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Preface

This book is a sequel to Symmetries and Integration Methods (2002), by
George W. Bluman and Stephen C. Anco. It includes a significant update of
the material in the last three chapters of Symmetries and Differential Equa-
tions (1989; reprinted with corrections, 1996), by George W. Bluman and
Sukeyuki Kumei. The emphasis in the present book is on how to find sys-
tematically symmetries (local and nonlocal) and conservation laws (local and
nonlocal) of a given PDE system and how to use systematically symmetries
and conservation laws for related applications. In particular, for a given PDE
system, it is shown how systematically (1) to find higher-order and nonlocal
symmetries of the system; (2) to construct by direct methods its conserva-
tion laws through finding sets of conservation law multipliers and formulas to
obtain the fluxes of a conservation law from a known set of multipliers; (3) to
determine whether it has a linearization by an invertible mapping and con-
struct such a linearization when one exists from knowledge of its symmetries
and/or conservation law multipliers, in the case when the given PDE system
is nonlinear; (4) to use conservation laws to construct equivalent nonlocally
related systems; (5) to use such nonlocally related systems to obtain nonlo-
cal symmetries, nonlocal conservation laws and non-invertible mappings to
linear systems; and (6) to construct specific solutions from reductions arising
from its symmetries as well as from extensions of symmetry methods to find
such reductions.

This book is aimed at applied mathematicians, scientists and engineers
interested in finding solutions of partial differential equations and is written
in the style of the above-mentioned 1989 book by Bluman and Kumei. There
are numerous examples involving various well-known physical and engineering
PDE systems.

The preceding book by Bluman and Anco includes comprehensive treat-
ments of dimensional analysis, Lie groups of transformations, the discovery
and use of symmetries to construct solutions of ordinary differential equa-

ix



x Preface

tions, and also shows how to construct conservation laws (first integrals) of
ordinary differential equations through multipliers (integrating factors) as
well as how to construct invariant solutions of partial differential equations
from their point symmetries.

Chapter 1 reviews essential material from the Bluman and Anco book
on one-parameter Lie groups of point transformations and how to find point
symmetries of PDE systems and extends this material to the consideration of
one-parameter higher-order local transformations and the finding of higher-
order symmetries of PDE systems. This is followed by a comprehensive treat-
ment on how to construct directly the local conservation laws essentially for
any given PDE system. This treatment is based on first finding conservation
law multipliers. It is shown how this treatment is related to and subsumes
the classical Noether’s theorem (which only holds for variational systems).
In particular, multipliers are symmetries of a given PDE system only when
the system is variational as written. There is a full discussion on connections
between symmetries and conservation laws including the use of symmetries
to find one or more additional conservation laws from a known conservation
law.

Chapter 2 deals with the construction of local mappings relating a given
PDE system to a target system of interest (or a member of a target class
of PDE systems) from knowledge of the symmetries and/or conservation law
multipliers of the given PDE system. In particular it is shown how to deter-
mine whether (1) a given nonlinear PDE system can be mapped invertibly to
a linear PDE system and it is shown how to construct such a mapping when
one exists; (2) a given linear PDE with variable coefficients can be mapped
invertibly to a linear PDE with constant coefficients and it is shown how to
construct such a mapping when one exists.

Chapter 3 considers perhaps the most important application of the mate-
rial on conservation laws presented in Chapter 1. In particular, it is shown
how to use local conservation laws and subsystems of a given PDE system
to construct systematically a tree of equivalent nonlocally related systems.
One of the many exhibited examples involves the planar gas dynamics equa-
tions, for which it is shown how the Euler and Lagrange systems are related
systematically within such a tree of nonlocally related systems.

Chapter 4 considers the applications of such nonlocally related systems to
find systematically nonlocal symmetries and nonlocal conservation laws of a
given PDE system. In turn, it is shown how to use such nonlocal symme-
tries to construct nonlocal mappings of nonlinear PDE systems to equivalent
linear PDE systems and to use conservation law multipliers of nonlocally re-
lated systems to construct nonlocal mappings of linear PDEs with variable
coefficients to equivalent linear PDEs with constant coefficients.

The topics of Chapter 5 include how to use various kinds of symmetries
to construct explicit solutions of PDEs, a discussion of the complexity in-
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volved in the construction of interesting nonlocally related systems in multi-
dimensions, and a discussion of existing software to implement the procedures
presented in this book.

If one is primarily interested in the material of Chapters 3–5, then Chapter
2 can be skipped. Chapter 1 is essential reading for all subsequent chapters.

Every topic is illustrated by examples. All sections have many exercises. It
is essential to do some of the exercises to obtain a working knowledge of the
presented material. Each chapter begins with a comprehensive Introduction
section. The Discussion section at the end of each chapter discusses related
work and puts the subject matter of the chapter in context for later chapters.

Within each section of a given chapter, definitions, theorems, corollaries,
and remarks are numbered separately and consecutively. For example, Re-
mark 4.2.1 refers to the first remark in Section 4.2. Exercises appear at the
end of each section; Exercise 4.2.2 refers to the second problem of Exercises
4.2, i.e., the second problem at the end of Section 4.2.

There are separate Author and Subject indices as well as a References
section. In addition there is a Theorem, Corollary and Lemma Index.

The authors are grateful to their many collaborators without whom this
book would not have been possible. In particular we wish to thank Ju-
lian Cole (posthumously), Sukeyuki Kumei, Gregory Reid, Vladimir Shtelen,
Zhenya Yan, Temuerchaolu, Oleg Bogoyavlenskij, Nataliya Ivanova, Dennis
The, Sheng Liu, Thomas Wolf, and Juha Pohjanpelto.

Thanks also to Andy Wan, Chengzhong Wu, Raouf Dridi and Olivier Glo-
rieux for valuable comments on preliminary versions of the manuscript.

Finally, we thank our respective families for their patience and understand-
ing through the course of our writing including our children David, Benny,
Vladimir, Tatiana, Maria, and Darren to whom this book is dedicated.

Vancouver, British Columbia, Canada George W. Bluman
Saskatoon, Saskatchewan, Canada Alexei F. Cheviakov
St. Catharines, Ontario, Canada Stephen C. Anco



Introduction

This book is concerned with some modern developments related to sym-
metries and conservation laws for partial differential equations (PDEs). It
is a sequel to Symmetry and Integration Methods for Differential Equations
(2002) by George W. Bluman and Stephen C. Anco (2002), which focused
on Lie groups of transformations and their applications to solving ordinary
differential equations (ODEs) and finding invariant solutions of PDEs. The
present volume primarily concentrates on recent research of the authors and
their collaborators. Most important, we attempt to put this work in a form
accessible to graduate students and researchers in applied mathematics, the
physical sciences and engineering. Most of the material in this book did not
appear in Symmetries and Differential Equations [(1989); reprinted with cor-
rections (1996)], by George W. Bluman and Sukeyuki Kumei, and includes a
significant updating of the final three chapters.

In the latter part of the 19th century, Sophus Lie initiated his studies on
continuous groups (Lie groups) with the aim to put order to, and thereby ex-
tend systematically, the hodgepodge of heuristic techniques for solving ODEs.
He showed that the problem of finding the Lie group of point transforma-
tions leaving invariant a DE (ordinary or partial), i.e., a point symmetry of
a DE, reduced to solving related linear systems of determining equations for
its infinitesimal generators. Lie also showed that a point symmetry of a DE
leads, in the case of an ODE, to reducing the order of the DE (irrespective
of any imposed initial conditions) and, in the case of a PDE, to finding spe-
cial solutions called invariant (similarity) solutions of the DE. Moreover, he
showed that a point symmetry of a DE generates a one-parameter family
of solutions from any known solution of a DE that is not an invariant solu-
tion arising from the symmetry. Most importantly, Lie’s work is applicable
to nonlinear DEs. His work is discussed in the two above-mentioned books
as well as many other excellent references therein. The direct applicability of
Lie’s work to PDEs, especially nonlinear PDEs, is rather limited, even when
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xiv Introduction

a given PDE has a point symmetry, since the resulting invariant solutions
yield only a small subset of the solution set of the PDE and hence few posed
boundary value problems can be solved.

The extensions of Lie’s work to PDEs have focused on finding further ap-
plications of point symmetries to include linearization mappings and solutions
of boundary value problems, extending the spaces of symmetries of a given
PDE system to include local symmetries (higher-order symmetries) as well
as nonlocal symmetries, extending the applications of symmetries to include
variational symmetries that yield conservation laws for variational systems,
extending variational symmetries to multipliers and resulting conservation
laws for any given PDE system, finding further solutions that arise from
the extension of Lie’s method to the “nonclassical method” as well as other
generalizations, and efficiently solving the (over-determined) linear system of
symmetry and/or multiplier determining equations through the development
of symbolic computation software as well as related calculations for solving
the nonlinear system of determining equations for the nonclassical method.

A symmetry of a PDE system is any transformation of its solution manifold
into itself, i.e., a symmetry transforms (maps) any solution of a PDE system
to another solution of the same system. Consequently, continuous symmetries
of PDE systems are defined topologically and hence are not restricted to
just point symmetries. Thus, in principle, any nontrivial PDE system has
symmetries. The problem is to find and use such symmetries. Practically,
to find a symmetry of a PDE system, one must consider transformations,
acting locally in some finite-dimensional space, whose variables include the
dependent variables of the PDE system. However, as it will be seen, these
transformation variables do not have to be restricted to the independent and
dependent variables of a given PDE system.

One such extension is to consider higher-order symmetries (local symme-
tries) where the solutions of the linear determining equations for the com-
ponents of infinitesimal generators of symmetries are allowed to depend on
a finite number of derivatives of the given dependent variables of the PDE.
[By comparison, components of infinitesimal generators of point symmetries
allow dependence at most linearly on the first derivatives of the dependent
variables whereas components of infinitesimal generators of contact symme-
tries allow arbitrary dependence on first derivatives of dependent variables.]
In making this extension, it is essential to realize that the linear determining
equations for local symmetries are the linearized system of the given PDE
that holds for all of its solutions. Globally, point and contact symmetries act
on finite-dimensional spaces whereas higher-order symmetries act on infinite-
dimensional spaces consisting of the dependent and independent variables as
well as all of their derivatives. Well-known integrable equations of mathemat-
ical physics such as the Korteweg–de Vries equation have an infinite number
of higher-order local symmetries.
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Another extension is to consider solutions of the determining equations
that allow an ad-hoc dependence on nonlocal variables such as integrals of
the dependent variables. Usually such symmetries are found formally through
recursion operators that depend on inverse differentiation. Integrable equa-
tions such as the sine-Gordon and cubic Schrödinger equations have an infi-
nite number of such nonlocal symmetries.

In her celebrated 1918 paper, Emmy Noether showed that if a system of
DEs admits a variational principle, then any local transformation group leav-
ing invariant the action integral for its Lagrangian density, i.e., an admitted
variational symmetry, yields a local conservation law. Conversely, any local
conservation law of a variational DE system arises from a variational sym-
metry, and hence there is a direct correspondence between local conservation
laws and variational symmetries (Noether’s theorem and its generalizations
due to Bessel-Hagen (1921) and Boyer (1967)).

There are several limitations to Noether’s theorem for finding the local
conservation laws for a given DE system. First of all, it is restricted to vari-
ational systems. Consequently, for this theorem to be applicable to a given
DE system as written, the system must have the same number of dependent
variables as the number of equations in the given system, and have no dis-
sipation. Moreover, if a given DE system consists of one scalar equation, it
must be of even order. In particular, a given system of DEs, as written, is
variational if and only if its linearized system is self-adjoint. There is also the
difficulty of finding local symmetries of the action integral. In general, not
all local symmetries of a variational DE system are variational symmetries.
Moreover, the use of Noether’s theorem to find local conservation laws is
coordinate-dependent.

A conservation law of a given DE system is a divergence expression that
vanishes on all solutions of the DE system. Conservation laws describe es-
sential properties of the process modeled by a given DE system and are also
used for existence, uniqueness and stability analysis and for the development
of numerical methods. In general, all such divergences that yield local con-
servation laws arise from linear combinations of the DEs of a given system
taken with sets of local multipliers in which each multiplier is an expression
depending on the independent and dependent variables as well as derivatives
(up to some finite order) of the dependent variables of a given DE system.
It will be seen that a given DE system has a local conservation law if and
only if there exists a set of local multipliers such that the corresponding lin-
ear combination of the DEs in the system is identically annihilated by the
Euler operators associated with each of its dependent variables without re-
stricting these variables to solutions of the DE system, i.e., the dependent
variables are now treated as arbitrary functions. If a given DE system, as
written, is variational then its local conservation law multipliers correspond
to variational symmetries. In this case, it turns out that its local conservation
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law multipliers satisfy a system of determining equations that includes the
linearizing system of the given DE system augmented by additional deter-
mining equations that taken together correspond to the action integral being
invariant under the associated variational symmetry. More generally, for any
given DE system, all local conservation law multipliers are the solutions of
an easily found linear determining system that includes the adjoint system of
the linearizing DE system. For any set of local conservation law multipliers,
one can either directly find the fluxes and density of the corresponding local
conservation law or, if this proves difficult, there is an integral formula that
yields them without the need of a specific functional (Lagrangian) even in
the case when the given DE system is variational.

Another important application of symmetries of PDEs is to determine
whether a given PDE system can be mapped into an equivalent target PDE
system of interest. This is especially significant if a target class of PDEs
can be completely characterized in terms of its symmetries. Target classes
with such complete characterizations include linear PDE systems and linear
PDEs with constant coefficients. Consequently, from knowledge of the point
or contact symmetries of a given PDE system, one can determine whether
it can be mapped invertibly to a linear PDE system by a point or contact
transformation and explicitly find such a mapping when one exists. Moreover,
one can also see whether such a linearization is possible from knowledge of the
local conservation law multipliers of a given PDE system. From knowledge
of the point symmetries of a linear PDE with variable coefficients, one can
determine whether it can be mapped by an invertible point transformation
to a linear PDE with constant coefficients and find such an explicit mapping
when one exists.

In order to effectively apply symmetry methods to PDE systems, one needs
to work in some specific coordinate frame in order to perform calculations.
A procedure to find symmetries that are nonlocal and yet are local in some
related coordinate frame involves embedding a given PDE system in another
PDE system obtained by adjoining nonlocal variables in such a way that the
related PDE system is equivalent to the given system and the given system
arises through projection. Consequently, any local symmetry of the related
system yields a symmetry of the given system. If the local symmetry of the
related system has an essential dependence on the nonlocal variables after
projection, then it yields a nonlocal symmetry of the given PDE system.

A systematic way to find such an embedding is through local conservation
laws of a given PDE system. For each local conservation law, one can intro-
duce a potential variable(s). By adjoining the resulting potential equations
to the given PDE system, one can construct an augmented system (poten-
tial system) of PDEs. By construction, such a potential system is nonlocally
equivalent to the given PDE system since, through built in integrability con-
ditions, any solution of the given PDE system yields a solution of the poten-
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tial system and, conversely, through projection any solution of the potential
system yields a solution of the given PDE system. But this relationship is
nonlocal since there is no one-to-one correspondence between solutions of the
given and potential systems. If a local symmetry of the potential system has
an essential dependence on the potential variables when projected onto the
space of variables of the given system, then it yields a nonlocal symmetry
(potential symmetry) of the given PDE system. It turns out that many PDE
systems have such potential symmetries. Moreover, one can find other non-
local symmetries of a given PDE system through seeking local symmetries of
an equivalent subsystem of the given system or one of its potential systems
provided that such a subsystem is nonlocally related to the given PDE sys-
tem. Invariant solutions of such potential systems and subsystems can yield
further solutions of the given PDE system. A potential symmetry is a local
symmetry of a potential system, thus it generates a one-parameter family of
solutions from any known solution of the potential system that in turn yields
a one-parameter family of solutions from a known solution of the given PDE
system. Similarly, this will be the case for a nonlocal symmetry arising from
a subsystem. Furthermore, local conservation laws of potential systems can
yield nonlocal conservation laws of a given PDE system provided that their lo-
cal conservation law multipliers have an essential dependence on the potential
variables. Linearizations of such potential systems through local symmetry
or local conservation law multiplier analysis can yield explicit nonlocal lin-
earizations of a given PDE system. Moreover, through a potential system one
can extend the mappings of linear systems with variable coefficients to linear
systems with constant coefficients to include nonlocal mappings between such
systems.

One can further extend embeddings through using local conservation laws
to systematically construct trees of nonlocally related but equivalent systems
of PDEs. If a given PDE system has n local conservation laws, then each
conservation law yields potentials and corresponding potential systems. Most
importantly, from the n local conservation laws, one can directly construct
up to 2n − 1 independent nonlocally related systems of PDEs by consider-
ing the corresponding potential systems individually (n singlets), in pairs
(n(n − 1)/2 couplets), . . . , and taken all together (one n-plet). In turn, any
one of these 2n − 1 systems could lead to the discovery of new nonlocal sym-
metries and/or nonlocal conservation laws of the given PDE system or any of
the other nonlocally related systems. Moreover, such nonlocal conservation
laws could yield further nonlocally related systems, etc. Furthermore, subsys-
tems of such nonlocally related systems could yield further nonlocally related
systems. Correspondingly, a tree of nonlocally related systems is constructed.
Through such constructions, one can systematically relate Eulerian and La-
grangian coordinate descriptions of gas dynamics and nonlinear elasticity. In
both cases, for a corresponding PDE system written in Eulerian coordinates,
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there exists a nonlocally related system that yields a corresponding PDE
system written in Lagrangian coordinates.

For a given class of PDEs with classifying (constitutive) functions, it is of
interest to classify its trees of nonlocally related systems and corresponding
symmetries and conservation laws with respect to various forms of its con-
stitutive functions. When a system is variational, i.e., its linearized system is
self-adjoint, then of course the local conservation laws arise from a subset of
its local symmetries and, in particular, the number of linearly independent
conservation laws cannot exceed the number of corresponding higher-order
symmetries. But from the above, one can see that, in general, this will not be
the case when a system is not variational. Here a specific constitutive func-
tion could yield more local conservation laws than local symmetries as well
as vice versa.

For any given PDE system, a transformation group (continuous or dis-
crete) that leaves it invariant yields a formula that maps a conservation law
to a conservation law of the same system, whether or not the given system
is variational. If the group is continuous, then in terms of a parameter ex-
pansion a given conservation law could map into more than one additional
conservation law for the given PDE system.

Another important extension relates to Lie’s work on finding invariant
solutions for PDE systems. As mentioned previously, a point symmetry of
a PDE system maps each of its solutions into a one-parameter family of
solutions. But some solutions map into themselves, i.e., they are themselves
invariant. Such solutions satisfy the characteristic PDE given by the invariant
surface condition yielding the invariants of the point symmetry. The invari-
ant solutions arising from the point symmetry are the solutions of the given
PDE system that satisfy the augmented system consisting of this character-
istic PDE with known coefficients (obtained from the point symmetry) and
the given PDE system itself. The invariant solutions arise as solutions of a
reduced system with one less independent variable. This method (“classical
method”) of Lie to find invariant solutions of a given PDE is generalized by
the nonclassical method introduced in Bluman’s 1967 PhD thesis where one
seeks solutions of an augmented system consisting of the given PDE system
and the characteristic PDE with unknown coefficients as well as differen-
tial consequences of the augmented system. Here the unknown coefficients
are determined by substituting the characteristic equation, and its differen-
tial consequences, into the determining system for point symmetries of the
augmented system. The resulting over-determined system is nonlinear (even
if the given PDE system is linear) in these unknown coefficients, but less
over-determined than is the case when finding point symmetries of the given
PDE system. Each solution of the determining system for point symmetries
is a solution of the determining system for the unknown coefficients of the
characteristic PDE. Solving for the unknown coefficients, one then proceeds
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to find the corresponding “nonclassical” solutions of the augmented system
that, by construction, include the classical invariant solutions.

The solutions of a PDE that can be obtained by the nonclassical method
include all of its solutions that satisfy a particular functional form (ansatz)
of some generality that allows an arbitrary dependence on a similarity vari-
able (depending on the independent and dependent variables of the PDE)
and an arbitrary dependence on a function of a similarity variable and the
independent variables of the PDE. The solutions obtained by the nonclassical
method include all solutions obtained “directly” from such an ansatz by the
direct method introduced by Clarkson and Kruskal in 1988.

For many PDE systems arising in applications, the linear determining
equations for local symmetry components or local conservation law multipli-
ers split into over-determined linear PDE systems that can contain hundreds
of equations. To generate, simplify and solve such PDE systems, symbolic
software is used. Modern symbolic packages include routines for the auto-
matic generation of determining equations, their subsequent simplification
and solution (including classification with respect to constitutive functions
and/or parameters of a given DE system), to yield local symmetries and
conservation laws of a given DE system.
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