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D U H E M  AND KOYR]~ ON D O M I N G O  DE SOTO 

ABSTRACT. Galileo's view of science is indebted to the teaching of the Jesuit professors 
at the Collegio Romano, but Galileo's concept of mathematical physics also corresponds 
to that of Giovan Battista Benedetti. Lacking documentary evidence that would connect 
Benedetti directly with the Jesuits, or the Jesuits with Benedetti, I infer a common 
source: the 'Spanish connection', that is, Domingo de Soto. I then give indications that 
the fourteenth-century work at Oxford and Paris on calculationes was transmitted via 
Spain and Portugal to Rome and other centers where Jesuits had colleges, and figured 
in the rise of mathematical physics at the beginning of the seventeenth century. A result 
of these researches is their vindication of Duhem, as contrasted with Koyr6, on the 
origins of modern mechanics. 

Pierre Duhem and Alexandre Koyr6, both eminent French historians 
of science, held radically different views of the importance of Domingo 
de Soto for the evolution of modern science. For Duhem, L6onardo 
da Vinci was the linchpin in a development that stretched from the 
Doctores Parisienses to Soto, and Soto himself was the proximate source 
of Galileo's early writings and of the ideas contained in his later works 
(Duhem 1906-1913). Duhem based his analysis on two of Galileo's 
early manuscripts, now numbered 46 and 71 in the Galileo Collection 
in Florence, which had been transcribed and published by Antonio 
Favaro in the National Edition of 1890 with the titles Juvenilia and De 
motu respectively. For Koyr6, on the other hand, Soto was merely an 
enigma, a Spanish scholastic isolated from the main flow of European 
thought (Koyr6 1964). In his view neither Soto nor the Parisian doctors 
nor L6onardo figured importantly as sources of Galileo's science. Fol- 
lowing Favaro's lead, Koyr6 preferred to see the whole of that tradition 
summarized in the writings of two of Galileo's Italian predecessors, 
Francesco Buonamici and Giovan Battista Benedetti (Koyr6 1939, 
1978). The first he discerned behind Galileo's MS 46 and the second 
behind his MS 71. The medieval and Renaissance development that 
had been traced in such detail by Duhem might be of antiquarian 
interest, but it was not at all necessary for Koyrd's understanding of 
Galileo and the 'new science' he had brought into being. 

Some years ago, at a conference in this Center, I focused on the 
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debate between Duhem and Favaro as recorded in Favaro's 1916 review 
of Duhem's l~tudes sur Ldonard de Vinci and his 1918 resumption of 
that review in an essay entitled 'Galileo Galilei e i Doctores Parisienses' 
(Favaro 1916, 1918). My conclusion then was that, eminent though 
both were as scholars, neither had gone far enough in his researches; 
if they had, the dispute between them could have been dissolved in 
terms of what I was then developing as a 'qualified continuity thesis' 
(Wallace 1978, 1984b). In this essay I wish to enlarge on that theme 
by focusing not on Favaro but on Koyr6, and by doing so in light of a 
third Galileo manuscript that was completely misjudged by Favaro, 
excluded by him from the National Edition, and as a consequence was 
unknown to both Duhem and Koyr6. I refer to MS 27, the manuscript 
containing Galileo's treatises on Aristotle's Posterior Analytics, recently 
transcribed and edited by William F. Edwards and myself (Galilei 
1988). This manuscript provides yet stronger support for Duhem's conti- 
nuity thesis - but in a way that is somewhat surprising in that it allows 
one to integrate Koyr6's findings into it and so include Benedetti as 
another possible link between Galileo and Soto. The intermediary that 
makes the linkage possible is the one that enabled me to dissolve the 
Duhem-Favaro controversy well over a decade ago, namely, the Jesuit 
tradition at the Collegio Romano. It is clear now that Galileo's MS 27 
derives from lectures given at the Roman College, and, in light of that 
derivation, that MSS 46 and 71 derive similarly from the same source 
(Wallace 1986). What is more problematical is how to relate Benedetti 
to the Roman Jesuits. I shall therefore start with the Benedetti-Jesuit 
relationship and then work back from this to Domingo de Soto. 

B E N E D E T T I  A N D  J E S U I T  S C I E N C E  

At first glance there would seem to be little that would connect the 
Collegio Romano, the Jesuit university founded by Ignatius Loyola in 
Rome in 1551, with Giovan Battista Benedetti, the patrician of Venice 
whose life spanned the years from 1530 to 1590. Benedetti's visits to 
Rome apparently were few. He is recorded as having lectured there on 
the science of Aristotle in the winter of 1559-1560, when the Collegio 
was but a fledgling institution, but to my knowledge had no contact 
with Jesuits at that time. From the Collegio side, in the years up to 
Benedetti's death there seems to have been little appreciation of his 
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scientific work on the part of its philosophy professors, although he 
was known to the eminent mathematician on the faculty, Christopher 
Clavius. Such tenuous connections offer little basis for a documentary 
analysis of possible ties between Benedett i  and the Roman Jesuits 
(Wallace 1987b, nn. 1-5). 

In the absence of such evidence, I shall turn to a conceptual study 
and focus instead on the role of mathematics in the study of nature as 
an apt basis for comparison. In it I aim to show that by the time of 
Benedetti 's  death in 1590, the faculty at the Collegio Romano had 
come to a view of mathematical physics very similar to his. This would 
seem to be an important  consideration, for it was such a conception of 
mathematical physics that channeled into MSS 27, 46, and 71 of the 
young Galileo and thence exerted an influence on the development of 
his science. Thus the terminus ad quem of my investigation is Galileo's 
writings on motion and mechanics around the year 1590. The terminus 
a quo is somewhat more problematical, and I will come to that later. 
For the moment  I shall identify it simply as 'the Spanish connection' ,  
based on the facts that, on the one hand, Benedetti 's  father was a 
Spanish philosopher and physicist (or physician) and that many of his 
own professional contacts were with Spaniards, and, on the other,  that 
the early Jesuit professors at the Collegio Romano were also Spanish 
and imported from the Iberian peninsula several ideas that proved 
seminal in the new mathematical physics (Wallace 1987b, nn. 6-9). 

Starting, then, in somewhat  ahistorical fashion with the terminus ad 
quem, let me characterize briefly the concept of science that emerges 
clearly in Galileo's early treatises on motion in MS 71 and that con- 
tinued to dominate his later writings down to the Two New Sciences of 
1638. This was very much a mathematical physics that proposed itself 
as a scientia and presented its reasonings in the form of demonstrationes; 
its model was ostensibly that of Archimedes,  but the ideal was already 
Aristotle's as formulated in his Posterior Analytics. Working out the 
implications of his new scientia (in effect a scientia mixta or scientia 
media, subalternating physics to mathematics),  Galileo was sharply 
critical of the causal analyses found in Aristotle's Physics and De caelo, 
while at the same time he was intent on searching out, in an Aristotelian 
mode,  the verae causae of natural phenomena.  Local motion (motus 
localis) was his major concern; to explain this he invoked the principal 
concepts used by Aristotle - nature and violence, time, place and space, 
force and resistance, causality - although he rejected others associated 
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with the medium through which the moving object passed, e.g., Aristo- 
tle's teaching on the void and his solution to the projectile problem. In 
their place Galileo substituted the scholastic concept of impetus, which 
he used to explain both violent and natural motion. His most important 
methodological innovation was his clever use of suppositiones when 
framing his demonstrations, making them amenable to the use of limit 
concepts and to applications in experimental situations where a mathe- 
matical ideal could be closely approximated in the physical world (Wal- 
lace 1987b, nn. 10-14). 

Much of my recent research has been directed at showing how this 
view of science is indebted to the teaching of Jesuit professors at the 
Collegio Romano, whose lecture notes on logic and natural philosophy 
were the proximate source of Galileo's MSS 27 and 46 and prepared 
for the De motu antiquiora of MS 71. But those who are acquainted 
with the works of Benedetti will surely have noticed how closely Gali- 
leo's concept of mathematical physics just sketched by me corresponds 
to that of Benedetti. Such correspondence suggests points of compari- 
son between Benedetti and the professors of the Collegio. To develop 
it, we must look in detail at Benedetti's main theses and then see how 
these compare with related teachings among the Jesuits whose lecture 
notes I have studied (Wallace 1987b, nn. 15-16). 

B E N E D E T T I ' S  M A T H E M A T I C A L  P H Y S I C S  

For convenience let me divide my consideration of Benedetti's physics 
into two parts, the first concentrating on its logical and methodological 
foundations, the second on its treatment of problems relating to local 
motion. With regard to the first, there can be no doubt that, from the 
outset of his career, Benedetti wished to reinforce his arguments as 
much as possible with 'mathematical demonstrations' (Benedetti 1553); 
in his last and most important work he identifies his basic disagreement 
with Aristotle as based "on the unshakable foundation of mathematical, 
philosophy, on which I always take my stand" (Benedetti 1585, p. 
196). This presupposes, of course, a difference between physics and 
mathematics, of which Benedetti was well aware: "balances or levers 
are not pure mathematical lines", he writes, "but are physical, and as 
such exist in material bodies" (144). 2 Again, "since balances are ma- 
terial and are susta ined. . ,  not by a mathematical point but by a line 
or a physical surface having a material existence, some resistance arises 
to the motion of the arms" (153). Yet he wished to use mathematical 
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principles, such as that "a sphere touches a plane at only one point" 
(155), to establish physical conclusions. The only way he could do this, 
he recognized, was through the use of appropriate suppositions and 
thought experiments. It is thus important to recognize how frequently 
the terms supposit io and imaginemur  (and their variants) recur in Bene- 
detti's writings. Well known are his disagreements with Tartaglia and 
Jordanus Nemorarius in his solution of mechanical problems; invariably 
these are occasioned by the divergent supposit iones on which the 
respective solutions are based. For example, Benedetti frequently re- 
proves Tartaglia for supposing that the "lines of inclination" going from 
the ends of a balance to a distant center of gravity are parallel (150). 
Yet on some occasions he makes the same supposition himself, noting 
that the line of inclination is fere  perpendicularis  to the beam of the 
balance or that, if the angle it makes is not a right angle, the deviation 
is negligible. But, when discussing the imagined case of a balance 
situated close to the earth's center, he rightly insists that the approxi- 
mation cannot be made and that the simplifying supposition cannot be 
employed in a rigorous proof (143). 

Such suppositions are important in the treatment of problems in 
statics, but they.are crucial for the development of a science of dynam- 
ics. Benedetti was intent on discovering the verae causae - an expression 
that occurs repeatedly in his writings - of various kinds of motion in 
the universe, both natural and forced. An important contribution was 
his study of horizontal motions on the earth's surface; here he was 
convinced that the only truly natural motion is circular, for this alone 
can be perpetual (184). But, he reasons, there is "no noteworthy differ- 
ence" between a perfect sphere and a plane surface of small extent. 
For this reason one will encounter no difficulty in moving a sphere 
along a horizontal surface; indeed, it can be moved by "a force no 
matter how small" (156). In another context he qualified an argument 
to specify that it holds only "when all impediment is removed" (154). 
Such insights, plus Benedetti's frequent allusion to the natural tendency 
of a body when released from a sling to move in a straight line, shows 
how close he came to the principle of inertia later formulated by Sir 
Isaac Newton. 

Moving on to his study of problems relating to local motion, we can 
treat these under three headings, namely, those relating to motion in 
general, those relating to falling motion, and those relating to the 
movement of projectiles. With regard to the first, Benedetti was Aristo- 
telian in his conviction that nature is an inner source of motion in a 
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body; even forced or violent motion he saw as caused by an impetus 
or virtus movens impressed within a body. But unlike Aristotle he 
seems not to have invoked a sharp dichotomy between natural and 
violent motion, or between curvilinear and rectilinear motion, regarding 
the latter two as mathematically comparable (194). He does not discuss 
explicitly the possibility of a motus medius, i.e., one intermediate be- 
tween the natural and the violent, but for him horizontal motion for 
limited distances would answer to that description. And in the case of 
reflex motion, he invokes the principle that a circle touches a line at 
only one point to argue that no intermediate rest (quies medius) inter- 
rupts the upward and downward motion of a body, making its motion 
truly continuous (184). 

Benedetti is most known, of course, for his study of falling motion, 
especially for his argument contra Aristotelem et omnes philosophos 
that velocity of fall is dependent not on weight but on specific gravity, 
and therefore is conditioned by the medium in which the body falls and 
the resistance it encounters (Maccagni 1983). He proposed that velocity 
of fall increases with distance of travel because impetus builds up 
naturally in the falling body, and that all bodies would fall with the 
same speed in vacuo, where buoyancy and resistive effects can be 
neglected. Gravity and levity became for him relative concepts, so that 
air has no weight in air, nor water in water. And he analyzes the case 
of a body falling through the center of the earth to argue that it would 
oscillate about the center, on the analogy of the motion of the bob of 
a pendulum of exceedingly long length (Benedetti 1985, pp. 174-85, 
368-69). 

Equally ingenious is Benedetti's study of projectile motion, which is 
dominated by his skillful use of the concept of impetus, already referred 
to. This he regarded as a force impressed on a body from without but 
that moves it from within, decreasing gradually and continually with 
the body's motion (160). Most motions involving trajectories of bodies 
he saw resulting from a composition of motions, partly natural and 
partly forced (161), and in this is seen as having noticeably advanced 
beyond the teaching of Tartaglia. 

C O U N T E R P A R T S  I N  J E S U I T  T E A C H I N G S  

Such was the contribution of Benedetti to the foundations of mathemat- 
ical physics by the time of his death in 1590. The question I now would 
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raise is this: how similar were the teachings of Benedetti as I have just 
outlined them to those at the Collegio Romano during the years, say, 
from 1560 to 15907 An answer is difficult because of the paucity of 
records that have survived from this period. At the beginning, Francisco 
Toletus taught the physics course in Rome during the academic year 
1560-61, and his printed text gives indication that his ideas were fairly 
similar to Benedetti's. But only a year or two later, Benedictus Pererius 
took over the course in 1562-63, and, as his textbook indicates, set it 
on a path almost diametrically opposite to his predecessor's. Decidedly 
antimathematical and Averroist in his approach, Pererius combatted 
most of the Benedetti's theses concerning motion, not naming him 
explicitly or even being aware of his teachings, but simply rejecting out 
of hand the principles on which they were based (Giacobbi 1977). 

This mentality apparently persisted at the Collegio for some fifteen 
years, and then gradually changed owing to two factors: the influence 
of Clavius, who fought strenuously to give mathematics a respectable 
place in the curriculum, not merely in its own right but also as an 
adjunct to natural philosophy; and the advent of a new physics pro- 
fessor, Antonius'Menu, who was much interested in 'calculatory' tech- 
niques and imported them where possible into his lectures. A series of 
professors who followed Menu - Paulus Vallius, Muzius Vitelleschus, 
and Ludovicus Rugerius - developed their teachings on motion and the 
heavens along lines more acceptable to Clavius, and thus closer to 
Benedetti. Finally one of Clavius's special students, Giuseppe Biancani, 
synthesized all this work by systematically elaborating a mathematical 
physics capable of dealing with the problems of natural philosophy 
(Giacobbi 1976). 

I shall elaborate more fully on this development later in the essay. 
Suffice it here to call attention to Vallius's commentary on the Posterior 
Analytics, particularly to his treatise De praecognitionibus, which was 
appropriated by Galileo in his MS 27 (Galilei 1988); this, taken in 
conjunction with Clavius's preface to his Elements and Biancani's later 
emendations, shows how suppositiones can be employed to uncover 
causes and supply demonstrationes in these difficult subject matters. 
Menu and Vallius recovered the concept of impetus and showed how it, 
and other notions in the scholastic tradition, could improve Aristotelian 
teachings as these were being advanced by the peripatetics of their day 
(Wallace 1981c). Vitelleschus and Rugerius built on these foundations. 
Vitelleschus is particularly important for his awareness of Benedetti's 
analysis of falling motion, though he knew it only through a work 
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by Jean Taisnier that plagiarized Benedetti's Demonstratio of 1554 
(Maccagni 1967). The reference occurs in Vitelleschus's lectures on the 
De caelo of Aristotle (given in 1590), where he questions Aristotle's 
laws of motion as stated in Books 4 and 7 of the Physics, and directs 
his students to the treatises of Bradwardine and Taisnier on the ratios 
of motions. In the same manuscript Vitelleschus echoes Benedetti's 
sentiment against the authority of Aristotle, stating that it is safer to 
abandon some of his teachings than it is to interpret them, for the 
authority of a philosopher should be used to confirm the truth, not 
abandon it, seeing that truth is the philosopher's friend. Rugerius then 
took up Vitelleschus's teachings on the ratios of motion, noting that 
Aristotle's rules for comparing motions labor under severe difficulties. 
For a fuller discussion of how they might be revised he then refers his 
students to the commentaries of Toletus and Soto, among others, in 
their commentaries on the Physics (Wallace 1987b, nn. 53-57). 

In the writings of Jesuit professors from Menu to Rugerius, therefore, 
one can find illuminating discussions of the internal causes of motion, 
of the possibility of motion in a void, and of an intermediate or neutral 
motion (neither natural nor violent) that can endure perpetually. One 
can find too a rejection of the quies medius in reflex motion; a rejection 
of Aristotle's dynamical laws of motion; a sophisticated discussion of 
gravity, including the distinction between extensive and intensive grav- 
ity, similar to Benedetti's notion of specific gravity; a rejection of the 
notion that air has weight in air based on Archimedian principles; and 
detailed analyses of the factors that cause bodies to accelerate as they 
fall. Not all these teachings are the same as Benedetti's, but one gains 
the impression that, had the Venetian mathematician visited the Colle- 
gio in the years following the publication of his last work, he would 
have found a compatible atmosphere in which to advance his researches 
(Wallace 1987b, nn. 58-59). 

T H E  S P A N I S H  C O N N E C T I O N  

This, then, brings me back to terminus ad quem with which I began 
this discussion. Most of the ideas I have just sketched are to be found, 
in various ways, in the lectures of Jesuits in Rome around 1590, in 
Galileo's MSS 27, 46, and 71, likewise composed around 1590, and in 
Benedetti's publications, probably known to Galileo through Jacopo 
Mazzoni, with whom he studied in 1590. I suspect that it was a fusion 
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of ideas gleaned from Benedett i  and the Jesuits that lay behind the 
various drafts on motion in Galileo's MS 71. Yet I have found no 
documentary evidence that would connect Benedett i  directly with the 
Jesuits, or the Jesuits with Benedett i ,  in the development of these 
concepts. Was there a common source from which they could have 
derived? I suspect that there might have been,  and I would like to 
speculate about this as the terminus a quo of my investigation - the 
'Spanish connection'  to which I have alluded above. 

A plausible candidate for the origin of a mode of thought that would 
allow mathematics to enter into an experimental study of motion is 
none other than the Spanish Dominican who first proposed that the 
motion of falling bodies is uniformly accelerated with respect to time 
- uniformiter difformis is the expression he used - and who was seen 
by Duhem on this account to be a scholastic precursor of Galileo 
(Duhem 1906-1913). I refer, obviously, to Domingo de Soto. Soto was 
known to the Jesuits; indeed, Toletus had studied under him at Sala- 
manca before joining the faculty of the Collegio, and Rugerius, as we 
have seen, called attention to his superior t reatment (along with Tole- 
tus's) of Aristotle's dynamic laws of motion. Now, in his commentary 
and his questions on the Physics, Soto assimilated his doctrine on 
impetus to his teaching on gravitas and taught that a falling body acceler- 
ates continuously because of the impetus being built up in it during its 
travel - ideas very similar to. those found in Benedetti .  These notions 
are not fully developed in an incomplete edition of Soto's Physics, 
published at Salamanca around 1545, but they are present in the edition 
of 1551 as well as in the more widely diffused second edition of 1555, 
both also printed in Salamanca. Between 1545 and 1550, moreover ,  
Soto was present at the Council of Trent,  which took place just north 
of Venice. As the most illustrious theologian in the Dominican Order ,  
he was surely known to Abbot  Gabriel de Guzman and the two Spanish 
Dominicans Benedett i  praises so lavishly in his Resolutio of 1553 and 
his two versions of the Demonstratio of 1554 and 1555, directed, as we 
saw, "against Aristotle and all philosophers".  While in northern Italy, 
it is also possible that Soto became acquainted with experimental work 
being done there on laws of fall, which would have buttressed his own 
rejection of Aristotle's teaching on this subject. And finally, though I 
have found no mention of Soto in Benedetti 's  Speculationes of 1585, it 
may be no mere coincidence that Soto's Physics, both commentary and 
quaestiones, was reprinted in Venice in 1582 with an introduction that 
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gives fulsome praise to his ability as a natural philosopher (Wallace 
1987b, nn. 63-68). All bits of coincidental evidence, but all pointing to 
Soto as a link that could ultimately tie together Benedetti, Galileo, and 
the Jesuits of the Collegio Romano. 

S O T O ' S  S E C O N D  E N I G M A  

Earlier I remarked that Soto was an enigma for Koyr6, but I did not 
elaborate on Soto's enigmatic status. Actually two enigmas can be 
associated with Domingo de Soto. The first is how he came to know 
that the motion of heavy bodies in free fall is uniformiter difformis with 
respect to time, and the second is how this knowledge might have been 
transmitted to Galileo. The first enigma was what puzzled Koyr6 and 
served as the subject of an essay I published years ago with the title 
'The Enigma of Domingo de Soto: Uniformiter Difformis and Falling 
Bodies in Late Medieval Physics' (Wallace 1968). The second enigma, 
to my knowledge, was not explicitly addressed by Koyr6, although it 
posed the problematic on which much of his Etudes galil~ennes was 
based. Let us address this second enigma now, for, if we can cast light 
on that, we may additionally be able to fill a lacuna in Duhem's thesis 
about Soto and his importance for Galileo's science. We can do so 
through a study of books and manuscripts written by Jesuits in Italy and 
Portugal in the century following Soto's publication of his uniformiter 
difformis doctrine. 

Galileo mentions Soto twice in MS 46, in a Tractatus de elementis 
that occupies the last part of the manuscript. We now know that this 
Tractatus, as well as other treatises written by Galileo at Pisa around 
1589-1591, were based on lectures given by the Jesuits mentioned above 
(Wallace 1977). Some of these lectures were published, but the majority 
survive only in manuscript. They were based on scholastic and Renais- 
sance authors, whom they cite extensively, and are otherwise prosaic 
teaching notes. What makes them somewhat distinctive is the attention 
they pay to nominalist teachings deriving from the Calculatores of 
Oxford University and the Doctores Parisienses. 

The development of these lecture notes took place in Rome at the 
Collegio Romano over a period of some thirty years. There the intro- 
duction of calculatory thought is traceable to Toletus, himself a Span- 
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iard, who taught the course in natural philosophy in 1560 and imported 
ideas he had learned from Soto at Salamanca. Some of this material 
was taken up by two other Spanish Jesuits, Pererius, mentioned above, 
who taught natural philosophy at the Collegio between 1558 and 1566, 
and Francisco Suarez, who taught theology there between 1580 and 
1585. Fortunately these authors published their materials, which have 
been analyzed in some detail by Christopher Lewis (Lewis 1980). Lewis 
picked out for examination the use by all three of calculatory language 
in the following areas of natural philosophy: (1) when discussing prob- 
lems of action and reaction; (2) when treating the intension of forms 
in alteration and identifying distributions of qualities as uniform, uni- 
formly difform, etc. ; and (3) when analyzing the ratios of motions 
following the tradition of Thomas Bradwardine. 

Of the three Jesuits, Toletus undoubtedly made fullest use of the 
Calculatores in these areas, even referring to "the calculator Suisset" 
(i.e., Swineshead) by name in his treatments of reaction and alteration. 
He also had the clearest understanding of calculatory terminology, 
although he frequently departed from positions held at Oxford and 
favored instead those developed at Paris. In treating expressions such 
as uniformiter difformis, moreover, Toletus made the interesting com- 
ment that "these [terms] should be very carefully considered in order 
to understand many matters that are met with in physics". Suarez 
likewise took up uniform difformity in some detail when analyzing the 
action of natural agents in his Disputationes metaphysicae of 1597, 
although he rejected the view (apparently subscribed to by Toletus) 
that velocity could be viewed as an intensity of motion, which would be 
expected of one subscribing to Mertonian developments in kinematics. 
Pererius, predictably, showed the least acquaintance with, or interest 
in, the calculatory tradition, although he was acquainted with some of 
its terminology. In discussing the dynamical laws given by Aristotle in 
the seventh book of the Physics, for example, Pererius accepted and 
defended them without even a nod in the direction of Bradwardine, 
thus showing little sympathy for the mathematical physics developed 
two centuries earlier at Merton College, Oxford (Lewis 1980). 

As already noted, partially because of his antimathematical bias Per- 
erius was replaced after 1566 and succeeded by a series of other profes- 
sors. Lecture notes survive from only two who taught between then 
and 1585, viz., Hieronymus de Gregorio and Antonius Menu, but the 
second of these, Menu, enjoyed the longer tenure and seems to have 
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had the greater influence. Menu revived the approach of Toletus and 
had a notable effect on the Jesuits mentioned above who taught natural 
philosophy at the Collegio between 1585 and 1592, namely, Vallius, 
Vitelleschus, and Rugerius, all of whose lecture notes survive in whole 
or in part. Although some details are lacking, these four professors 
supplied the materials on which Galileo's early notebooks on the De 
caelo and De generatione and the early versions of his De motu were 
based, and so serve to explain Galileo's knowledge of the calculatory 
tradition (Wallace 1987a, n. 14). 

Menu is of particular importance for standing at the head of this 
fifteen-year tradition, which used Mertonian terminology but usually 
applied it in ways more consistent with teachings in vogue at Paris in 
the fourteenth century and so associated with the Doctores Parisienses. 
Indeed, Menu cites these doctors when treating the question whether 
the world could have existed from eternity and when discussing the 
ratios of the elements. He was also favorable to their adoption of 
impetus, or virtus impressa, as necessary to explain the motion of 
projectiles. Particularly striking are his arguments in favor of the propo- 
sition that "the motion of a simple or compound body through a void 
will be successive, for granted that it would encounter no extrinsic 
resistance, there would still be intrinsic resistance" to overcome. These 
are clearly those of the Parisienses, adopting the calculatory stance of 
the Mertonians but applying it to physical problems in the tradition of 
Jean Buridan, Albert of Saxony, and others who worked in fourteenth- 
century Paris (Wallace 1987a, nn. 15-16). 

The lecture notes of Vallius, Vitelleschus, and Rugerius do not em- 
ploy these particular arguments, but they nonetheless touch on all the 
matters pertaining to the mathematical or calculatory tradition that are 
to be found in Galileo's early writings. The latter's notes in MS 46 are 
written in the form of a questionary based on Aristotle's De caelo 
and De generatione. The questions wherein analytical languages in the 
Mertonian and Parisian traditions occur most frequently are in the 
treatises De alteratione and De elementis, where inquiries are made into 
the intension and remission of forms, the parts and degrees of qualities, 
and the number and quantity of the elements. There seems little doubt 
that all of these materials are derived from lectures given at the Collegio 
some time prior to 1591. The precise author is difficult to identify, 
however, since correspondences can be found between Galileo's notes 
and passages in Rugerius, Vitelleschus, Vallius, and Menu, and indeed 
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all the way back to Pererius and Toletus. At the present stage of 
research Vallius seems to be the most likely candidate, for, although 
his surviving lecture notes are incomplete, the portions that survive 
show closest agreement with Galileo's text. There is excellent evidence, 
moreover, to connect Galileo's MS 27, the one containing questions on 
Aristotle's Posterior Analytics, with Vallius's lectures on logic, which 
were completed in the summer of 1588 and manifest a good knowledge 
of nominalist positions on science and demonstration (Wallace 1987a, 
nn. 19-21). 

My study of all these materials thus encourages me to go considerably 
beyond Christopher Lewis in identifying likely sources of Galileo's 
knowledge of the calculatory tradition. Suffice it to mention that ci- 
tations from Walter Burley and William Heytesbury, as well as Brad- 
wardine and Swineshead, are to be found in these Jesuit lectures. And 
not only do such citations occur in discussions involving intension and 
remission, latitudes of qualities, and maxima and minima, but they also 
occur in discussions of local motion and of Aristotle's dynamical laws 
involving ratios between forces, resistances, and velocities of motion. 
Vitelleschus, for example, cites experimental evidence against the Aris- 
totelian formulations in Book 7 of the Physics and refers his students 
to Bradwardine's De proportione rnotuurn for an alternative view. Ru- 
gerius likewise discerns difficulties with Aristotle's rules and, as already 
noted, sends his students to Toletus and Soto for more satisfactory 
treatments of the ways in which velocity varies at the beginning,-middle, 
and end of motion (Wallace 1987a, nn. 22-24). 

Of the natural philosophers who taught physics at the Collegio Ro- 
mano after Rugerius down to 1626, I have thus far located reportationes 
of lectures by four other Jesuit professors: Robert Jones, an English- 
man, who taught in 1592-93, Stefano Del Bufalo, who taught in 1596- 
97 and again in 1598-99; Andreas Eudaemon-Ioannis, who taught in 
the intervening year 1597-98, while Del Bufalo had the course in meta- 
physics; and Fabiano Ambrosio Spinola, who taught in 1625-26. Of 
these, the treatments of the first and the last, Jones and Spinola, show 
less concern with the calculatory tradition. Del Bufalo, on the other 
hand, has a rather full discussion of alteration, degrees of qualities, 
intension and remission of forms, and action and reaction - in the last 
of which he mentions the teaching of the Calculator and contrasts it 
with those of Pomponazzi, Buccaferreus, Flaminio Nobili, Franciscus 
Neritonensis, and Zabarella. In his discussions of gravitas and levitas, 



252 W I L L I A M  W A L L A C E  

moreover, he mentions the Parisienses and compares their teachings 
with those of Geronimo Borro and Buonamici - and this in 1597, the 
year in which Buonamici's De motu had just appeared. It is noteworthy 
that all of Del Bufalo's notes located thus far are in the National Library 
at Lisbon, where they had been taken from the Jesuit college at Evora, 
having been sent there from Rome by October of 1603, as recorded in 
one of the codices containing them (Wallace 1987a, nn. 25-28). 

The other professor who deserves mention for his calculatory inter- 
ests is Eudaemon, who, as already mentioned, had the course in natural 
philosophy in 1597-98. In addition to his lectures on the Physics, De 
caelo, and De generatione, he left a tractatus in two books on action 
and passion and a quaestio on the motion of projectiles, both of which 
are written in the calculatory manner. As I have pointed out in my 
Galileo and His Sources, Eudaemon is of some importance for the fact 
that he discussed "the ship's mast" experiment with Galileo at Padua, 
and, along with Biancani, also teaching there, could have influenced 
Galileo's use of calculatory terms in his De motu accelerato fragment 
and later writings (Wallace 1984a; 1987a, nn. 29-30). 

The first book of Eudaemon's work on natural agency, entitled simply 
Tractatus primus, is prefaced by five definitions and nine suppositions; 
it then develops twenty-one propositions, with proofs and corollaries, 
all relating to the ways in which qualities come to be mathematically 
distributed as a result of such agency, with occasional geometrical 
diagrams in the margins illustrating the text. Noteworthy among the 
definitions are the third and the fifth, the third stating that "something 
is said to be distributed uniformly difformly when it diminishes in the 
same ratio as the distance increases," and the fifth explaining how 
quantitative attributes can be ascribed to a quality that is uniformly 
difformly distributed. Following the definitions Eudaemon begins his 
suppositions, which he prefaces with the note: 

Because the mat ters  with which we shall be concerned are physical, it is necessary to take 
some propositions from our physical disputations that can be presupposed as principles in 
this treatise. Things that  are commonly conceded in physical science or are sufficiently 
proved and explained may be seen in our  disputations on De generatione and on the 
Physics. And  since this treatise is principally mathematical ,  it will not  be necessary to 
note and prove proposit ions that come from mathematics .  

This notation, and the nine suppositions that follow it, are important 
for the fact that they show Eudaemon adopting the stance of a mathe- 
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matician and attempting to develop a mathematical physics of natural 
agency, even though he was a philosopher entrusted with the main 
sequence of courses at the Collegio. Also noteworthy is Eudaemon's 
first supposition, which reads as follows: 

We presuppose that every natural agent acts uniforrniter difformiter on a quantified 
subject when applied to it. Physicists commonly concede this, at least with respect to 
some parts of the sphere of activity, because we see that when close the agent acts more 
vehemently and when farther way less so; therefore, the closer the greater, the farther 
the lesser; therefore, as the distance increases the action decreases; therefore the action 
is uniformly difform. 

Noteworthy here and throughout the treatise is the preoccupation with 
the expression uniformiter difformis as applicable to natural agency 
(Wallace 1987a, nn. 31-33). 

The second book of this same treatise is titled De iis quae in actione 
et passione physica contingunt and it begins, like the first, with defi- 
nitions, ten in number, then notes a single supposition, and concludes 
with proofs of thirty-one propositions, some of which contain substan- 
tial numbers of corollaries. The reason for this development is not 
transparently clear at first reading, but it all becomes intelligible when 
we get to the Quaestio de motu proiectorum that follows immediately 
after the second book. The entire treatise on natural agency had occu- 
pied fifty-one closely written folios; that on the motion of projectiles 
coming after it takes up seventy-two more. Divided into three articles, 
it inquires first whether the projector moves the projectile immediately 
at a distance, then whether the vis movens is within the projectile itself, 
and finally whether the virtus movens is located in the medium, and if 
so, how (Wallace 1987a, n. 34). Somewhat surprisingly, considering the 
fact that his predecessors at the Collegio had all adopted the impetus 
explanation of projectile motion, Eudaemon ends up by rejecting an 
impetus in the projectile and by putting the virtus movens in the air. I 
have not yet analyzed his arguments in detail, but I suspect that his 
reason for doing so is to subsume projectile motion under natural 
agency so as to show that it slows down uniformly difformly. This, we 
may recall, was Soto's position, for he held that falling motion is 
accelerated and projectile motion decelerated in the same quantitative 
way, namely, uniformiter difformiter. 

If such was Eudaemon's thesis in this manuscript, undated but proba- 
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bly written in 1599, his discussions with Galileo at Padua around 1604 
take on special significance. At that time Galileo was looking for a 
principle on which he could construct his new science of motion, as we 
know from his letter to Paolo Sarpi. His telling Eudaemon that he had 
experimented with a stone dropped from the mast of a ship first at rest 
and then in motion shows that both were still interested in the problem 
of impetus. Eudaemon could therefore have been a source that directed 
Galileo's attention around 1604 to calculatory treatments of uniform 
acceleration and deceleration, later to be reflected in the De motu 
accelerato fragment on which the Two New Sciences would be based 
(Wallace 1987a, nn. 35-37). 

Let us look back, then, at the situation at the Collegio Romano from 
the time of Pererius, say 1566, when he taught, or 1576, when his 
textbook was published, to Eudaemon in 1599. In all of that time there 
were many references to the Calculatores and Parisienses and how they 
impacted on theses in natural philosophy. Not one, however, is to be 
found in a printed text - all occur only in manuscript sources. It is not 
surprising, therefore, that influences deriving from this tradition have 
thus far been overlooked by scholars and so have not been seen as a 
significant factor in the growth of mathematical physics among the 
Roman Jesuits toward the end of the sixteenth century. 

T H E  J E S U I T  T R A D I T I O N  I N  P O R T U G A L  

To move now to the Iberian peninsula, a situation similar to that at 
the Roman College existed in the Jesuit colleges there, particularly in 
those at Evora and Coimbra. The Coimbran Cursus philosophicus was 
a five-volume course, first published at Coimbra between 1592 and 1605 
and reprinted often thereafter. My researches have shown that natural 
philosophy in Portugal became less technical and mathematical from 
the end of the sixteenth century onward, and this possibly explains why 
there is no conspicuous use of calculatory terminology in the famous 
Cursus. A goodly number of manuscripts from Evora and Coimbra 
dating from the 1570s and 1580s are still extant, however, and these 
show the same patterns deriving from the Calculatores and the Parisien- 
ses as do the lecture notes from the Collegio Romano. 

Lectures on the Physics and De caelo for the years 1570, 1582, 
1587, and 1588 by professors named Juan Gomez de Braga, Luis de 
Cerqueira, Antonio del Castelbranco, and Manuel a Lima respectively 
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are all extant. Some of these Jesuits taught at Evora,  others at Coimbra, 
but the substance of their notes is all the same; in some cases the 
wording is repeated almost exactly, suggesting a transmission of notes 
from one professor to another. In addition, notes from a Trinitarian, 
Marcus de Moura,  who taught at Lisbon in 1588 are available, and his 
lectures are substantially the same as those given by Manuel a Lima at 
Evora in the same year. The same could be said of an anonymous set 
of lectures on the Physics, De caelo, and Meteorology given at Coimbra 
in 1580 (Wallace 1987a, nn. 40-42). 

The anonymous lectures of 1580 are a good place to start, for their 
author gives a key to the source of most of the materials the others 
contain. The fifth chapter of his commentary on the seventh book of 
the Physics begins with two questions: (1) whether the velocity of local 
motion is to be ascertained from the quantity of space it traverses as 
from an effect, and (2) whence the velocity of motion is to be judged 
as from a cause. Following his replies to these queries the author writes: 
"These last two questions are treated more fully by Domingo de Soto 
and can be studied there. For  this reason, and especially because of 
limitations of time, we will pass over them quickly." And his reply to 
the first question indicates the extent of his dependence on Soto, which 
I give in the slightly clearer formulation of Cerqueira, who repeated 
this material at Coimbra two years later, in 1582: 

Sometimes the mobile is moved so difformly with respect to t ime that,  taken [any] part 
of  time in which it moves,  the velocity it has at the middle instant will exceed the velocity 
it had or will have at one terminal instant of  that time by the same amount  as it is 
exceeded by the velocity it had or will have at another  [terminal instant]. Such a motion 
is said to be uniformiter difforrnis with respect to time, and it is found in heavy and light 
bodies when they move naturally, since the more they depart  from their starting point 
the greater  is the velocity with which they move.  

This, of course, is the teaching developed by Soto around 1550, which 
is reiterated in most of these lecture notes preserved in Portugal 
throughout the 1570s and 1580s. It is further explained and extended 
to projectile motion by Cerqueira,  and by Manuel a Lima again in 
1588, in the following terms: 

It is customary to ask at this place why it is that things that are moved naturally in 
rectilinear motion are moved more  swiftly at the end than at the beginning of their motion,  
whereas those that are moved violently are moved more swiftly at the beginning . . . .  The 
reason for this is that,  just as the force that exists in the hand of the thrower when 
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conjoined with the s t o n e . . ,  impresses on the stone a certain impulse that moves it when 
separated from the hand of the thrower, so also gravity and levity, impelling the heavy 
and light thing to its natural place, impresses by such motion a certain impulse through 
whose agency the motion of the heavy and light thing is made swifter. And this impetus 
gets more intense as the heavy and light objects come closer to their natural places, 
which is to be understood in terms of the relation of each to the terminus a quo. For if 
one and the same stone were now to descend from the middle of a tower and later from 
its top, it would descend much more swiftly at the end of the later motion than at the 
end of the earlier. For the longer the space that is traversed the greater is the impetus 
impressed by levity and gravity throughout the motion, since it is continually intensified 
until the thing arrives at its natural place. And since this impetus effects in the heavy or 
light thing a motion similar to that which arises in it from gravity or levity, Aristotle 
referred to it as an increase of gravity and levity; others, however, speak of it as accidental 
gravity and levity, since it is lost as soon as the motion stops. 

I give this as one example relating to the ratios of motions; similar 
materials relating to action and reaction, wherein the opinions of Hey- 
tesbury and the Calculator are discussed, could also be mentioned. But 
perhaps this is sufficient for present purposes to show evidences of a 
Jesuit mathematical tradition on the Iberian peninsula in the latter part 
of the sixteenth century (Wallace 1987a, nn. 43-46). 

To return briefly to Italy, I would add that Biancani, who had studied 
under Clavius at Rome in the 1590s, wrote detailed defenses and justifi- 
cations of mathematics and mathematical physics as sciences in the 
Aristotelian sense, wherein he shows considerable competence as both 
a philosopher and a mathematician. These he explicitly directed against 
Pererius and the authors of the Coimbran Cursus philosophicus. Bian- 
cani taught principally at Parma, where Giambattista Riccioli was in 
turn his student. And Riccioli is of some importance for his verification 
of Galileo's experiments on falling bodies. In his Almagestum novum 
of 1651 Riccioli recounts that he had first started experimental work in 
this field with two other Jesuits in 1629, and then with yet another in 
1634. At that time he obtained permission, he says, to read Galileo, 
whom he first thought to be in error but later found to be correct. Of 
his early work Riccioli writes that 

at that time I had not yet come to the better and more evident experiments manifesting 
not only an inequality in the motion of heavy bodies but the true increment of their 
velocity, increasing uniformiter difformiter toward the end of the motion. 

What is interesting here is Riccioli's use of Parisian terminology deriving 
from Soto when describing the results to which he had finally come. 
This seems to me a fairly good indication that such terminology had 
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been part of his training too, and persisted in his mind to the middle 
of the seventeenth century, i.e., to 1651 (Wallace 1987a, pp. 58-62). 

C O N C L U D I N G  R E M A R K S  

From all these indications it would seem that the fourteenth-century 
work at Oxford and Paris on calculationes, transmitted via Spain and 
Portugal to Rome and other centers where Jesuits had colleges, figured 
in the rise of mathematical physics at the beginning of the seventeenth 
century. The circumstances of this transmission may help to clear up 
two problems that have bothered historians of science. The first of 
these is the disparity between Galileo's use of calculatory language and 
that of the Mertonians, which has recently been analyzed by Edith 
Sylla (Sylla 1986). Such disparity is readily understandable when one 
considers that Galileo acquired that language at several removes from 
its initial formulators. The second is the lack of a consistent attitude 
on the part of the Jesuits toward the use of mathematics in the study of 
nature. This becomes intelligible in terms of the tensions that developed 
within the Order between the mathematicians and the philosophers, 
and the censorship that was invoked to present a 'united front' to the 
outside world. Vallius had difficulty with censors within his own Order 
when he attempted to have his Collegio Romano lectures on logic and 
natural philosophy published in the early 1600s, and we know that 
Biancani ran into the same difficulty with censorship when he wrote in 
1615 and 1620 in support of Galileo (Wallace 1984a, pp. 141-48). 
Invariably the theologians and the leadership within the Order sided 
with conservative confreres among their philosophers rather than with 
progressive confreres among their mathematicians whenever Church 
teaching was involved. As a result, the period between about 1560 and 
1650 presents a somewhat ambivalent picture of the Jesuits' role in 
the development of mathematical physics. But the manuscript record, 
official positions aside, shows that solid progress was being made during 
those decades, wherein foundations were laid for later important contri- 
butions to the sciences from within the Society of Jesus. 

A yet more important result of these researches for this conference 
is their vindication of Duhem, as contrasted with Koyr6, in the work 
of these French historians on the origins of modern mechanics. Koyr6's 
fortunes have declined in recent years with the discoveries by Stillman 
Drake and others of the extensive experimental program on which 
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Galileo had embarked between 1604 and 1610. This has sounded the 
deathknell for KoyrCs appraisal of Galileo as a Platonist or rationalis~l 
who had no need of experiment to found his 'new science'. My own 
work tarnishes KoyrCs image a bit more,  for it shows that his neglec~t 
of medieval and scholastic sources vitiated much of the reasoning be.- 
hind his Etudes galildennes, the part relating to Benedetti  alone ex.- 
cepted. But if Koyr6 has been devalued, as it were, the same cannot  
be said of Duhem. Duhem's  emphasis on Soto, it turns out, was well 
founded. One would no longer wish to maintain that Soto was the 
proximate source of Galileo's science. But whether one traces Soto's 
influence through the Jesuits in Italy or in Spain and Portugal, or by a 
parallel route through Benedett i ,  there seems little doubt that Soto 
played a pivotal role in promoting a mathematical analysis of local 
mot ion?  

NOTES 

1 The further development of this essay is a conflation of two previously published 
studies, the first focusing on the Benedetti-Jesuit relationship (Wallace 1987b) and the 
second on influences on the Jesuits that derived from Domingo de Soto (Wallace 1987a),. 
Neither of these studies, on the one hand, is readily available; both, on the other, are 
heavily documented with references to source materials and to Latin texts. Since readers 
of this journal are not primarily interested in history, I have pruned much of the docu~ 
mentation from my presentation here. However, to make available a detailed justification 
of my thesis for those who might be interested, I have included parenthetical references 
to the footnotes of the two studies in the body of the text. 
2 The numbers here and following continue the page enumeration of the previous citation 
in the text. 
3 Preparation of this essay was supported in part by a grant from the National Endowment 
for the Humanities, an independent agency of the U.S. government. 
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