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The special theory of relativity results from the postulation of invariance under coordinate transformation

of the hyperbolic wave equation
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and it is required that all laws of physics (except perhaps general theory of relativity) be invariant under
Lorentz transformations. Divergencies in present relativistic field equations may be removed by considering

more general wave equations, for example,
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This equation introduces a universal length /o~ 107% cm as a second invariant and destroys Lorentz invari-
ance except as an approximate invariance. Some theoretical and experimental consequences of this four-

dimensional wave equation are discussed.

I. INTRODUCTION

ESIDES the speed of light ¢ and Planck’s constant

h, a third constant, a universal length /=107
cm, seems to play an important role in physics. The
distance of strong interactions is about 10~ cm. The
cross section of neutron-proton scattering is approxi-
mately 10726 cm?, which sets the diameter of the proton
in the range of ~10~% cm. The “classical radius” of
electrons is of the same magnitude.

A theory that predicts the masses of elementary par-
ticles must also contain a constant with the dimension
of length for simple dimensional reasons. Using
.de Broglie’s relation, we have in dimensions

h (erg cm)
mass (gram) Xspeed (cm sec™!)=——————.
. wavelength (cm)

However, the special theory of relativity (STR) is
hostile to the introduction of a universal length as a
constant of nature, since, for two different frames of
reference, the length is not invariant under Lorentz
transformations.

Many attempts have been made to introduce a
universal length into physics. In 1933, Pauli,! after
discussing the divergencies in quantum electrodynamics
and the infinite self-energy of electrons, closes with the
following remark : “Wir mdchten hierin einen Hinweis
dafiir erblicken, dass nicht nur der Feldbegriff, sondern
auch der Raum-Zeit Begriff im kleinen einer grund-
sitzlichen Modifikation bedarf.” (We may see herein
an indication that not only the field concept, but also
the space-time concept in the microscale requires a
principal modification.)

March, inspired by this statement of Pauli, seems to
have been the first one to point out the importance of

1W. Pauli, Handbuch der Physik, edited by H. Geiger and
K. Scheel (Julius Springer, Berlin, 1933), p. 272.
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a universal length in physics. In a series of papers?
he tried to modify the geometry of small lengths while
maintaining relativistic invariance. With his method he
hoped to avoid the divergencies in quantum electro-
dynamics. However, March was unable to connect his
conceptions with the experimental facts of nuclear
physics.

Heisenberg® in 1938 wrote a review article on the
significance of a universal length in physics. He also
discusses the divergencies in relativistic field theories
and the unsatisfactory method of cutting off unde-
sired divergent integrals at a length of magnitude /
which is done in a manner that destroys relativistic
invariance.

In 1943, de Broglie in his book on elementary par-
ticlest devotes a chapter to the relation between the
theory of relativity and quantum mechanics. From the
quantum-mechanical point of view, the STR is a classical
theory since the history of a point (worldline) similar
to classical mechanics is described by its four coordi-
nates %, ¥, 2, and ¢, and the speed v. The concept of
worldline excludes any Heisenberg uncertainty relation.

In 1950 Heisenberg pointed out® that future re-
normalized commutation relations which contain no
singularities and describe the mass spectra of elementary
particles should contain as a fundamental constant a
length of the magnitude 10~ cm.

Heisenberg et al. in 1955 developed a nonlinear
theory of quantum mechanics which also contains a
universal length.®

The so-called nonlocal theories have also been con-

2 M. March, Z. Physik 104, 93 (1936); 104, 161 (1936); 105,
620 (1937); 106, 49 (1937); 108, 128 (1937).

3 W. Heisenberg, Ann. Physik 32, 20 (1938).

4L. de Broglie, Die Elementarteilchen (H. Goverts Verlag,
Hamburg, 1943).

5 W. Heisenberg, Z. Naturforsch. 5a, 251 (1950).

¢ W. Heisenberg et al., Z. Naturforsch. 10a, 425 (1955); 12a
177 (1957); 14a, 441 (1959); 16a, 727 (1961).
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sidered.” These nonlocal theories allow events to propa-
gate faster than the speed of light over distances of the
order of 107 cm, which means that the time-direction
of causality is not reserved at this small distance.

The foundation of the present theory of special
relativity is briefly discussed here as a preliminary
in order to provide the proper background for presenting
an extension of the STR wherein previous assumptions
are somewhat generalized.

II. POSTULATES AND CONSEQUENCES
OF THE STR

Einstein’s (1905) starting point for the development
of the STR was the failure of the ether drift experiment
by Michelson and Morley (1887) to detect a preferred
frame of reference in nature. Einstein stated the follow-
ing special principle of relativity : A7 frames in uniform
translatory motion are equivalent for the formulation of
the laws of physics. The essence of the STR is contained
in the following two postulates:

(a) The transformations connecting the coordinates
%1, ¥1, 21, and # of system I with the coordinates xs,
¥s, 22, and #» of system II are linear and homogeneous.

(b) The measured speed of light ¢ is the same in
both systems I and II. In particular, the quadratic
(bilinear) form x?+4?+22— % remains invariant for
systems I and II.

Using postulates (a) and (b) one derives the Lorentz
transformations.

Prior to Einstein, Poincaré (1895) had derived the
Lorentz transformations by requiring the invariance
under coordinate transformations of the hyperbolic
partial differential equation

1 0%
Oy=Vy———=0, ©
¢ o

which describes the propagation of light in place of
postulate (b). However, postulate (b) is a consequence
of Eq. (1) and describes the propagation (trajectories)
of spherical waves. Therefore, it seems proper to use
Eq. (1) in place of postulate (b) for developing the
STR, although both give the same results, i.e., the
Lorentz transformations are the only transformations
(except for dilations) which leave Eq. (1) invariant.

Equation (1) has the following important properties
If Y(w1,y1,2,t) is a solution, then ¥ (x1—xo,y1— 90,
Z1—2%0, b1—1ly) is also a solution of Eq. (1), since the
transformations

Xo=%1—%p, X1=%xa} X0,
Y2=Y1—%0, Y1=¥2+Yo,
29=21—2%, %1=2%+2%,
ta=li—1, ti=tyt1o,

7 D. I. Blochincev, Fortschr, Physik 6, 246 (1958).
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with %o, ¥o, 20, f arbitrary, do not change Eq. (1)
because

W o om Iy s ool O
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N
—=— etc.,
0x® Oxo?

and have invariance under translation in space and
time.

With y=¢i«tk we obtain the relation w?=c%k?
and for the group (signal) velocity v=dw/dk=c. Equa-
tion (1) also describes almost all electrodynamics. It
should be mentioned, however, that for the static case,
V=0 (Laplace equation), the spherically symmetrical
solution y(r) has the undesirable property of being
singular at the origin, namely ¢ (r)=¢/7, ¢(r) >
for r — 0.

III. POSTULATES AND CONSEQUENCES OF
AN EXTENDED THEORY

Relativistic field theories are subject to the well-
known divergencies since ‘‘renormalization’”” does not
remove all the difficulties. Further, the theory of nuclear
interactions is far from complete. The generalization
of relativistic field equations to higher-order equations
of the form f(O)¥=0 by Pais and Uhlenbeck® has
not changed this rather unsatisfactory situation.

It can therefore be concluded that Eq. (1) is only an
approximation. Without doubt Eq. (1) is very suitable
for x rays, uv light, visible light, and longer wavelengths.
Equation (1) should be replaced by a more general wave
equation, which is clearly not of the form g(O)y=0,
but should contain Eq. (1) as an approximation. This
equation, leading to a theory which we will term ex-
tended theory (ET), should include the following
conditions:

(1) It should contain the universal length I, as a
universal constant in a manner similar to the way in
which ¢ appears in Eq. (1), i.e., Jy has the same value
in all frames of reference. Moreover, since the STR
reduces to classical mechanics for »<<¢, the ET should
reduce to the STR for /,— 0.

(2) Besides other solutions, it must also have plane-
wave solutions of the form

ll/=ei(mt-l—k-x) .

(3) The replacement of Laplace’s (and Yukawa’s)
equation, resulting from the ET, should have the
following properties for the spherically symmetrical
case:

Y()—0
Y(r)#= o

8 A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).

for r— o,

for r—0.
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It can be seen that condition (1) requires the intro-
duction of higher-order derivatives. For dimensional
reasons, this would be the only way to introduce Z,.
As a simple example, the following fourth-order partial
differential equation may be considered as a model for
an ET which fulfills conditions (1), (2), and (3):

1 9%
— VY4V —— —=0. (2)
¢ o1

Y=¢ftHkn ig 3 solution, and we obtain the dispersion

relation
w= 2R (14-1%?) . 3)

The first minus sign in Eq. (2) prevents w from be-
coming imaginary for 1<7?%?, and Eq. (2) reduces to
Eq. (1) for lp,— 0.

Equation (2), which recently attracted attention,
arises in the linearized dynamic theory of elastic solids
if couple stresses are taken into account.’ Unfortunately,
no detailed study of this particular equation exists in
the mathematical literature. This is also true for most
of the other fourth-order partial differential equations.

Like Eq. (1), Eq. (2) is also invariant under transla-
tion in space and time.

For 1«Il¢2k® (energy of the y quantum above the
rest energy of an elementary particle), the dispersion
relation (3) reduces to

w? =k, 4)

to which the fourth-order partial differential equation,
1%

1V +——=0, 5
¢ o

corresponds. Surprisingly, this is a Schrédinger-type
equation since

1oy i a i o
VY +——= <l0V2+“ —>(l0V2—‘ —‘>¢ .
¢ of c ot c 0t

The static case,
— VY4V =0, (6)

appears also in Bopp’s treatise on field equations of
higher order in electrodynamics,’® but where the basic
equation is of the type

1
(1——D>D¢=0.
ko?

The spherical symmetrical case of a point charge has the
solution

y=(1—eim). @)

9 R, D. Mindlin and H. F. Tiersten, Arch. Ratl. Mech. Anal. 11,
415 (1962).
10 F, Bopp, Ann. Physik 38, 345 (1940).
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For >0, Eq. (7) reduces to the well-known electro-
static potential

Y=¢/r (8)
and remains finite for 7 — 0
¢0 = 6/ lo , (9)

ie., not singular at the origin. Therefore /, plays the
role of an effective electron radius, and a pointlike
electron is stable in this ET.

Equation (2) can be reduced to a second-order partial
differential equation with the aid of Pauli’s spin

matrices
0 1 0 —2 1 0
ooy o oG ) L) @
1 0 ) 0 0 —1
to the form
g3 6 2
(l001V2+i02V+-— —->1// =0, (11)
¢ Ot
where

()

is now a spinor. Equation (2) is not invariant under
Lorentz transformation. But the transformations which
leave Eq. (2) invariant should reduce to the Lorentz
transformations for Z,— 0.

However, the following should be considered: Con-
trary to the STR, for very short wavelength, the ET
allows signals (group velocities) to propagate at speeds
different from ¢. From Eq. (3) in particular it follows
that

dw 14-21%2
rY=—=—————— (12)
dk  (1+12k)12
for
>I2k2, v=c(1+31%%%).
For visible light, the additional term would be of the
order 107, which is negligible.

IV. THE PROBLEM OF THE EXISTENCE OF
SPEEDS WHICH EXCEED THE SPEED
OF LIGHT AND THE STR

The legitimate question may now be asked: If the
ET allows signals to propagate at speeds faster than c,
could it then be possible to find a privileged coordinate
system in nature? On a macro-scale (ether drift), the
answer is no. A Gedankenexperiment may illustrate
this.

We assume that Eq. (2) holds, i.e., we have signals at
our disposal which propagate faster than ¢, e.g., 2c. A
Michelson-Morley experiment is carried out with these
signals, but it is found that in different frames the speed
of the signal is always exactly 2¢. No conclusion about
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the existence of a preferred coordinate system (ether)
in nature can then be drawn. Therefore to conform to
the special principle of relativity on a macro-scale, it is
required only that signals propagate with the same
constant velocity » (not necessarily equal to ¢) in
different frames.

It should be mentioned that a Michelson-Morley
experiment allows the measurement of differences only
in speeds of signals in different frames. The absolute
speed of the signals used is irrelevant.

The STR does not prove that ¢ is the highest possible
speed in nature. Postulation of invariance under
coordinate transformation of Eq. (1) or postulate (b)
implies that ¢ is the highest speed in nature, since Eq. (1)
allows signals to propagate only with the speed ¢ (as
shown). The Lorentz transformations then explicitly
express this fact by becoming imaginary for v>¢.

On a micro-scale, however, there seems to be a break-
down of the special principle of relativity. This will be
discussed at the end of this paper.

Nevertheless, up to now the existence of an ET has
been rather speculative. There are also other wave
equations, which could replace Eq. (1) and lead to
other ET different from that resulting from Eq. (2).t
If Eq. (1) is considered as an approximation, one could
formally write as a ‘““dispersion relation” of an ET

w?=cR(1+[f(Ik)%])
with f(7%)<1 for visible light, or respectively,
=R (1+12R 10k - ).

The ET wave equation is then obtained by replacing w
and % by the operators w— 73/d¢, k— iV. However,
the values of ly, 1, etc., can only be obtained by experi-
ment. Therefore before going into any lengthy calcula-
tion, the speed of very short v rays of wavelength
A=~10" cm (and shorter) should be measured. If there
is indeed an effect, one could immediately determine
the proper form of the wave equation, leading to the
correct ET, by measuring the speed v (group velocity)
as a function of wavelength.
The dispersion relation

w= / F(E)dk

would follow from v=dw/dk= f(k) by integration. This
would also allow the determination of the magnitude of
Iy (and [, etc.).

A rather easy experiment to perform may be the
following: One produces a very short burst of v rays
(containing wavelengths A~ 10~% cm, and also shorter
and longer ones). One can follow now the shape of the
burst as a function of time (distance) traveled. If in-
deed the different waves travel at different speeds, the
length (shape) of the burst should also change.

1u

(13)

1 o)
(V’——ﬁ ﬁ) (1—12V2)y =0, for example.
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V. CLOSING REMARKS

The constant /, has been introduced in a rather formal
way. One may now be interested in a simple physical
model that explains the significance of /. To construct
this, we start with an ordinary elastic medium, pictured
as an aggregate of points, where each point has coordi-
nates x, v, 2, and ¢ assigned. In this medium, wave
propagations are expressed by Eq. (1), where ¢ is de-
termined by the elastic constants of the medium. We
note that the “electromagnetic medium” has also an
elastic medium as a physical model.

The deformations of an ordinary elastic medium are
expressed with the usual tensor formalism, which
operates in an Riemannian space. However, there are
more general elastic media, for example so-called
“oriented media,” where there are not only points,
but also “directors” (or vectors) attached to each point.
If the medium is now deformed, the directors may also
undergo deformations (couple stresses) independent of
the points. A standard of measure of length is supplied
by the director frame. If the length of the directors is
reduced to zero, one returns to the ordinary elastic case.

The concept of oriented media was first introduced
by Duhem.” In 1909 the Cosserat brothers published
their important work on a general theory of oriented
bodies with three directors at each point.®® Ericksen
and Truesdell generalized the Cosserats’ work and
presented it in modern mathematical language. The
subject was further advanced by Toupin,'® Mindlin,!s
and others.”” Mindlin and Tiersten? derived Eq. (2),
which describes wave propagation in oriented media,
the wave propagation now being dispersive. The geo-
metry, describing deformations in oriented media, is
non-Riemannian (e.g. Finsler geometry!s:),

In relativistic mechanics, the motion of a point
(particle) is expressed in a four-dimensional space with
the metric

ds*=dw*+dy*-dz2—c2de. (14)
If one now wants to extend relativistic kinematics to an
ET kinematic and find the corresponding coordinate
transformations, the following is indicated.

The “electromagnetic medium,” in which wave
propagation now obeys Eq. (2), does not have an
ordinary elastic medium as a physical model, but an
oriented medium. This imposes a necessity to express

2P, Duhem, Ecole Norm. 10, 187 (1900).

18 E. Cosserat and F. Cosserat, Théorie Deformables (Hermann
& Cie., Paris, 1909).

# 7. L. Ericksen and C. Truesdell, Arch. Ratl. Mech. Anal.
1, 296 (1958).

¥ R. A, Toupin, Arch. Ratl. Mech. Anal. 11, 385 (1962); 17,
85 (1964).

¥ R. D. Mindlin, Arch. Ratl. Mech. Anal. 16, 51 (1964).

17 C. Truesdell and W. Noll, Handbuch der Physik, edited by
S. Fligge (Springer-Verlag, Berlin, 1965), p. 389.

18 P, Finsler, Uber Kurven und Flichen in Algemenien Raiimen
(Birkhiuser, Basel, Switzerland, 1951). This is an unchanged
reprint of Dissertation, University of Gottingen, 1918.

¥ H. Rund, Te Differential Geometry of Finsler Spaces (Springer-
Verlag, Berlin, 1959). paces (Spring
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physical laws by more general geometrical concepts.
A point (particle) is not only described by its four space-
time coordinates, but director(s) have to be attached to
each point. Therefore coordinate transformation would
not only have to take the points into account, but also
the director(s). These director(s) contain additional

T. G. PAVLOPOULOS
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physical information. They constitute a preferred direc-
tion (or directions), and so are violating the special
principle or relativity on a micro-scale. Symmetry
operations in these more general spaces become also
more complex. For example, in this model one would
not generally have invariance under reflection.
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Studies were made of the interactions initiated by fragments, including nucleons, from the gradual
breakup of ultra high-energy heavy nuclei in a large block of nuclear emulsion. The results obtained by this
approach are free from the detection biases that arise in scanning for, e.g., high-energy electromagnetic
cascades. For one family of genetically related interactions the primary per-nucleon energy could be reliably
established as ~1.3 TeV. The sample of nucleon-induced interactions with average multiplicity », <25,
with primary energies in the region of 1 TeV, show strong bimodality in the angular distribution of the
created particles. An upper limit of 1.5 BeV/c is found for the average transverse momentum of the possible
fireballs that could have given rise to this bimodality. The average inelasticity for the same sample of
collisions is ~0.6. The average multiplicity 7, for the nucleon-induced interactions with Ny<5 is ~11.5.
For the interactions initiated by heavy nuclei the lower limit to the average per-nucleon multiplicity,
ns/Ad, in the energy interval 1-20 TeV is consistent with the average multiplicity for the nucleon-induced
interactions at about 1 TeV. A linear superposition, in nucleus-nucleus collisions, of elementary nucleon-

nucleon acts of meson production is suggested.

INTRODUCTION

THE purpose of the present investigation is the
study of multiple meson production in the TeV
region using the detailed information obtained from the
collisions of heavy primary nuclei of the cosmic radia-
tion in a large nuclear emulsion block. In the collision
with an emulsion nucleus, a primary heavy nucleus can
dissociate into fragments and/or single nucleons. The
nuclear interactions of the latter can be observed pro-
vided the dimensions of the detector are large compared

* Research supported by the National Science Foundation and
the U. S. Office of Naval Research.

1 On leave from the Institute of Nuclear Research, Krakow,
Poland. Present address: Instytut Badan Jodrowych, Krakow,
Poland.

1 National Science Foundation Graduate Fellow. Present
address: Research Division, U. S. Atomic Energy Comimssion,
Germantown, Maryland.

with the collision mean free path in nuclear emulsion
(~37 cm). A primary heavy nucleus thus initates a
family or cascade of interactions, and it is plausible to
expect that those caused by multiply-charged fragments
are due to incident nuclei carrying the same per-nucleon
energy as the parent primary nucleus. Some of the nu-
cleon fragments as well may emerge from the original
fragmentation with energy close to the per-nucleon en-
ergy of the heavy primary. However, the remainder of
the fragmentation products will be represented by nu-
cleons which have lost energy after having been in-
volved in the production of mesons in the first collision.
As a result, the breakup of a heavy primary nucleus is
expected to give rise to a beam of fragments and nu-
cleons, with some spread in energy but with a well-
defined “hard edge” of the per-nucleon energy which
will correspond to that of the primary heavy nucleus.



