
International Journal of  Theoretical Physics, Vol. 30, No. 4, 1991 

Two-Body Problem for Weber-Like Interactions 
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The problem of two moving bodies interacting through a Weber-like force is 
presented. Trajectories are obtained analytically once relativistic and quantic 
considerations are neglected. The main results are that in the case of limited 
trajectories, in general, they are not closed and in the case of open trajectories, 
the deflection angles are not the same for similar particles with given energies 
and angular momenta but opposite potentials. This last feature suggests the 
possibility of a direct verification of the validity of Weber's law of force for 
electromagnetic interactions. 

1. I N T R O D U C T I O N  

The t w o - b o d y  p r o b l e m  is a c lass ical  one  in phys ics ;  its r e so lu t ion  
d e p e n d s  on the  in te rac t ing  force  be tween  the two bodies .  A class ical  e xa mp le  
is the case  o f  centra l  forces  d e p e n d i n g  on the inverse  square  o f  the  d i s t ance  

be tween  the two bodies .  K e p l e r ' s  laws and  R u t h e r f o r d ' s  di f ferent ia l  scat ter-  
ing cross sec t ion  are w ide ly  k n o w n  resul ts  (Symon ,  1978). However ,  it is 
a lso wide ly  accep t ed  tha t  inverse  square  laws are s tr ict ly va l id  on ly  when  
the  bod ies  are  not  in re la t ive  mo t ion  with  respec t  to each  other.  In  elec- 
t r omagne t i sm ,  for  example ,  if  we want  to t rea t  the  p r o b l e m  of  two cha rged  
bod i e s  in mot ion ,  r e t a rded  po ten t i a l s  shou ld  be used.  This impl ies  tha t  in 
o rde r  to solve exact ly  the  p r o b l e m ,  all  the  p rev ious  h is tory  o f  mo t ion  shou ld  
be known,  a n d  the conc lus ion  is that  the  p r o b l e m  canno t  be so lved  exact ly;  
we can on ly  a p p r o x i m a t e  the  so lu t ion  in cer ta in  cases. This is due  to the  
fact  tha t  we do  not  k n o w  wha t  Gauss  ca l led  " the  keys tone  o f  e lec t rody-  
n a m i c s "  (Gauss ,  1867), i.e., the t rue law o f  in te rac t ion  be tween  two moving  
charges .  
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A possible law of interaction between two moving charges was proposed 
by Weber (1846). Weber's law of force has some interesting features: it 
reduces to Coulomb's law when the charges are at rest; it satisfies Newton's 
action and reaction principle; it can be derived from a velocity-dependent 
potential; it is completely relational, since it depends on the relative distance, 
velocity, and acceleration of the moving charges, so it has the same value 
for any observer; Faraday's law can be derived from it; and also Amp~re's 
law for the force between two current elements (Ampere, 1825) can be 
derived from it. 

In spite of the renewed interest in Weber's law (Assis, 1989a, b; Assis 
and Clemente, 1990; Wesley, 1987a) and experimental verifications of 
Amp~re's law versus Grasmann's/Biot-Savart law for current elements 
(Graneau, 1982, 1983, 1985, 1989a, b; Graneau and Graneau, 1985; Moys- 
sides and Pappas, 1986; Nasilowski, 1985; Pappas, 1983; Wesley, 1987b), 
the two-body problem for Weber-like interactions has not been considered 
in the literature. 

Recently, we considered the unidimensional problem of two charges 
interacting through a Weber-like force (Assis and Clemente, 1990), finding 
implications on the limiting velocity of the charges. Here, we want to treat 
the bidimensional problem of two moving bodies interacting through a 
Weber-like potential. 

It will be shown that the problem can be solved analytically once 
nonrelativistic or quantic considerations are included. The results show 
differences with the classical problem of two bodies interacting through a 
Coulomb-like potential. The main results are the possibility of perihelion 
precession for limited trajectories and the difference in deflection angles 
between scattering of particles with the same energies and impact parameters 
but opposite potential energies. This last result suggests the possibility of 
performing some experiment to directly check the validity of Weber's law. 

It is worth noting that the necessity of performing classical scattering 
calculations based on force laws different from Coulomb's was already 
pointed out by Abdelkader (1968). O'Rahilly (1965) in his famous book 
already found corrections to Rutherford's formula by using Ritz's law of 
force (Ritz, 1911). Other force laws are available (Brown, 1955; Moon and 
Spencer, 1954; Warburton, 1946); we have considered Weber's, since it 
allows for quite simple calculations. 

2. T W O - B O D Y  P R O B L E M  

Let us consider, from a classical point of view, two point bodies of 
masses m~,2, located at r,,2(t), interacting through a Weber-like force (cgs 
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Gaussian units will be used throughout): 

/ r~' i 2 \ 
V,.2 = -Vz,l= - Uo 7 ~ 1 + ~-7- ~c2} (1) 

where Uo is a constant (Uo= qlq2 if electromagnetic interaction is con- 
sidered), c is the velocity of light, r = [r I - r 2 [  , ~ =  ( r  I - r 2 ) / r  , and the over- 
dot signifies d/dt .  Here Fi, j represents the force that particle j exerts on 
particle i. 

Without loss of generality the motion of the two bodies can be studied 
in the center-of-mass frame by introducing a fictitious particle of reduced 
mass/z = rn~m2/(rnl + mz). Since F1,2 is a central force, in the center-of-mass 
flame the angular momentum will be conserved. Introducing in the plane 
of motion a polar coordinate system r, 0, with origin at the center of mass, 
the conserved angular momentum can be expressed as 

L = ~r20 (2) 

In this work we will restrict ourselves to L ~ 0, since L - 0  was already 
considered in another work (Assis and Clemente, 1990). 

The energy of the reduced-mass particle in the center-of-mass frame 
will also be conserved during interaction. It can be shown that the Weber 
force can be deduced from a potential (Wesley, 1987a) and the following 
expression for the conserved energy arises: 

W = ~ (t:2 + r202) + ~  ( I  - 2~2) (3) 

where the first term on the rhs is the kinetic energy and the second is Weber's 
generalized potential energy. 

Introducing x 2= 1 - K / r  with K = Uo/iXc 2 [here the restriction W <  
txcz(1 + c2L2/2 Uo2), arising from the vanishing of the potential energy when 
~: = v~e, is necessary in order to keep x 2 > 0], it results from (3) using (2) that 

dx 1 [(x12_x2)(x2_x~)],/2 (4) 
dO - .-e 2x--- 7 

where 

+ / x K U o [ I + (  1 2WL2\  1/2] 1 - - p -  +;-Uo j (5) 

x~,~ represent possible turning points for x; if we assume that at least one 
of them exists, the condition W>_-~UoZ/2L 2 has to be fulfilled. 

In order to integrate equation (4), it is worth noting to distinguish two 
situations as follows. 
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2.1. Uo< 0. Attractive Force 

In this case x2~1. I f  -I,~Uo2/2L2~ W<O"~x2,2> 1, this means that 
the trajectory will be limited between the two radii represented by x~,2, i.e., 
x~ --- x 2 - x~. I f  W = 0 ~ x 2 > 1 and x 2 = 1, the trajectory is open with 1 -< x 2 -< 
x~. I f  W > 0 ~ x~ > 1 and x22 < 1, this means an open trajectory with 1 -< x 2-< 

2 2 Xl. In all cases x~ represents the radius of  closest approach and if we take 
0 = 0 when x 2= x 2 it is possible to find 

f ] '  = • k) (6) 
dx x 2 

0 A = +2 [ ( x ~ - x Z ) ( x Z - x 2 ) ]  ]/2 

the incomplete elliptic integral of the second kind, where E ( ~ ,  k) is 
argument 

and parameter  

(0-< ~b-< Ir /2 and O~ k2-< 1). 

~b = a r c s i n w - 7 - - z /  
\ X  1 - -  X 2 /  

2.2. /3o > 0. Repulsive Force 

In this case x 2 ~ l .  I f  W < 0 - ~ x 2 , 2 > l ,  then no physical motion is 
possible, since 2 2<0.  I f  W = 0 ~ x ~ >  1 and 2 x2 = 1, the only possibility is 
that the bodies are at rest at an infinite distance. I f  W > 0 ~ x ~ >  1 and 
x~ < 1, this means an open trajectory with x2 2-< x2--- < 1 once the restriction 
W-</xc2(1 + c2L2/2 Uo 2) is imposed in order to avoid negative values of  x 2 . 

2 The x2 will represent the point of  closest approach,  and if we take 0 = 0 
when x 2= x~, it is possible to obtain 

f :  •  , k)] (7) 
dx x 2 

0 "  = + 2  2 -  ' / 2 -  

where E(4), k) represents the incomplete elliptic integral of  the second kind, 
~b and k being the same as above, and E(k)  is the complete elliptic integral 
of  the second kind. 

Expressions (6) and (7) formally solve the problem of the trajectory 
of two bodies interacting through a Weber-like force. It is worth noting that 
classical results due to a Coulomb-like force can be recovered by properly 
taking the limit c ~ oo in formulas (6) and (7). In this c a s e  [Xll --~ 1 and k ~ 0 
in such a way that E(~b, k ) ~ b  and E(k)~1r /2 .  
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3. DISCUSSION AND CONCLUSIONS 

It is convenient to divide the discussion into two parts, limited and 
open trajectories 

3.1. Limited Trajectory 

This occurs when the force is attractive and W < 0 .  Excluding the 
2 special case in which x21 = x2, which represents a circular orbit perfectly 

equivalent to the case of simple Coulomb-like interaction, in general, the 
orbit will be comprised between two turning radii defined by x~22. Such 
radii are the same, for given energy and angular momentum, as in the case 
of Coulomb-like interaction. What is different is that the trajectory is not 
a closed ellipse. In this respect it is interesting to calculate the angle described 
by the trajectory when the reduced-mass particle goes from the perihelion, 
reaches the aphelion, and returns to the perihelion. Such an angle is 

AO =4!x~iE(k) (8) 

It is always greater than 2~-. Assuming rl,2= a ( l :~e )  the perihelion and 
aphelion radii (a and e can be interpreted as the semimajor axis and 
eccentricity of the ellipse approximating the orbit), the shift in the perihelion 
of the orbit after one cycle can be easily calculated in the limit of small IKI: 

30 ~'IKI (9) 
a(1 - e  2) 

This result was already obtained by Assis (1989b), where a Weber-like 
law for gravitational interaction was proposed in order to explain inertia, 
by solving the linearized equations of motion instead of linearizing the 
exact solution. The correspondence with the motion of the perihelion of 
Mercury, in accordance with general relativity, is obtained when Uo = 
-Gmlrn2 (G being the universal gravitational constant) and c 2 in equation 
(1) is replaced by c2/6. It is worth noting that A0-2cr,  with A0 given by 
(8), represents the perihelion shift to all orders in IK]. 

3.2. Open Trajectory 

This occurs when W_>0, independent of the sign of U0. In analogy 
with the classical Rutherford scattering problem, where the angle of deflec- 
tion a of a reduced-mass particle with a given energy W=txVo2/2 and 
impact parameter s, such that L =/xvos, is given by 

cr = 2 arctan(S2) 1/2 (10) 
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where S 2 = 4 W2s2/Uo 2, we calculate the cor responding  deflection angle a A 
for  the attractive case as 

4E(qS*, k) ~r (11) a a = 4 [ X l [ E ( t ~  *, k ) - 7 r  = ( 1 -  k2 sin 2 0*)  '/2 

where sin 2 4~* 2 2 2 k 2 = = (x~ - 1 ) / (x l  - x2) and ( x ~ -  x~)/x~. Analogously ,  for  
the repulsive case, 

1~ E ( k ) - E ( c b * , k )  
= ~- - 4  (1 - k 2 sin 2 ~b*) 1/2 (12) 

where ~b* and  k are the same as for aa .  It  can be seen that  O/A and a R are 
funct ions o f  S 2 ( through ~b* and k 2) and Vo2/C 2 ( through k2), and they do 
not  coincide. This is perhaps  the most  interesting feature;  while in Ruther-  
ford scattering there is no difference in a when the sign o f  [-7o is reversed, 
for Weber-like interactions two different deflection angles result. Moreover ,  
while a R -< rr, as is the case for  a, a A has no limit; it diverges when $2-~ 0, 
since ~b* -> ~-/2 and k2-~ 1. The difference a A - a R is an increasing funct ion 
o f  vo2/c 2. As an example,  we show in Figure 1 a a and c~ R as funct ions o f  
S 2 for the case o f  Vo2/C 2= 0.2; a has not  been shown, .s ince it is too  close 
to aR in order  to appreciate  the difference. 

It is also interesting to compare  the resulting scattering differential 
cross sections 

do" 2 ~rs ds 

df~ - 2~" sin a da 

In  terms of  S 2 we have in the Ruther ford  case 

d a  1 6 W  2 d ( c o s a )  = ~  sin4 (13) 

For  the Weber  attracting case: 

d ~ /  16W 2 d ( c o s a  a) 

and for the Weber  repulsive case: 

d f i /  - 1 6 W  2 d(cos ~ )  (15) 

In Figure 2, expressions ( 13)- (15) have been plot ted in Uo2/16 W 2 units 
as funct ions o f  the deflection angle and v~/e 2 = 0.2. As can be seen, a small 
difference exists between expressions (13) and (15), but  expression (14) 
strongly differs f rom the other  at a close to ~r. In the Weber  attracting case 
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Fig, 1. 
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Deflection angles as a function of  S 2 = 4 W2s2/U0 2 fol"/902/C 2 = 0.2 and Weber repulsive 
(curve 1) and attractive (curve 2) interactions. 

the pole in the differential scattering cross section always exists at a = or; 
the departure from the other curves is an increasing function of  v2/c 2. 

In conclusion, the problem of  two bodies interacting through a Weber- 
like force has been solved analytically from a classical point of  view. As 
for Coulomb-like interactions, limited and open trajectories have been found 
depending on the energy of the system. Limited trajectories occur in the 
case of attractive force and negative energy; they differ from common 
ellipses since in general they are not closed curves. In this respect an 
expression for the precession of the perihelion has been obtained. 

For open trajectories, perhaps the most interesting feature is that, once 
the energy and the impact parameter are assigned, the deflection angle is 
not the same for attractive and repulsive forces, as was the case in Rutherford 
scattering. In attractive scattering the deflection angle is not limited when 
s--> 0, while in the repulsive case it tends to 7r as in the Rutherford case. 
This implies strong differences in the differential scattering cross sections, 
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I 
I 

do- 3 ~~,N 
dr2 3 

I , 

2 3 11; 

Fig. 2. Differential scattering cross sections in Uo2/16 W 2 units as a function of the deflection 
angle and vo2/c 2= 0.2. Curve 1 represents the Rutherford case, curves 2 and 3 the Weber 
repulsive and attractive case, respectively. 

which increase when the energy increases. This aspect suggests the possibility 
o f  an experimental  check of  the validity o f  Weber ' s  law for e lectromagnet ic  
interactions;  perhaps  it would  be possible to detect the difference in scatter- 
ing angle o f  electron and posi t ron beams interacting with some blanket.  
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