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By using an 0(3) gauge group, a non-Abelian theory of vacuum 
electrodynamics is developed in which the newly discovered 

longitudinal vacuum fields B (3) and iE TM appear self-consis- 

tently with the usual plane waves B (I) , S (2) , E (I) , and E (~) in 

the circular basis (I), (2), (3), a complex representation of 

space. Using the charge quantization condition hE= eA (°) the 
vacuum Maxwell equations are given in the non-Abelian 
representation. 
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I. INTRODUCTION 

It is well known that three-dimensional space can be 
described in the complex circular basis [i-3]: 

e(1) = e(2)'= ~ ( i -  i j ) .  e(3) =k ,  (1) 

where e (~) e (2) and e (3) are unit vectors related to the 

usual Cartesian unit vectors i, J, and k. The circular 
basis (I), (2), and (3) is the geometrical reason why there 

exists in free space the newly discovered [4-12] longitudinal 

vacuum field B (~) . The latter is related to the usual plane 

waves B (~) and B (2) through a cyclically symmetric, non- 
Abelian, Lie algebra [6]: 

253 

0894-9875/95/0600-0253507,50/0 0 1995 Plenum Publishing Corporation 



254 Evans 

B (~) x B (2) = iB~n)B (3)', B (a) x B (3) = iB(n)B (:)°, 

B TM x B (I) = iBt°)B (2)" , 

(2) 

It is immediately clear that if B (~) were zero, then so would 

be B (I) and B (2) , resulting in the disappearance of electro- 

magnetism. Here B ~°) is the scalar magnitude of the magnetic 
flux density of the electromagnetic beam propagating in the 
axis (3) in the vacuum. It is possible, furthermore, to 
define precisely [6,7] the experimental conditions under 

which B (~) can be isolated through its magnetization of an 
electron plasma [13,14]. The reason is that magnetization, 

M (3) , due to B TM is to first order in B ~°) and therefore to 

order I~/2, where I o is the power density of the circularly 

polarized beam (W m-2). An I~/2 profile is not obtainable 

from the plane waves B (I) and B (2) because magnetization at 
first order due to these waves averages to zero. Therefore 

the experimental observation of an I~/2 profile signals 

conclusively and unequivocally the existence of B (m) in the 
vacuum. These inferences arise [6] from the relativistic 

Hamilton-Jacobi equation of one electron (e) in the classical 
electromagnetic field represented by the four potential A, 

[15,16]. It has been shown, furthermore [6,12], that B TM 
emerges directly from the Dirac equation of the relativistic 

quantum theory of e in A~. These rigorous calculations [6] 

demonstrate that if B (3) were zero, the well known intrinsic 
electron spin would not emerge from the Dirac equation and 
therefore could not exist. The interaction Hamiltonian 
between intrinsic electron spin and field is governed 

entirely, and at first order in B (~) , by the product of B TM 
with the electronic spin angular momentum itself, Similarly, 
the induced, classical, orbital, electronic angular momentum 

in the electromagnetic field is governed [6] entirely by B (3) 

and B~°)B TM , respectively, at first and second order in B (°) 

(or at order I~/2 and Io). The spinning trajectory (intrinsic 
and orbital) of one electron in the field is therefore due 

to B TM which is related to B (I) and B (2) by Eqs. (2). 

Conversely, B (~) is observable through this type of electronic 
trajectory, i.e., through the magnetization set up in an 
electron plasma by a pulse of electromagnetic radiation. The 

precise conditions under which the first order effect of B (3) 
is observable are defined elsewhere [6,12], using microwave 
pulses of about I0 to I00 MW power at 30 GHz directed into a 
pyrex tube [13] producing and magnetizing an electron plasma 
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from helium gas. It is overwhelmingly probable that the ~0T1/z 
profile will be observed because it is the direct result 
{6,12] of the relativistic Hamilton-Jacobi equation itself. 

In this Letter, we infer from the non-Abelian algebra 

(2) and the concomitant existence of B (3) in the vacuum that 
the gauge group of vacuum electromagnetism is 0(3), and not 
the conventional, planar, 0(2) (or U(1)). In Sec. 2 the 
rigorous geometrical theory of gauges [17] is used to write 
down the vacuum Maxwell equations in a gauge group 0(3). 
These are developed in Sec. 3 with a charge quantization 
condition [6], 

~K = eA (oi, (3) 

which is derived independently from the relativistic Hamil- 
ton-Jacobi equation of e in A~. 

2~ THE 0(3) GAUGE GROUP 

The representation of three dimensional space is 
cyclically symmetric and non-Abelian, and in consequence so 
is the Lie algebra (2). A view of vacuum electrodynamics 
based on an Abelian gauge group, 0(2), cannot accommodate the 

physical existence of B (~) , which is orthogonal to the plane 
of definition of the group 0(2). If we are to accept the 
arguments of the introduction, the gauge group of vacuum 
electromagnetism must become non-Abelian. The natural group 
to choose is the rotation group 0(3) of three dimensional 
space [6], a group which governs the fundamental relations 
(i) between, unit vectors, and the fundamental relations (2) 
between three physical fields. We refer to this henceforth 
as the 0(3) gauge group. Having realized this, it becomes a 
simple matter to adapt the literature [17] on the rigorous 
geometrical theory of gauges to write down the vacuum Maxwell 
equations in this gauge group. This literature is, however, 
expressed in the language of particle physics, in which the 
ordinary (I), (2), (3) space is referred to as isospin 
space. In what follows, the 0(3) space is the ordinary three 
dimensional configuration space in the circular basis defined 
in Eq. (I). 

The inhomogeneous Maxwell equations in an 0(2) gauge 
group are the familiar 

aF~v = o,  (4) 
axv 
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where F~ is the ordinary electromagnetic field four-tensor 
in the vacuum. In Minkowski notation, as used, for example, 
by Jackson [16]: x~=(X, Y, Z, ict), as usual. In vector 
notation, Eq. (4) becomes, in S.I. units, 

V'E = 0, V× B = ~ - ~ .  

In the 0(3) gauge group, on the other hand, the equivalent of 
Eq. (4) is [6], in the circular basis of Eq. (i), 

@ + ~A,, (6) 

where e is the electronic charge and h the Dirac constant. 
Here G~v is a four tensor in Minkowski space-time and a 
vector in the configuration space (I), (2), (3). This type 
of generalization was first introduced by Yang and Mills [17] 
and has been widely emp]oyed in contemporary field-particle 

theory [17]. The space in which G~v is a vector is the 
isospin space. Usually this is an abstract 0(3) space [17], 
but here it becomes the three-dimensional 0(3) configuration 
space itself, expressed in the circular basis (I), (2), and 
(3). Therefore Eq. (6) has three circular components, 

D n~l) = 0, n c (2) n n TM (7) v ~ l h '  ~ v ~ p v  = 0, ~ v ~ p v  = 0, 

and we see that there are three field equations in the 0(3) 
gauge group, one for each polarization (i), (2), and (3). 
Polarizations (i) and (2) are transverse [4-12] and polariza- 
tion (3) is longitudinal. The geometrical reason for the 
existence of these three equations is simply that space has 
three dimensions. Similarly, the homogeneous Maxwell equa- 
tions in the gauge group 0(3) become 

(8) 

In the following section, we simplify these equations using 
the charge quantization condition {6], which is derived 
independently from the classical Hamilton-Jacobi equation 
of e in A~. 
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3 .  THE CHARGE QUANTIZATION CONDITION 

The 0 ( 3 )  theory of S e c ,  3 shows 161 that 

G(•)" - ~ A ~) " _e[A (I) Av(2)] 
~v :a~Av (~)" vv--~ - i hi ~ , (9)  

which reduces to 

B (~) : -eA(1) x A (2) 1 h 
( 1 0 )  

However, by re-expressing Eqs. (2) in terms of vector 
potentials, it is easily shown [6] that 

B(~) = -i K__A (I) × A (2) 
A {o) 

( 1 1 )  

and comparison of Eqs. (I0) and (ll) gives the charge 
quantization condition 

hK  = e A  ( e )  , (12) 

The physical meaning of Eq. (12) has been demonstrated [18] 
by considering one electron in the classical electromagnetic 
field and extending these considerations using the Planck 
quantization condition, the familiar En=~), which defines 
the photon as the quantum of energy of electromagnetic 
radiation. These considerations have shown [6,12], that in 
the relativistic limit 

~ :  eB(o)  ' ( 1 3 )  
m 

the charge quantization condition emerges directly from the 

Hamilton-Jacobi equation of e in A~. Equation (12) means 
that the momentum of an electron of mass m accelerated 

infinitesimally close to the speed of light is both eA I°l and 

~K. Radiation from such an electron becomes indistinguish- 
able, classically, from the electromagnetic field and 
concomitant photon, as first shown by Jackson [16]. This 
author showed that under such conditions there cannot be a 
longitudinal electric field, but he did not consider the 

possibility of B (~) . We shall show that our B (3~ is indeed 

connected to an imaginary and unphysical iE ~3) through Eq. 
(7). 
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The condition (12) is that between the scalar parts of 
the four-vector relation 

a _ e (14) ax~ ~A~, 

and it follows straightforwardly [6] that the 0(3) Maxwell 
equations become 

a v _ O ,  O ,  ~ = O .  ( 1 5 )  
0;% o;.:,. Ox,. 

The first two are the ordinary plane wave equations, while 

the third links the physical and real B ~ to the unphysical 

and imaginary iE TM , showing that there is no Faraday 

induction due to B ~) in the absence of matter [6]. 

4. DISCUSSION 

By considering an appropriately three dimensional gauge 
group, it has been shown that the Maxwell equations in three 

space self consistently yield the presence of B ~3) and iE TM 
through the charge quantization condition, which can be 
understood in terms of the equivalence of a photon and an 
electron accelerated infinitesimally near to the speed of 
light by an incoming radiation field. Experimental evidence 
for these assertions is available in principle by using 
pulses of intense microwave radiation to magnetize an 

electron plasma. Using this technique, the ~0Ti/2 profile of 

M c3) reveals the presence in the vacuum of the physical field 

B ~a) . The concomitant unphysical field iE ¢3) is related to 

B ~3) through Eq. (15), which has the same structure as the 

ordinary Faraday induction law, but since iE ~ is always pure 
imaginary, no Faraday induction due to a hypothetically 

changing B ~) occurs in the absence of matter, e.g. electrons, 
whereupon induction occurs through the induced magnetic field 

~oM (3~ , where ~o is the vacuum permeability. 
These methods self consistently show the presence of the 

novel and centrally important field B (~) in vacuum electro- 
magnetic radiation. 
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