of the two inequalities Sτ

τ � 0, and
Sτ

τ − Sϑ
ϑ � 0. These conditions are fulfilled ‘inside’ the (tilted) parabola β = 1

8 (6α − 3 ±√
9 − 4α) in figure 1. The energy-violating region is shown in light grey shading. The

dominant energy condition reads
∣∣Sτ

τ

∣∣ �
∣∣Sϑ

ϑ

∣∣, and it is fulfilled ‘inside’ the (tilted) parabola
β = 1

8 (10α − 3 ± 3
√

1 + 4α). The region where this condition is violated (shown in dark grey
shading in figure 1) consists, in our case, of a small strip near the collapse limit β = α − 1,
and a triangle-shaped region in the upper left part of figure 1.

(A similar analysis of the energy conditions for the RN shell, but in a different notation
based on the isotropic radial coordinate instead of the RN coordinate, has already been
performed in [23, 27]. However, in the figures of these papers the limits of the dominant
energy condition were not explicitly marked.)

3. The model of a linearly accelerated shell

A first-order perturbation of the RN shell from section 2 shall be caused by a small,
axisymmetric and dipolar charge distribution λσ(t, r) cos ϑ in the region r � R, which
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furthermore is assumed to be momentarily static at t = 0 : ∂
∂t

σ (0, r) = 0. For the perturbed
metric we write

g̃µν = gµν + δgµν, (5)

where gµν is the RN metric of equation (1), and δgµν is of order λ. A detailed analysis
of the perturbations of the RN metric, including the dipolar case, has been performed
by Bičák [28]. According to this work, for our dipolar perturbation a (Regge–Wheeler-
type) gauge can be chosen such that only δg00 = F(r)H0(t, r) cos ϑ, δg01 = H1(t, r) cos ϑ

and δg11 = F(r)−1H2(t, r) cos ϑ are non-zero. (Herewith the gauge is fixed up to an
arbitrary function f (t). In the following calculations nowhere appears a function depending
only on t, and not on r. Therefore the above gauge freedom f (t) is irrelevant for us.
Furthermore, according to a theorem by Stewart and Walker [29], for a first-order perturbation
of the RN metric, perturbation quantities—such as our acceleration g of test particles, the
acceleration b of the RN shell and the dragging factor d = g/b—are gauge invariant
if the corresponding unperturbed quantities vanish.) In the perturbed electromagnetic
field tensor F̃ µν = Fµν + δFµν the perturbations reduce then to the non-zero elements
δF02 = a0(t, r) sin ϑ, δF12 = a1(t, r) sin ϑ and δF01 = e(t, r) cos ϑ , with e = ȧ1 − a′

0,
where · denotes the t derivative, and ′ the r derivative, and there is no electromagnetic gauge
freedom left. We assume that the RN shell consists of isolating material, and that therefore no
additional (induced or mirror) charges, besides the charge q of the RN shell and the exterior
charge distribution λσ cos ϑ , have to be taken into account. The energy–momentum tensor
for our perturbed system has (in the exterior region r > R) the form

T̃ µν = 1

4π

(
F̃ µξ F̃ ν

ξ − 1

4
g̃µνF̃ ξχ F̃ ξχ

)
+ εvµvν, (6)

where ε is the mass density of the charged particles constituting the charge distribution
σ , and vµ is the 4-velocity of these particles which at t = 0 has the form vµ(t = 0) =√

F(r)(−1, 0, 0, 0). We assume that the effects of the mass density ε are generally negligible
as compared to the effects of the charge distribution σ . However, if we would take ε to be
exactly zero, the charged shell at r = R would induce an infinite acceleration on the charged
particles at r > R. Mathematically, this is encoded in the equation of motion under Lorentz
force εvνv

µ

;ν = λσFµ
νv

ν cos ϑ for µ = 1 which reads in our approximation

∂

∂t
(εv1v0) = λσF 1

0v
0 cos ϑ. (7)

3.1. The perturbation equations

The first order (in λ) perturbation terms of the Einstein equations G̃µν = 8πT̃ µν for r �= R are
nontrivial for the index pairs (µ, ν) = (0, 0), (0, 1), (0, 2), (1, 1), (1, 2) and (2,2), and read in
this order:

rFH ′
2 + 2H2 − q2

r2
H0 = −2qe, (8)

Ḣ2 +
1

r
H1 = − 8πr

cos ϑ
εv1v0, (9)

−Ḣ2 + FH ′
1 + F ′H1 = −4Fq

r2
a1, (10)

Ḣ1 − F

2
H ′

0 − 1

2r
H2 +

1

2r

(
1 +

q2

r2

)
H0 = q

r
e, (11)
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−Ḣ1 + FH ′
0 +

(
F

r
+

F ′

2

)
H2 −

(
F

r
− F ′

2

)
H0 = −4q

r2
a0, (12)

Ḧ2 + F 2H ′′
0 − 2FḢ ′

1 −
(

F ′ +
2F

r

)
Ḣ1 +

F 2

r
(H ′

0 + H ′
2)

+
FF ′

2
(3H ′

0 + H ′
2) +

F

r2
(H2 − H0) +

2Fq2

r4
H0 = 4Fq

r2
e. (13)

The complicated equation (13) can be substituted by the much simpler equation

Ḧ2 +
1

r
Ḣ1 = −8πλqσ

F

r
v0, (14)

which follows from the time derivative of equation (9), together with equation (7).
Equations (8)–(14) contain no wave equation because for dipole perturbations of the RN
metric there exist no gravitational wave degrees of freedom. This is a decisive advantage
of our dipolar model, because gravitational waves would in any case also penetrate into the
interior of the shell and destroy the flatness there.

The first-order perturbation terms of the inhomogeneous Maxwell equations F̃
µν

;ν = 4πJ̃ µ

for r �= R, with J̃ µ = λσvµ cos ϑ , are nontrivial for µ = 0, 1, 2, and read in this order:

(r2e)′ +
2

F
a0 − q

2
(H ′

0 − H ′
2) = −4πr2λσv0, (15)

r2ė + 2Fa1 − q

2
(Ḣ0 − Ḣ2) = 0, (16)

1

F
ȧ0 − (Fa1)

′ = 0. (17)

The homogeneous Maxwell equations reduce to the already mentioned relation

e = ȧ1 − a′
0. (18)

We are mainly interested in the (momentarily static) situation at t ≈ 0, where we have
H1(0, r) = a1(0, r) = 0, and Ḣ0(0, r) = Ḣ2(0, r) = ȧ0(0, r) = ė(0, r) = 0, while Ḣ1(0, r)

and ȧ1(0, r) can in principle be non-zero. We analyse equations (8)–(18) near t = 0,
and separate them into time-independent equations and dynamical equations. Obviously,
equations (8) and (15) are time independent. Further time-independent equations are obtained
by adding equations (9) and (10),

rFH ′
1 +

(
1 +

2M

r
− 2q2

r2

)
H1 = −4Fq

r
a1, (19)

and by adding equations (11) and (12),

rFH ′
0 −

(
1 − 6M

r
+

3q2

r2

)
H0 +

(
1 − 2M

r

)
H2 = −8q

r
a0 + 2qe. (20)

The remaining Einstein and Maxwell equations are dynamical equations. At least in the weak
field case M/R � 1, and q/R � 1, where F(r) ≈ 1, and the terms q(H0 − H2) can be
neglected, the equations (15)–(18) constitute a linear, inhomogeneous system of differential
equations for the electromagnetic fields δFµν . Their general solution is the sum of a special
solution, e.g. with ȧ1(0, r) = 0, and the general homogeneous solution. But the asymptotically
decaying homogeneous solutions are of wave type (also in the strong field case, because
F(r) → 1, and q(H0 −H2) → 0, asymptotically). We fix now the electromagnetic part of our
model system by requiring that there are no electromagnetic (dipole) waves at t ≈ 0, which
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would anyhow endanger the desired time symmetry of our system. Then the magnetic field
component ȧ1 is zero in the considered time interval around t = 0, and we have, according to
equation (18),

e = −a′
0. (21)

With ȧ1(0, r) = 0 the time derivative of equation (19) reduces to a homogeneous differential
equation for Ḣ1(0, r). Its solution behaves in the interior and asymptotically like r−1, and has
therefore to be set equal to zero, in order to guarantee regularity at the origin, and asymptotic
flatness. Therefore, for our model in the considered approximation also the perturbed metric
is diagonal. In the rest of the paper we usually omit the argument t = 0 in the metric and
electric functions.

3.2. Analysis in the interior of the shell

For our shell system the perturbed Einstein–Maxwell equations can be considered separately
for the interior region r < R, and the exterior region r > R. At the end, interior and exterior
solutions have to be joined according to the Israel conditions [22].

In the interior region we have flat spacetime (and therefore F ≡ 1), and also σ = 0.
The electric fields in the interior (continuing the exterior electric fields), are not relevant for
the electrically neutral test particles inside the shell, in whose acceleration we are interested.
In the interior, equation (8) reduces to a homogeneous differential equation for H2 whose
solution H2 ∼ r−2 has to be set equal to zero in order to guarantee regularity at the origin. In
contrast, equation (20), with H2 = 0, has for r < R the admissible solution

H0(r) = Hr, (22)

with an arbitrary constant H.
It can easily be proved that the resulting perturbed interior metric with the non-zero

elements g̃00 = −(1 − Hr cos ϑ), g̃11 = 1, g̃22 = r2 and g̃33 = r2 sin2 ϑ can be transformed
to the Minkowski metric in Cartesian coordinates (t̄ , x̄, ȳ, z̄) with t̄ = t − 1

2Htr cos ϑ, z̄ =
r cos ϑ − 1

4Ht2 cos ϑ, x̄ = r sin ϑ cos ϕ and ȳ = r sin ϑ sin ϕ, i.e. the system (t̄ , x̄, ȳ, z̄) has
acceleration 1

2H in z̄-direction with respect to the original system. Therefore, the perturbed
metric inside the shell is flat, and any acceleration of neutral test particles within this shell is
caused by the global dragging effect, and not by local curvature effects.

The acceleration of test particles (with 4-velocity uµ) is of course ruled by the
geodesic equation duµ/ds = −�̃

µ
ξχuξuχ , with s denoting proper time. Since inside

the unperturbed RN shell there exists no acceleration of test particles whatsoever, this
equation reduces to duµ/ds = −δ�

µ
ξχuξuχ , and only the components with µ = 1, 2, 3

are relevant for the spatial acceleration. For our interior metric perturbation with the only
non-zero component δg00 = Hr cos ϑ , the relevant non-zero components δ�

µ
ξχ are, due to

Ḣ2(0, r) = −(1/r)H1(0, r) = 0: δ�1
00 = − 1

2H cos ϑ, δ�2
00 = (1/2r)H sin ϑ . Transforming

to Cartesian coordinates and to coordinate time t, and specializing to static test particles, the
only non-zero component of the acceleration is

d2z

dt2
= 1

2
H. (23)

Therefore the single quantity ruling the dragging of interior test particles by the accelerated RN
shell is the constant H. This constant (in its dependence on M,q and R) has to be determined
in section 3.3 by the Israel conditions, together with an appropriate fixation of the properties
of the shell material.
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3.3. Analysis in the exterior of the shell, and junction conditions at the shell

We have to analyse the system of equations (8), (20), (15) and (21) for the functions H2,H0, e

and a0 at t = 0. We first see that insertion of (21) into (15) results in the Gauss law of
electrostatics

(r2a′
0)

′ − 2

F
a0 +

q

2
(H ′

0 − H ′
2) = 4πr2λσv0, (24)

modified by the ‘curvature terms’ F−1 and 1
2q(H ′

0 − H ′
2) which, in general, prevent a direct

and explicit calculation of a0 and of e = −a′
0 from a given charge distribution σ(r). However,

equation (24) suggests performing one integration

e(r) = q

2r2
(H0 − H2) − 1

2q
k(r), (25)

with

k(r) = 2q

r2

∫ r

∞
dr ′

[
4πr ′2λσ(r ′)v0 +

2

F(r ′)
a0(r

′)
]

.

Insertion of (25) into (8) results in the (partly) separated equation

rFH ′
2 +

(
2 − q2

r2

)
H2 = k. (26)

Insertion of (25) into (20) does not immediately lead to a separated equation for H0. However,
for H3 := 3H0 − H2 we get, in combination with (26), the (partly) separated equation

rFH ′
3 −

(
1 − 6M

r
+

4q2

r2

)
H3 = −4k − 24q

r
a0, (27)

with

a0(r) = F(r)

2

{
[r2k(r)]′

2q
− 4πr2λσ(r)v0

}
.

In general the ‘inhomogeneities’ k(r) and a0(r) in equations (26) and (27) still depend, due
to equation (24), on the metric potentials H0 and H2. However, asymptotically for r → ∞
this dependence drops out. Therefore, it is generally true that the homogeneous solution H

(h)
2

of (26) behaves asymptotically like c2r
−2 and is therefore physically admissible, whereas the

homogeneous solution H
(h)
3 of (27) behaves like r and has to be set equal to zero. The constant

c2 will, in the following, be fixed by appropriate physical conditions for the shell material.
As announced in the introduction, we now analyse the junction conditions between interior

and exterior solutions at the shell �, and we fix the geometrical, mechanical and electrical
properties of the accelerated RN shell. Again we do this in the Israel formalism [22]. Since,
in analogy with a first-order rotation of the shells in [4, 9] and [13–17], the RN shell should
(at least in first order of λ) be rigidly accelerated in the z-direction, the position of this shell
is given by r+ = r− = R + 1

2bτ 2 cos ϑ , with the acceleration ‘constant’ b depending only on
M/R and q2/R2. (The identity r+ = r− follows from the Israel condition that the interior
and exterior 4-metrics (5) induce the same 3-metric in �.) In the generalization of the choices
in section 2, appropriate basis vectors in � are e+µ

τ = (F (R)−1/2, bτ cos ϑ, 0, 0), e−µ
τ =

(1, bτ cos ϑ, 0, 0), e+µ
ϑ = e−µ

ϑ = (0,− 1
2bτ 2 sin ϑ, 1, 0), e+µ

ϕ = e−µ
ϕ = (0, 0, 0, 1). Then the

unit normal vectors to � in V + and V − are

n+µ =
(

bτ

F (R)
cos ϑ,

√
F(R)

(
1 − 1

2
H2(R) cos ϑ

)
,

bτ 2

2R2
√

F(R)
sin ϑ, 0

)
,
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and

n−µ =
(

bτ cos ϑ, 1,
bτ 2

2R2
sin ϑ, 0

)
.

The Israel condition g̃+
ττ = g̃−

ττ in � leads to the continuity condition H +
0 (0, R) = H−

0 (0, R) =
HR, according to equation (22). But the Israel conditions lead to no continuity condition for
H2(0, r) at �. The 3-metric in � reads then

g̃ab = diag

(
−1 + RH cos ϑ,R2

(
1 +

bτ 2

R
cos ϑ

)
, R2

(
1 +

bτ 2

R
cos ϑ

)
sin2 ϑ

)
.

Herewith, the nontrivial components of the extrinsic curvature tensors of � in V + and V −

are

K+
ττ = 1

2
√

F(R)

{
F ′(R) −

[
F(R)H ′

0(R) − 2Ḣ1(R)

+ F ′(R)

(
H0(R) +

1

2
H2(R)

)
− 2b

]
cos ϑ

}
, (28a)

K+
τϑ = − bτ√

F(R)
sin ϑ, (28b)

K+
ϑϑ = K+

ϕϕ

/
sin2 ϑ = −R

√
F(R)

(
1 − 1

2
H2(R) cos ϑ

)
, (28c)

K−
ττ =

(
b − 1

2
H

)
cos ϑ, (28d)

K−
τϑ = −bτ sin ϑ, (28e)

K−
ϑϑ = K−

ϕϕ/ sin2 ϑ = −R, (28f )

where terms of order τ 2 have been omitted, because we consider our system only near τ = 0.
With the quantities in equations (28a)–(28f ), and inserting FH ′

0 − 2Ḣ1 from equation (11),
we get the following order λ-corrections to the energy–momentum tensor Sa

b of the RN shell
(in equations (4a), (4b)):

8πδSτ
τ = −

√
F(R)

R
H2(R) cos ϑ (29a)

8πδSϑ
ϑ = 8πδSϕ

ϕ = 1

2R
√

F(R)

[(√
F(R) − 1 − q2

R2

)
HR

+
M

R
H2(R) + 2qe(R) + 2Rb(1 −

√
F(R))

]
cos ϑ. (29b)

In order to fix our system completely, we now have to define what mechanical properties
the shell material shall have in the accelerated state. (That, in addition to the fulfilment of
the Einstein–Maxwell equations in V + and V −, the Israel junction conditions on � and initial
conditions, there has to be given ‘a suitable description of the matter on �’, is especially
clearly expressed in [30].) As already stated in the introduction, our guiding principle for
fixing the material quantities δSτ

τ and δSϑ
ϑ in equations (29a) and (29b) is the analogy to the

corresponding rotating shells in [4, 9], and [13–17]. (Otherwise, the final comparison of our
translational dragging effects with the rotational dragging results in these papers would not
make much sense.) Now, for a rotating mass shell it is trivial from symmetry considerations
that corrections to the energy density Sτ

τ and to the isotropic pressure Sϑ
ϑ can only appear in
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even orders of the angular velocity ω. Therefore, the analogy to the rotating shells is realized
in an optimal way if we set the first order (in λ)-correction terms δSτ

τ and δSϑ
ϑ equal to zero.

(In principle, and in an extremely unphysical way, it would be possible to arrange the changes
from the static to the accelerated state of the shell in such a way that b = 0, i.e. that the
shell is not accelerated at all, but that the ‘force’ exerted on it by the charge distribution σ

is completely compensated by an inner tension of the shell material.) From δSτ
τ = 0, and

equation (29a) follows H2(R) = 0, i.e. also the metric function H2(R) is continuous at r = R.
δSϑ

ϑ = 0 results then, together with equation (29b), in

b =
(
1 − √

F(R) + q2

R2

)
HR − 2qe(R)

2R(1 − √
F(R))

. (30)

Therefore, with equation (25), and after solving equations (26) and (27) with the appropriate
boundary conditions at r = R, we get a unique expression for the acceleration b of the
RN shell. With the boundary conditions for the metric potentials now fixed, the constant H
in equation (23) is also fixed, and herewith the dragging factor d = g/b due to the linear
acceleration of the RN shell.

In the general (strong field) case we presently see no way to separate equations (8),
(20), (15) and (21), or the reduced system (24)–(27) completely. However, in special and
still physically interesting cases, considerable simplifications happen: for weak gravitational
and electric fields (M � R, q � R) equation (24) reduces to the standard Gauss law
of electrostatics, i.e. a0(r) and k(r) can be explicitly calculated from σ(r). Then also
equations (26) and (27) for the metric potentials H2 and H3 can be explicitly integrated,
at least for some simple and characteristic charge distributions σ(r). For strong gravitational
fields, but weak electric fields, the term 1

2q(H ′
0 − H ′

2) in equation (24), being of order q2,
is still negligible, and the system (24), (26), (27) separates. However, the Schwarzschild
factor F(r) = 1 − 2M/r makes the integration of equation (24), and of (26) and (27) more
complicated. The division of the following analysis into the three subsections 3.3.1 (weak field
case), 3.3.2 (small charge q) and 3.3.3 (strong field case) is, however, appropriate not only for
these mathematical reasons but also in analogy with the development and understanding of the
(simpler) dragging phenomena due to a rotating shell, which happened historically in the three
decisive steps, ‘weak field’, ‘strong gravitational field’ and ‘strong gravitational and electric
field’.

3.3.1. The weak field case. In this case equation (24) reduces to the standard Gauss law

(r2a′
0)

′ − 2a0 = 4πr2λσ. (31)

In order that the charge distribution σ(r) have a finite dipole moment dz =∫
d3r(r cos ϑ)λσ(r) cos ϑ, σ(r) has to fall off asymptotically faster than r−4, and as a first

representative example we choose 4πσ1(r) = δr−5, with a (dimensional) constant δ. Herewith
equation (31) has in the exterior r > R a special inhomogeneous solution a

(inh)
0 = λδ/4r3, and

the admissible homogeneous solution a
(h1)
0 ∼ r−2. In the interior r < R we have σ(r) = 0,

and the admissible homogeneous solution a
(h2)
0 ∼ r . The total solution

a0 (r > R) = λδ

4r3
+

c1

r2
and a0 (r < R) = Cr, (32)

with constants c1 and C, has to be continuous at r = R, and, due to a′
0(r) = −e(r) and the

isolator property of the shell material, it has to have a continuous derivative a′
0(R). These

boundary conditions result in c1 = −λδ/3R (coinciding with the negative dipole moment of



4754 H Pfister et al

σ1(r)), and C = −λδ/12R4. Therefore, the complete exterior solution of equation (31) for
this model reads

a0(r) = − λδ

3Rr2
+

λδ

4r3
. (33)

The fact that a0 and e = −a′
0 decrease asymptotically faster than r−1 confirms that we have

no electromagnetic radiation. From equation (33) we get

k(r) = 4qλδ

3R

(
1

r3
− 9R

8r4

)
,

and from equation (27): H3(r) = −2qλδ/3Rr3. According to our determination of the
material properties of the shell, also the function H2(r), and with it the function H3(r), is
continuous at the shell position r = R. Therefore, together with equations (22) and (23), the
acceleration (in z-direction) of the interior test particles is given by

g1 = d2z

dt2
= H3(R)

6R
= −qλδ

9R5
. (34)

In order to derive the dragging effect, this acceleration has to be scaled by the acceleration b1

(in z-direction) which the charge distribution σ1(r) induces on the charged shell as a whole.
In the weak field case we have 1 − √

F(R) ≈ M/R, and therefore in the numerator of
equation (30) the first term is negligible in comparison to the second. We get b = −qe(R)/M ,
and with equations (21) and (33):

b1 = − qλδ

12MR4
. (35)

This result coincides with a calculation of b1 from the Coulomb law of classical electrostatics
(interaction of σ1(r) with the RN shell which can here be substituted by a point charge at the
origin),

b1 = − 1

M

∫
d3r

1

r2
q cos ϑλσ1(r) cos ϑ,

which constitutes (in the weak field case) another justification for setting δSτ
τ = δSϑ

ϑ = 0.
With equation (35), the dragging factor for the charge distribution σ1(r) is

d1 = g1

b1
= 4M

3R
. (36)

By accident this result coincides exactly with the Thirring result [4] for a slowly rotating
and weakly massive shell. It is, of course, to be expected that the number in front of the
ratio M/R in equation (36) changes by going to other charge distributions. Therefore, we
have calculated (along the same procedure as above) the dragging factor d also for some
alternative charge distributions 4πσ2(r) = 6Rδ(r−6 − Rr−7), 4πσ3(r) = 3δ(r−5 − Rr−6)

and 4πσ4(r) = 6δ(r−5 − 2Rr−6 + R2r−7), for all of which σ(r) vanishes at the shell
position r = R, which all have the same ‘total charge’ λδ/8R2 in the upper hemisphere
0 � ϑ � π/2, but which, according to figure 2, have increasingly higher values of the
‘centre of charge’.

The resulting dragging factors d2 = 37M/21R ≈ 1.76M/R, d3 = 2M/R and d4 =
52M/21R ≈ 2.47M/R then increase ‘accordingly’. In order to analyse in more detail the
dependence of d on the ‘position’ of the charge, we have also calculated the dragging factor d
for the δ-type (respectively shell type) charge distribution 4πσ(r) = δ/[2R2(ζR)2]δ(r − ζR)

for arbitrary ζ > 1, with the result

d = M

R

(
16

3
ζ − 5

)
. (37)
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Figure 2. A comparison of the functions r2σi(r) which integrate to the total charge (in a
hemisphere), for the different charge distributions σi(r) (i = 1, 2, 3, 4) given above.

The qualitative structure of these results for the dragging factor d follows (disregarding
numerical factors) already from general and dimensional arguments: if, in a first step, we do
not care for the detailed structure of the charge distribution σ(r), the only model parameters
on which d can depend, are R,M and q, where in the weak field case M and q can occur only
linearly. However, it is clear that in the ratio d = g/b the parameter q cancels. Therefore, the
dimensionless quantity d has to be proportional to M/R. Furthermore, since the acceleration b
is essentially determined by the ‘total charge’ of the distribution σ(r) whereas the acceleration
g is dominated by the dipole moment dz of this distribution, the dominating part of the ratio d
has to contain a factor ζ , if σ(r) is centred around r = ζR.

3.3.2. A shell with arbitrary mass but small charge. As shown in the first part of section 3.3,
in this case the Einstein–Maxwell equations (24), (26), (27) again separate. Therefore, we can
first integrate equation (24) for the function a0(r) which reads in the present case

(r2a′
0)

′ − 2r

r − 2M
a0 = 4πr2λσv0. (38)

We would first like to consider the rhs of equation (38) for the charge function σ1(r) ∼ r−5:
if we demand that the ‘total charge’ in a hemisphere stays independent of M/R, the rhs
of equation (38) has to read λδr−3, as in the weak field case, and without additional
‘Schwarzschild factors’ (1 − 2M/r). (Corresponding expressions result for the charge
functions σ2(r), σ3(r) and σ4(r) of section 3.3.1.) One homogeneous solution of equation (38)
reads a

(h2)
0 ∼ r −2M which, however, diverges for r → ∞. The other homogeneous solution,

which is physically acceptable in the exterior, is constructed from here by d’Alembert’s
reduction procedure:

a
(h1)
0 (y) ∼ 1 − y

y
log(1 − y) + 1 − y

2
, (39)

where y = 2M/r . This solution is also known from the literature [31]. For charge functions
σi(r) corresponding to the simple powers of r−1 or sums of such terms in section 3.3.1, also
the inhomogeneous solution of equation (38), decreasing asymptotically at least like r−3 can
be found in analogy with equation (39). For the rhs λδr−3 we get

a
(inh)
0 (y) = λδ

(2M)3

[
1 − y

y
log(1 − y) + 1 − y

2
− y2

6
(1 − y)

]
. (40)
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(For the charge functions σ2(r), σ3(r) and σ4(r), the solution looks similar but additional
powers ∼ y4, y5 have to be ‘subtracted’ from the log term.) The exterior total solution

a0(y) = a
(inh)
0 (y) + c1a

(h1)
0 (y) (41)

now has to join continuously, and with continuous derivative, to the interior solution Cr of
equation (38) with M = 0 and σ(r) = 0. Thereby, the constant c1 is fixed to

c1 = − λδ

(RY )3

{
1 +

Y 2(3 − 4Y )

6[log(1 − Y ) + Y ]

}
, (42)

with Y = 2M/R. (The asymptotic behaviour of a0(y) is now no longer ruled by the dipole
moment of σ1(r) in the Schwarzschild background.) The constant C attains a similar but less
interesting value. With e(r) = −a′

0(r) we derive from equation (41)

e(y) = λδ

6(RY )4

{
Y 2(3 − 4Y )

log(1 − Y ) + Y

[
log(1 − y) + y +

y2

2

]
− 2y3 + 3y4

}
. (43)

In order to determine the function H3(r) from equation (27), we need also to know the auxiliary
function k(r) which reads in the variable y

k(y) = − 4q

RY
y2

∫ y

0
dy ′

[
λδ

2(RY )3
y ′ +

a0(y
′)

y ′2(1 − y ′)

]
,

and integrates to

k(y) = − qλδ

3(RY )4

{
Y 2(3 − 4Y )

log(1 − Y ) + Y

[
log(1 − y) + y +

y2

2

]
− 2y3 + 3y4

}
= −2qe(y), (44)

where the last identity is already evident from equation (25). With k(y) and a0(y)

known, the function H3(y) can be explicitly calculated from equation (27), by the ansatz
H3(y) = c(y)H

(h)
3 (y) = c(y)/y(1 − y)2:

H3(y) = 2qλδ

3(RY )4

{
Y 2(3 − 4Y )

log(1 − Y ) + Y

[
3 − 2y

y
log(1 − y) + 3 − y

2

]
− y3(5 − 4y)

10(1 − y)2

}
. (45)

Also for more general, physically reasonable charge distributions σ(r),H3(y) diverges in the
collapse limit y → 1 like (1−y)−2, whereas e(y) goes to zero in this limit. With equation (34),
the acceleration (in the z-direction) of the interior test particles is given by

g = H3(Y )

6R
. (46)

Omitting terms of order q2, equation (30) for the acceleration b of the RN shell reads

b = H3(Y )

6R
− qe(Y )

R(1 − √
1 − Y )

, (47)

and therefore

dlinear = g

b
= 1

1 − κ
, (48)

with

κ = 6qe(Y )

(1 − √
1 − Y)H3(Y )

= Y (1 − Y )2

2(1 − √
1 − Y )

× (1 − Y )2 log(1 − Y ) + Y (1 − 3
2Y + 1

3Y 2)[
(1 − Y )4 − Y 2

6

(
1 − 8

5Y + 2
3Y 2

)]
log(1 − Y ) + Y (1 − Y )2

(
1 − 3

2Y + 2
9Y 2

) − Y 3

18

(
1 − 4

5Y
) .

(49)
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Figure 3. A comparison of the linear dragging coefficient dlinear from equation (48) (solid line),
with the dragging coefficient dBC inside a rotating mass shell (dotted line), in dependence of
Y = 2M/R.

Obviously we have κ → 0 in the collapse limit Y → 1 (and this for all reasonable charge
distributions σ(r)). Therefore, the dragging factor d reaches the limit of total dragging,
d → 1, and this with correction term ∼(1 − Y )−2, i.e. with horizontal tangent. In figure 3,
our result from equation (48) is compared to the dragging factor dBC for a rotating mass
shell, according to [9], which reads in our notation (with the Schwarzschild radial coordinate):
dBC = 2 − 2

√
1 − Y − Y/(1 + 2

√
1 − Y ).

We see that for Y < 1
4 dlinear(Y ) exceeds dBC by at most 10%. For higher Y-values

dlinear(Y ) exceeds dBC by up to 30% because dlinear reaches the limiting value d(Y = 1) = 1
with horizontal tangent whereas dBC has slope d

dY
dBC

∣∣
Y=1 = 3. For the charge distributions

σ2(r), σ3(r) and σ4(r) from section 3.3.1, dlinear exceeds dBC of course in the whole region
0 < Y < 1, and coincides with dBC only at the limiting points Y = 0 and Y = 1.

3.3.3. The general strong field case. As already mentioned at the end of section 3.3, in this
case the differential equations (8), (15), (20) and (21) for the functions H0(r),H2(r), a0(r)

and e(r) could not be separated, and therefore cannot be solved analytically. We therefore
turn to a numerical solution of these equations. We use the dimensionless variable
y = 2M/r , and introduce the ‘reduced’ functions u1(y) = (3H0(y) − H2(y))/qy3, u2(y) =
(H0(y) + H2(y))/qy2, u3(y) = 2e(y)/y3 and u4(y) = 4a0(y)/My2, all of which approach
asymptotically (for y → 0) non-zero constants. With p = q2/4M2, and with F(y) =
1 − y + py2, the differential equations for u1(y), . . . , u4(y) then read:

yF(y)
du1

dy
+ (4 − 6y + 5py2)u1 + 2pyu2 + 4u3 − 3u4 = 0, (50a)

yF(y)
du2

dy
+ yF(y)u1 − y(2 − 3py)u2 − yu4 = 0, (50b)

yF(y)
du3

dy
− py3

(
1 − p

2
y
)

u1 + py
(

1 +
p

2
y2

)
u2 + (1 − y + 3py2)u3

−
(

1

2
+ py2

)
u4 = 2λδ

(RY )4
yF(y), (50c)
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Figure 4. Level lines for representative values of dlinear in the physical region of the model
parameters α = 2M/R and β = q2/R2 (compare figure 1).

y
du4

dy
− 4u3 + 2u4 = 0. (50d)

The boundary conditions at the shell y = Y are

u2(Y ) = Y

3
u1(Y ), (51a)

resulting from H2(R) = 0, and

u4(Y ) = −4u3(Y ), (51b)

resulting from the continuous connection of a0(r) and e(r) to the interior solutions
a0(r < R) = Cr , and e(r < R) = −C, with a constant C. Together with the regularity
of u1(y), . . . , u4(y) at the boundary y = 0, the conditions (51a), (51b) lead to a unique
solution of the system (50a)–(50d).

Since this system is a boundary value problem we choose to search for the solution by
expanding the functions as a finite sum of (appropriately scaled) Chebyshev polynomials. This
procedure ensures that the solution will be regular even though the equations are degenerate
at F(y) = 0. Inserting these sums into the equations and the boundary conditions yields a
linear system of equations for the expansion coefficients which can be solved uniquely.

In this way the solution of the differential equations can be found with machine accuracy.
With H0(R) and e(R) calculated in this way, the linear dragging coefficient results from
dlinear = g/b, with g = H3(R)/6R, and b from equation (30). Figure 4 shows characteristic
lines dlinear = const in the plane of the model parameters α = 2M/R and β = q2/R2

(compare figure 1). In the underextreme case p < 1
4 , the RN shell collapses in the limit

Y → (1/2p)(1 − √
1 − 4p) =: Y0, where the function F(Y0) vanishes. In this limit the
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Figure 5. Level lines for representative values of drot in the physical region of the model parameters
α = 2M/R and β = q2/R2 (compare figure 1).

functions u1(y → Y0) and u2(y → Y0) diverge, and the above numerical procedure may
loose its reliability. However, this limit can again be treated analytically: as in the case of
a small charge (in section 3.3.2), in the collapse limit the functions u3(y) and u4(y), and
their derivatives, are negligible as compared to the functions u1(y) and u2(y). Herewith,
equation (50c) reduces to u2(y) ≈ yu1(y), and both equations (50a) and (50b) attain the same
form

yF(y)
du1

dy
− (3 − y)u1 = 0. (52)

An ansatz u1(y → Y0) ∼ (y −Y0)
−j leads then, together with F(y → Y0) ≈ −√

1 − 4p(y −
Y0), to

j = 6p − 1 +
√

1 − 4p

4p − 1 +
√

1 − 4p
. (53)

For p = 0, we have j = 2, in agreement with the divergence H3(y) ∼ (1 − y)−2 of
equation (45) in the collapse limit y → 1. In the region 0 < p � 1

4 , the exponent j
increases monotonically until j = ∞ for p = 1

4 . Since in the collapse limit we can
neglect e(R) as compared to H3(R), and we have F(R) ≈ 0, equation (30) reduces to
b = H3(R)(1 + q2/R2)/6R, and we get for the linear dragging coefficient in the collapse limit

dlinear(Y0) = 1

1 + q2/R2
= 1

1 + β
. (54)

These values coincide nicely with the limiting values of the numerical curves dlinear = const
in figure 4.

For comparison of dlinear(α, β) with the dragging factor inside a rotating RN shell, we
have transformed figure 1 of the paper [23] from the parameters used there to the parameters
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α and β, and we show drot (α, β) in figure 5. Whereas drot is equal to 1 (total dragging) on the
whole line β = α −1 (collapse limit), dlinear attains the value 1 only at the point α = 1, β = 0.
Accordingly, the level lines with d between 1 and 0.3 are ‘steeper’ in the rotational case, as
compared to the linear case. For d � 0.3 this behaviour changes, partly because all lines
drot = const have to ‘turn around’ in order to meet in the ‘singular point’ α = 2, β = 1. (In the
variables used in the paper [23], which are scaled by the shell radius in isotropic coordinates,
this point is at infinity.) The level line dlinear = 0 is exactly represented by the line β = α

because then F(R) = 1 − α + β = 1 and, according to equation (30), the acceleration b of the
RN shell diverges. In the linear and in the rotational case, the dragging factor attains negative
values (‘antidragging’) in part of the region (in light grey shading) where the weak energy
condition is violated. However, whereas drot attains arbitrarily negative values in the region
(in dark grey shadow) where also the dominant energy condition is violated (see figure 1
in [23]), dlinear seems to be limited by dlinear � −0.22.
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