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Measuring the Abundancy of Integers 

RICHARD LAATSCH 
Miami University 
Oxford, OH 45056 

The origins of the study of perfect numbers are lost in antiquity, but the concept was clearly 
recognized well over 2000 years ago and involves such contributors as Euclid, Fermat, Descartes, 
Mersenne, Legendre, and Euler. The classification of positive integers as perfect, abundant, or 
deficient is also an ancient idea, one which dates from before A.D. 100. It is the goal of this note to 
make explicit an idea used by researchers since the seventeenth century (and perhaps before) and 
reproduce, comment on, and extend their ideas. For the newcomer to these concepts, the basic 
definitions are as follows: A perfect number is a positive integer which is equal to the sum of its 
proper divisors (1 + 2 + 3 = 6; 1 + 2 + 4 + 7 + 14 = 28), an abundant number, is one for which the 
sum of the proper divisors is greater than the number (1 + 2 + 3 + 4 + 6 > 12), and a deficient 
number has the sum of its proper divisors less than the number (1 + 2 + 5 < 10). 

As the theory of this classification of numbers developed, investigators realized that it was 
computationally easier to make use of a(N), the sum of all the divisors of an integer N, including 
N itself. Thus a number N is abundant if a(N) > 2N, perfect if a(N) = 2N, and deficient if 
u(N) < 2N. 

Certainly the prime 41 is very deficient since the only divisors of 41 are 1 and 41, and 1 + 41 is 
much less than 2 * 41, whereas 8 is, relatively speaking, just barely deficient since 1 + 2 + 4 + 8 is 
close to 2 * 8. On the other hand, 360 is very abundant since the sum of its divisors, 1170, is greater 
than 3 * 360. By such examples we are led to a natural measure of the abundancy or deficiency of 
numbers. 

DEFINITION. The abundancy index of a positive integer N is the number 

I(N) =( N) 
N 

For example, I(41) = 42/41 = 1.024+, I(8) = 15/8 = 1.875, I(360) = 1170/360 = 3.25, and I(6) 
= 12/6 = 2. Thus N is perfect if I(N) = 2, deficient if I(N) < 2, and abundant if I(N) > 2. 
When I(N) is an integer r> 2, N is said to be multiperfect of index r. For example, 120 is 
multiperfect of index 3 since I(120) = 3 (the smallest such example); also I(30240) = 4. The study 
of multiperfects was pursued by Descartes and others and blossomed around 1900 [7]; an 
excellent bibliography can be found in [12]. We shall return to the topic later, but first we 
establish a couple of easy theorems about the abundancy index. 

THEOREM 1. If k > 1, then I(kN) > I(N). 

Proof. If 1, a,, a2,..., at, N are the divisors of N, then 1, k, kal, ka2,..., kat, kN is a 
(perhaps incomplete) list of divisors of kN. Thus, 

I(kN) >(1+k+ka1+ka2+ +kN)/kN 

=1/kN+ (1 + a, + a2 + +N)/N 

=1/kN+I(N) >I(N). 
This theorem captures the 13th century assertions that every multiple of a perfect number is 

abundant and every divisor of a perfect number is deficient. It also assures us that there are 
infinitely many abundant numbers (all multiples of 6 are abundant) just as there are infinitely 
many deficient numbers (including all of the primes). What the theorem doesn't tell us is which 
multiples of a given N will have the larger abundancy indexes. When N = 8, 

I(5 M M8) > I(11 A8) > I(2 Z8) > I(8) 
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We will soon make several observations about the way in which I(N) grows. 
The existence of arbitrarily large primes guarantees that the abundancy index has 1 as its lower 

bound, since 
P +1 1 

IP= p =lp 

for primes P. A little less obvious is the fact that the abundancy index takes on very large values. 

THEOREM 2. The function I is not bounded above. 

Proof. Let N be an integer divisible by all of the integers 1,2,. . ., k. (One such choice is 
N = k!, but smaller choices are possible if k > 4.) Then 

u(N) >N+N/2+N/3?3 * +N/k 

and so 

I(N) = u(N)IN) 1 + + + + - 11 1 

Since this is a partial sum of the divergent harmonic series, I(N) can be made as large as desired. 

This proof, although constructive, leads quickly to very, very large values of N. For example, 
'L =4/i first exceeds 4 when n = 31 and the smallest integer divisible by all positive integers less 
than or equal to 31 is about 7 . 1013. However, the least integer N with I(N) > 4 is 27720. 

We have now established that the numbers I(N), all of which are rational numbers, are 
scattered throughout the interval (1, oc) of the real line. Before discussing how they are distrib- 
uted, let us write an explicit formula for I(N). 

It is noted in every elementary book on number theory (see, e.g., [8]) that, if P is prime, then 
the sum of the divisors of P' is the sum of a geometric progression 

p11?1 - 1 
(pn) = 1+ p +p2 + ***+ pn= -1(l 

and that, if N = pr. Qs. Vt with P, Q,..., V distinct primes, then 

u(N) = a( pr) (QS) (Vt) (2) 

Combining (1) and (2), we obtain formula (3) below for the abundancy index I(N). 

THEOREM 3. If N= pr. QS. Vt is the prime power decomposition of N, then 

1?p?._ ?pr 1+Q+ ... +Q s 1+ V+ - +Vt 
( ) 

Pr QS () 
pr+l - 1 QS+l -1 Vt+-1 ( 

pr p_ 1) Qs(Q1) vt(v-1) 

We will explore here some elementary consequences of this formula; there are many additional 
properties of u(N) and I(N) which involve inequalities and limits. One particularly intriguing 
result is that the limit of the "average" value of u(N)/N as N increases exists and equals i2/6 
[13, p. 226]. Other results of this type can be found in [9] and [20]. 

Prime factors and index growth 

We begin our analysis of the behavior of the abundancy index by observing that, for a prime P 
and positive integer n, 

I( ptZ) = 
p(P |) 

=_ lP n1 4 

is a decreasing function of P when n is fixed, but it is an increasing function of n when P is 
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xed. In particular, for a fixed P, the sequence 

{ IJ(Pn)}1 
has for its first term I(P) = (P + 1)/P and increases to the limit P/(P - 1) as n becomes 
infinite. Thus for P = 5, 6/5 < I(5n) < 5/4 for all n; and for P = 71, 72/71 < I(71n) < 71/70, a 
very narrow range of values (about .0002 in width) -all slightly larger than 1. In other words, the 
contribution of a prime the size of 71 to the abundancy index of a number N having 71 as a factor 
is limited and does not depend strongly on the number of times the prime occurs as a factor of N. 
The contribution of a still larger prime is proportionally less. In fact, for primes P larger than 41, 
the fourth term of the sequence J(P4) agrees with the limit P/(P - 1) of the sequence to 8 
significant digits. Note also that the ranges of these sequences (and their intervals) are disjoint for 
any two distinct primes P. 

Given a number N, if the goal is to multiply N by a prime which is not one of its factors in 
order to increase the size of the abundancy index, it is clear that to get a maximum increase, the 
best choice is the smallest such prime. Sometimes, however, a bigger increase in the index will 
occur if N is multiplied by one of its prime factors. For example, given M = 360360 = 2 3 32. 5. 7 
11 13, you could multiply M by 2, 3, 5, or 17. It turns out that 17 is the best choice since 

1(17M) = 3.62 +, I(2M) = I(5M) = 3.50 +, and I(3M) = 3.47 +. In contrast, given L = 90 = 2 
32 5, the choice that maximizes the index is 2 since I(2L) = 91/30 and I(7L) = 104/35. 
In assessing the maximal contribution of the primes in the prime factorization of N to the 

abundancy index I(N), we will make extensive use of the following theorem, which follows 
immediately from Theorem 3 and equation (4). 

THEOREM 4. If N = pr _ QS. Vt with P, Q, .. ., V distinct primes, then the least upper bound 
of the sequence I(N") is 

P Q V 
P-i Q-1 v-1 (5) 

Theorem 4 yields several interesting small results. For example, if N is an even integer but not a 
power of 2, then N"1 is abundant for some n. To see this, let N = 2PT, where P is any odd prime 
factor of N. Then 

1mI((2Py) n)= 2 P 2P 2 lim I((2P))21 ~ =21>2, 
fl -~ 002 1P 1 

so that some exponent r exists for which I((2P)r) > 2. But then, invoking Theorem 1, 

I(Nr) = I((2P) rTr) > I((2P) r) > 2. 

Similarly, if N is not a power of 2, then 2" N is abundant for some exponent n. 
For odd integers, we can show that if P and Q are distinct odd primes, then (PQ)" is deficient 

for all n. Since I is a decreasing function of P and 3 and 5 are the smallest odd primes, we only 
need to note that 

lim I((3 * 5)") =(3/2) * (5/4) = 15/8 < 2. 
n - oo 

From this it follows that not only is the product of any two distinct odd primes deficient, but its 
abundancy index is smaller than 15/8 = 1.875. On the other hand, 

lim I((3 5 7)")=35/16>2, 
n - oo 

so there are abundant odd integers with three distinct prime factors. Thus we have a 1913 theorem 
of L. E. Dickson [6]: Every abundant odd integer has at least three distinct prime factors. The 
smallest odd abundant number turns out to be 945 = 33 3 5 . 7. We note the dominant role played 
by the smaller primes in this kind of result: if an odd number is not divisible by either 3 or 5, then 
in order to be abundant, that number must have at least fifteen distinct prime factors-a fact 
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which can be verified in a couple of minutes using Theorem 4 and a calculator. 
It is an interesting historical anomaly that the first four perfect numbers (6, 28, 496, 8128) were 

all known by A.D. 100, and probably much earlier, but that the 13th century found scholars still 
unaware that odd abundant numbers such as 945 existed. The difference is partly explained by the 
fact that Euclid published in his Elements a formula for even perfect numbers. 

Using formula (4), it is a simple matter to extend Dickson-type results-especially with the aid 
of a computer. We have prepared TABLE A, which gives, in tabular form, pairs of numbers J and 
K for the following statement: Every number N with I(N) > J must have at least K distinct prime 
factors. 

N Even N Odd 

J K J K 

2 2 2 3 
3 3 3 8 
4 4 4 21 
5 6 5 54 
6 9 6 141 
7 14 7 372 
8 22 8 995 
9 35 9 2697 

10 55 10 7397 
11 89 11 20502 
12 142 12 57347 
13 230 
14 373 
15 609 
16 996 
17 1637 
18 2698 
19 4461 
20 7398 
21 12301 
22 20503 
23 34253 
24 57348 

TABLE A. Every number N with I(N) > J 
must have at least K distinct prime factors. 

Given J, the number K is computed as follows: 

for n even: K= min(n: 11 pi > J 
i=1 ~~~~~~~~~(6) 

forn odd: K=min{n: Fp_l i>J} 

where Pi is the ith prime in the natural ordering of the primes (P1 = 2, P2 = 3, P3 = 5, etc.). 

The first few entries in TABLE A were known to R. D. Carmichael [4] in 1907; his paper 
explicitly states formula (5). Also Paul Poulet [19] in 1929 gave the first seven entries in the "even" 
table. Recently, computers have been called upon to generate this and similar tables (see, for 
example, [18]). 

While compiling TABLE A for N even, it became apparent that there was a pattern in the 
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entries in the K-column. The sequence of first differences 
{1,1,2,3,5,8,13,20,34,53,88,143,236,387,... } 

bears a resemblance, which is too obvious to be ignored, to the Fibonacci sequence 
{1,1,2,3,5,8,13,21,34,55,89,144,233,377,... ) 

Thus, with K as defined in (6), it is natural to conjecture: If K(J) is the least integer such that 
K(J) p 

Hl p 1>J 

and fj is the Jth Fibonacci number (fi = f2 = 1), then K(J + 2) - K(J + 1) - fj in the sense that 
lim [ K(J + 2) -K(J + 1)]Ifj = 1. 

J oo 

This is an attractive conjecture because it relates a product of primes to the additively defined 
Fibonacci sequence. 

Although the conjecture seems plausible for small values of J (from 2 to 16), in the range of 
values of J from 17 to 24 the ratio [K(J + 2) - K(J + l)]/fj increases. (It is 1.304 for the last 
value, J = 22, which TABLE A allows us to compute.) The conjecture is probably false, but it may 
be possible to resuscitate a version of it by taking equal steps of some number J < 1 rather than 
integer steps, or by making a similar adjustment. Alternatively, perhaps [K(J + 2) - K(J + l)]/fj 
approaches some limit-which, if true, would also be an interesting result. 

It is reasonable to question the value of the numbers in the latter part of TABLE A. It is unlikely 
that anyone will ever want to exhibit a number N with abundancy index greater than 20, so the 
knowledge that N must contain at least 7398 distinct prime factors (all of the primes 2 through 
75037, or worse!) is unlikely to be translated into a blueprint for finding N. Even for smaller 
values of the index there is no assurance that the smallest integer S with index I(S) > J is 
obtained using the value of K given by TABLE A. In TABLE B, we give a few "smallest" integers S 
for given integer values of J and compare L, the number of distinct primes which actually occur 
in the factorization of S, with the number K in TABLE A. 

J S even K L 
2 6=2 3 2 2 
3 120=23-3 5 3 3 
4 27720 =23. 32.5.7.11 4 5 
5 122522400 =25 32.52.7-11.13-17 6 7 

S odd 

2 945=33 .5. 7 3 3 
3 1018976683725 =33 .52.72 .11 .13.17.19.23.29 8 9 

TABLE B. The smallest integer S with I(S) > J. 

A much more extensive table appears in [1], where Alaoglu and Erdos extended some work 
initiated by Ramanujan and, as a part of their efforts, tabulated the first 74 superabundant 
numbers-integers whose abundancy indexes are greater than those of all smaller integers. 

One final note on the growth of the abundancy index: After a certain level has been reached by 
the index, those index values do not occur with increasing frequency. For example, the index first 
reaches 4 at 27720, is equal to, but not greater than, 4 twice between there and 50000, and the 
number of integers with index greater than 4 in the successive intervals of length 50000 between 
50000 and 500000 are, respectively, 10, 10, 11, 15, 12, 10, 12, 12, and 11. Some quantitative results 
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on the density A (x), which is the limit as N - 0o0 of the relative frequency of occurrence of 
integers N with I(N) > x, can be found in [21]. A lively and entertaining discussion of these 
statistics is coupled with comments on the history of perfect and abundant numbers in an article 
by David G. Kendall [15] in which philosophical attitudes and applications-ancient, medieval, 
and his own- are considered. One of the interesting aspects of Kendall's article is the evidence he 
gives to support the conjectures that 1) the density A (2) of the nondeficient numbers is 1/4, or 2) 
the density of the nondeficient even numbers is 1/4. We can use TABLE B to show that these 
conjectures cannot both be true, for the density of odd nondeficients is at least 1/1890 because 
every odd multiple of 945 is odd and abundant. 

The set of abundancy indexes 

Near the end of the first section of this paper, we deferred the question of the nature of the set 
of abundancy indexes 

D={I(N): N 2}. 

Here we resume that discussion. 
Our immediate goal is to show that this set is dense in the interval (1, oc). We first examine the 

behavior of the product H(Pi + 1)/Pi, where Pi is the ith prime. The behavior is quickly 
established, for 

fl P. 1 n 1 
lim H FP =o l imn H1 + po =rn l = oo. 

n oo i=l Pi n-?? i=l Pi s1?? i=l0 

This second equivalence is a special case of the basic theorem on infinite products, that 
H(1 + ai) = oc if, and only if, Lai = 0o (see [14] or [16]). However, El/Pi is a known divergent 
series ([17, or 13, p. 17). Thus H(Pi + 1)/Pi is a divergent product whose partial products 

fl 

H (Pi + 1)/Pi form a strictly increasing sequence and whose component factors (Pi + 1)/Pi 
il= 
form a strictly decreasing sequence converging to 1. These observations yield an alternate proof of 
Theorem 2 and make possible the following theorem. 

THEOREM 5. The set D = { I(N): N > 2} is dense in the interval (1, 00). 

Proof. The method of proving this theorem is comparable to approximating a positive number 
by a subseries of El/n. We generate an increasing sequence { I(Nk)} converging to an arbitrary 
number x > 1, as follows: let No = P1P2 ... Pt, where t is the largest integer such that 

,( No) = Fl ( Pi + l)/P, < x- 
i=l 

(Since I(P1) = I(2) = 3/2, this construction works only if x > 3/2, so we arbitrarily set I(NO) = 1 
if x < 3/2.) Let d, = x/I(No); let Q1 be the smallest prime such that Q1 > Pt and (Q1 + 1)/Q1 < 
dl; and let N1 = N0Q1. Now I(NO) <I(N1) < x. Next let d2 = x/I(N1), and let Q2 be the 
smallest prime such that Q2 > Q1 and (Q2 + 1)/Q2 < d2. Let N2 = N1Q2. With the proviso that 
we will stop if I(Nj) = x at any stage (including the 0th stage), we continue this process to 
generate a sequence { Nj } of integers such that { I(N))} increases to x. The existence of the needed 
Qj's are guaranteed by the convergence of {(Pi + 1)/Pi} to 1, and the fact that the gap from 
I(N,) to x will always be bridged follows from the divergence of H(Pi + 1)/Pi to 00. 

The numbers Nj generated in the proof are all products of distinct primes. There are infinitely 
many integers which would not be used to generate the sequences { I(Nj)}. Also, there are many 
duplications in the set of abundancy indexes; one such duplication occurs when 

I(332640) = I(360360) = 48/11. 

Further, some of these duplications are integers, as is evidenced by the existence of more than one 
perfect number. (Erdbs [9] has done a sophisticated analysis of the frequency of occurrence of 
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duplications.) However, the number 2 has an abundancy index which is uniquely its own. To see 
that N = 2 is the only solution of the equation I(N) = 3/2, note first that if N is even and N > 2, 
then I(N) > 3/2 (Theorem 1); second, if N is odd, then the denominator in formula (3) is odd 
and cannot have 2 as a factor. 

Open questions 

Since every I(N) is a rational number and since D = { I(N): N > 2) is dense in (1, oo), we are 
led to the (perhaps unanswerable) question: Is every rational number q > 1 the abundancy index 
of some integer? If we note that the construction in the proof of Theorem 5 can be carried out 
with only minor modifications after deleting the number 2 from the list of primes, we get another 
interesting question: Is every rational number q > 1 the abundancy index of some odd integer? A 
positive answer to the first question would be of some interest, and a positivp answer to the second 
one would be a major advance since it would imply that there exist odd perfect numbers and odd 
multiperfect numbers, no examples of which are known. But the suggested modification of the 
proof of Theorem 5 does assert that there are odd integers whose "imperfections" are as small as 
we choose since we can, for any E > 0, find an odd integer N with abundancy index I(N) in the 
interval (2 - ,2]. In this context we might regard E, or its reciprocal, as a "coefficient of 
frustration." 

The search for multiperfect numbers, those numbers with integral abundancy indexes, was 
vigorously undertaken by Descartes, Fermat, and others in the 17th century. Those two were the 
most successful searchers of that era, and the competition between them apparently was not 
without rancor [7, pp. 33-38]. Many other multiperfects were discovered in the early 1900's by 
Carmichael [4], Mason [5], and Poulet [19] and, more recently, by Brown [3] and Franqui and 
Garcia [10; 11]. These last four lists, all over 30 years old, contain seven multiperfects of index 8, 
each of which has from 41 to 43 distinct prime factors and is of the order of 10200. Index 8 is still 
the greatest index achieved in the search for multiperfect numbers. Franqui and Garcia's second 
list also includes a multiperfect of index 7 with a 27-digit prime factor. 

The ideas of the abundancy index and formula (3) have been the principal tools in the 
investigations of multiperfects from the beginning. Substitutions discovered and used by Descartes 
[7, p. 35], Poulet, and Carmichael and Mason have the effect of preserving the abundancy index or 
changing it by an integer amount to construct new multiperfect numbers from known ones. One 
example of such a substitution which preserves index is the replacement of 35 73 * 13 by 
37 * 72 19 * 41. A comparable substitution, 25 33 for 23 * 32* 13, was implicit in an earlier 
observation that I(332640) = I(360360), or I(2s 33 35 *7 * 11) = I(23 * 32 5 *7 11 *13). It is en- 
tirely possible that many substitutions were discovered in just this way-by comparing the prime 
factorizations of numbers (mostly multiperfects) known to have the same index. An excellent 
survey of current knowledge on multiperfect numbers and an extensive list of references can be 
found in [12]. 

One of the oldest and most famous (notorious) of the unanswered questions of mathematics is: 
Is there an odd perfect number? The theory of even perfect numbers was thoroughly settled by 
Euclid and Euler (see, for example, [8, Chapter 8].) Apparently, none of that theory is helpful in 
searching for odd perfect numbers. 

To begin, we wish to satisfy equation (3) 

1+P?+ p2 .. +pr 1+ Q+ ..?+QS I+ V+ * V 

prQSv 

where the distinct prime factors P, Q ... . V of N are all odd. The denominator of this fraction is 
an odd number, so the numerator contains only a single factor of 2; but if r is an odd integer, 
then 1 + p+ p2 + . .. + pr is even. Thus exactly one of the exponents r, s, .., t is odd, and all of 
the other primes occur to even powers only. (The reader is invited at this point to walk in the 
footsteps of Euler and show that, for this prime with odd exponent, both the prime and the 
exponent are congruent to 1 modulo 4.) If we wish to have some 3's in the prime factorization of 
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N, we will need an even number of them, but the penalty for having none is that the minimum 
number of distinct prime factors of N increases from eight to eleven, [25], [27], [29]. 

As a variation on the approach using formula (3), we might try the approach in the proof of 
Theorem 5 and approximate the number x = 2 from below by a sequence of abundancy 
indexes-keeping in mind the restrictions of even exponents and the like discussed above-and 
hope to be lucky enough to find at some stage that 2/I(Nj) is equal to some realizable (Pi + 1)/P1 
or (pi2 + Pi + 1)/Pi2. 

In light of this discussion, it is not surprising that no odd perfect numbers have yet been found 
and that those adventurers who look for them can become quickly discouraged. On the other 
hand, the possibility that an odd perfect or multiperfect number may exist has spurred several 
modem investigators to develop and improve criteria and conditions such numbers must satisfy. A 
few of these are noted in our references; further criteria and references are available in [2] and 
[12]. 

The value of investigation 

This note grew out of a "computer literacy" project for classes of humanities majors and 
prospective elementary teachers in which I introduced the abundancy index as a concept whose 
computational aspects were readily assigned to a computer. I asked them to compute a few values 
of 1(N) and search for an odd abundant number. Later findings of a(N)/N in older literature 
[4], [6] led me to an enjoyable investigation of properties of the index. The two referees of an 
earlier version of the paper further stimulated my interest with a number of additional references 
(as well as being helpful in all the ways referees can be). 

The abundancy index as a hierarchical classification of numbers is an interesting concept in its 
own right-at least in part for its recreational value when used to investigate the general topic of 
abundant and deficient numbers. In addition, it has growth and density properties to intrigue both 
the serious and recreational students of number theory. Its analysis provides a vehicle for unifying 
several parts of the theory; in so doing, it suggests new unsolved problems and illuminates old 
ones. It is hard to ask anything more of a completely intelligible one-line definition! 
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Proof without words: 
Arithmetic progressions with sum equal to the square of the number 
of terms 

n=4 

4 + 5 ? 6 + 7 + 8 + 9 + 10 =72 

3n-2 

k=n 
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