J Autom Reasoning (2007) 39:219-243
DOI 10.1007/s10817-007-9074-1

Visualizing SAT Instances and Runs
of the DPLL Algorithm

Carsten Sinz

Received: 1 February 2006 / Accepted: 1 December 2006 / Published online: 26 July 2007
© Springer Science + Business Media B.V. 2007

Abstract SAT-solvers have turned into essential tools in many areas of applied logic
like, for example, hardware verification or satisfiability checking modulo theories.
However, although recent implementations are able to solve problems with hundreds
of thousands of variables and millions of clauses, much smaller instances remain
unsolved. What makes a particular instance hard or easy is at most partially un-
derstood — and is often attributed to the instance’s internal structure. By converting
SAT instances into graphs and applying established graph layout techniques, this
internal structure can be visualized and thus serve as the basis of subsequent analysis.
Moreover, by providing tools that animate the structure during the run of a SAT
algorithm, dynamic changes of the problem instance become observable. Thus, we
expect both to gain new insights into the hardness of the SAT problem and to help
in teaching SAT algorithms.

Keywords SAT instance - DPLL procedure

1 Motivation

Progress in SAT-solving has been tremendous over the past years. Problems that
were completely out of reach 10 years ago can now be handled with success [8].
Especially in hardware verification, SAT solvers (and the associated method of
bounded model checking [15]) have made a glittering success story [44, 65], and in
many areas replaced the previously predominant BDD-based model checkers [13].
But in other combinatorial problem domains such planning [40], configuration [41],
satisfiability modulo theory [5], or software verification [64, 70] SAT-solvers have
played out their strengths.

C. Sinz (X)

Institute for Formal Models and Verification, Johannes Kepler University Linz,
Altenbergerstr. 69, 4040 Linz, Austria

e-mail: carsten.sinz@jku.at

@ Springer

220 C. Sinz

Although the advent of new methods and optimized implementations made SAT-
solvers very successful on these “real-world” instances, large classes of SAT instances
remain (e.g., unsatisfiable random 3-SAT problems with a clause-variable-ratio near
the phase transition point [14, 32, 42, 45]) on which these solvers fail — even on
instances that are considerably smaller (by four to five orders of magnitude). This
is not surprising, as SAT is an NP-complete problem [55]. The reasons for this
phenomenon, however, are at best partially understood, and besides results that are
often not directly applicable to large industrial instances (e.g., treewidth), no a priori
criteria are available to decide whether an instance is tractable. In fact, determining
the hardness of a particular instance may be even more complex than solving the
SAT instance itself.

The standard argument found in the literature to explain this dichotomy is that
real-world instances are equipped with some kind of internal (and sometimes hidden)
structure that makes these problems tractable [66]. The term “structure,” because of
its vagueness, leaves much room for interpretation, though, and it remains unclear
how this structure manifests itself and could be exploited. Among the methods
proposed are randomization [35], clause learning [43], symmetry and component
detection [1, 10, 16, 56], and tree decomposition [52, 63]. The first two techniques
(randomization and clause learning) can be found in most implementations of
modern SAT-solvers for real-world instances today [26, 34, 47]. Concepts explaining
the boundary between tractability and intractability (besides graph-based properties
such as treewidth) include backbone variables [46] and backdoor sets [69]. Although
highly valuable from both an epistemological and a practical point of view, these
concepts do not deliver an a priori criterion to directly “read off” the computational
hardness of a given instance.

We propose a novel, mainly empirical approach in order to shed some light
on an instance’s internal structure [60]. A major ingredient of our method is the
visualization of internal variable dependencies and clause dependencies as they
emerge from a graph transformation of the SAT problem. From the graph we hope
to be able to derive new criteria for problem hardness.

Different graph representations of SAT instances have been proposed in the
literature, including variable interaction graphs [52], resolution graphs (Van Gelder,
personal communication, 2005), implication graphs [3], factor graphs [12], and hyper-
graph variants of these [31, 50]." We have decided to use variable interaction graphs
and resolution graphs for the visualization approach presented in this paper, as these
graphs are both amenable to layout algorithms (as opposed to hypergraphs) and
general enough (as opposed to implication graphs). To render graphs, we use existing
graph layout algorithms or, more specifically, force-directed placement procedures
[24, 29]. These procedures are known to reflect clustering and symmetry — properties
that we are interested in — especially well [29].

Besides computing static layouts, we have developed a tool called DPvis that is
able to generate animations showing the dynamic change of a problem’s structure
during a run of the DPLL (Davis—Putnam-Logemann-Loveland) procedure. The

I'Unfortunately, there is no established nomenclature for these graphs. Szeider [63], for example,
uses the name “primal graph” for our variable interaction graphs and the notion “incidence graph”
for what we call factor graph; Galesi and Kullmann [30] call resolution graphs “conflict graphs.”

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 221

DPLL procedure is used (with variations and extensions) by almost all SAT-solver
implementations for real-world problems today.

The rest of this paper is organized as follows. First we introduce basic notions
of SAT-solving and graph layout. Then we present our implementations DPvis and
3Dvis, which compute two- and three-dimensional graph layouts of SAT instances.
We then show results obtained by our visualization and summarize observations we
have made. Finally, we report on related work and conclude with a brief discussion
of future research.

2 Theoretical Background

In this section we define basic notions of SAT-solving, present different transforma-
tions from SAT instances to graphs, and give a short introduction into graph layout
algorithms, as far as it is needed here. We also state known results on treewidth and
tree decompositions.

2.1 SAT and the DPLL Algorithm

The propositional logic satisfiability problem (SAT) asks whether a formula in
conjunctive normal form (CNF) — a SAT instance — is satisfiable, that is, whether
there exists an assignment to the variables such that the whole formula evaluates to
true. More formally, a SAT instance is defined as follows.

Definition 2.1 Given a finite set X of propositional variables, a SAT instance
S={Cy,...,Cy} (over X) is a finite set of clauses, where a clause C = {/y, ..., [;} is
a finite set of literals, and a literal / is either a variable x € X or its negation —x (with
x € X). We denote the set of literals (over X) by L :== XU—-X = XU {—x | x € X}.

Logically, a clause C = {/}, ..., I;} is interpreted as the disjunction of its literals,
namely, as (/; v --- vV Ix), and a SAT instance S = {C|, ..., Cp,,} as the conjunction of
its clauses, namely, as C; A - -+ A Cy,.

The problem of determining whether a formula in CNF is satisfiable is the classical
NP-complete problem [55]. Different algorithms have been proposed to solve it
[17, 18, 54], with the Davis—Putnam-Logemann-Loveland (DPLL) algorithm being
the one mainly used in practical applications today. We have depicted the basic
DPLL algorithm in Fig. 1. It has been extended in various ways in modern imple-

Fig. 1 Pseudo-code of the boolean DPLL(ClauseSet S)
basic DPLL algorithm
(without clause learning) while (S contains a unit clause {l}) {
delete clauses containing [from S // unit-subsumption
delete [from all clauses in S // unit-resolution
if (0 € S) return false // empty clause?
if (S=0) return true // no clauses left?
choose a literal ! occurring in S // case-splitting on |
if (DPLL(S U {{/}}) return true // first branch
else if (DPLL(SU {{I}}) return true // second branch
else return false
}

@ Springer

222 C. Sinz

mentations, the most important ones being clause learning and nonchronological
backtracking [43], fast Boolean constraint propagation [47], and random restarts [35].

2.2 Graph Representations of SAT Instances

In order to obtain graph representations from SAT instances, a mapping from the
latter to the former is needed. As an intermediate step in generating such a mapping,
it is useful to consider hypergraphs [31] first, because they allow for a natural,
lossless transformation from the propositional logic domain to a graphlike setting
(see also [50]).

Definition 2.2 A hypergraph H = (V, E) is a pair of a vertex set V and a set of
hyperedges E, where E is a subset of the powerset of V, thatis,e € V foralle € E.

This suggests a natural translation of a SAT instance S to a hypergraph H, by
setting the vertex set V of H to the set of literals of S and letting the clauses of S
generate the hyperedges of H. We thus obtain H = (L, S) as a natural representation
of S as a hypergraph.

Unfortunately, it is hard to render hypergraphs graphically, except for the case
where all hyperedges are of size two, in which the hypergraphs coincide with ordinary
graphs. Thus, different ways have been proposed in the literature [46, 52, 62] to ob-
tain ordinary graphs by modifying the hypergraph representation in some way. In
what follows, we assume a SAT instance consisting of a clause set S over a set of vari-
ables X. Figure 2 illustrates these graph representations on an exemplary formula.

Factor graph Factor graphs have been used in the context of SAT
solving by Braunstein and Zecchina [12] and Szeider
[63] (among others). A factor graph Gp = (V, E) is a
bipartite graph, in which the vertex set consists of the
union of the instance’s clauses and variables; thus V =
X US. An (undirected) edge is drawn between vari-
able x and clause c if and only if xec or —xec. It
is obtained from the hypergraph representation H =
(S, L) by adding a new vertex for each hyperedge (i.e.,
for each clause), connecting the new vertex with all
elements of the hyperedge, ignoring signs of literals.
In a slight variant of the factor graph (called directed
factor graph), a directed graph is used instead of an
undirected one, where the direction of the arc indicates
whether the variable occurs positively or negatively in
the clause.

Variable interaction graph The variable interaction graph G; = (X, E) is obtained
from the hypergraph H = (L, S) by replacing each
hyperedge e* with a set of ordinary edges, one edge
for each pair of elements of e*, and merging nodes
of positive and negative literals for each variable [52].
Thus, an edge {x, y} is drawn between two variables x
and y if they occur together in at least one clause.

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 223

factor graph variable interaction graph resolution graph

Fig. 2 Different hypergraph and graph representations of the SAT instance S = (Cy, C, C3) =
(e, y, =z), {=x, yh {us . 2D)

Resolution graph In the resolution graph G = (S, E) an (undirected)
edge is drawn between two clauses C; and C; if and
only if there is a variable x € X such that x € C; and
—x € C,. Clauses C; and C, that are adjacent in Gg can
thus be resolved. (Note that we also allow tautological
resolvents here.)

Whereas directed factor graphs are lossless representations of SAT instances, all
of (undirected) factor graphs, variable interaction graphs, and resolution graphs are
lossy representations of SAT instances — in the sense that the mapping from SAT in-
stances to graphs is not injective. In the case of factor graphs and variable interaction
graphs, signs of literals are ignored (and thus cannot be “reconstructed”), and clauses
are not represented uniquely, as the following example shows: the 3-clause {x, y, —z}
and the set of three two-clauses {{—x, y}, {x, =z}, {y, z}} share the same interaction
graph and thus cannot be differentiated. For resolution graphs, as parallel edges are
merged, the transformation is also not invertible. Lossy representations, however,
allow one to abstract away certain properties that are not currently in focus.

In the variable interaction graph, a path from a variable x to a variable y means
that assigning a value to x may influence possible assignments to y (e.g., exclude
that y is set to true). Conversely, if there is no path from x to y, these variables are
independent, which also means that the SAT problem for the components containing
x and y, respectively, can be solved independently. In the resolution graph, a path
from a clause C to a clause D indicates that literals of C and D may be merged
by a series of resolution steps (cf. del Val’s no-merge resolution for knowledge
compilation [20] or Plaisted and Zhu’s ordered semantic hyper-linking [51]).

@ Springer

224 C. Sinz

2.3 Treewidth and Tree Decompositions

Treewidth is a notion that was introduced by Robertson and Seymour in their work
on graph minors [53]. The treewidth tw(G) is a structural parameter of a graph G.
It plays an important role in algorithmic graph theory, as many graph algorithms
become tractable when restricted to graphs of bounded treewidth.

Treewidth is defined via tree decompositions, where a tree decomposition of a
graph G = (V, E) is defined as a pair (7, x), where T is a tree and x a labeling of the
vertices of T by sets of vertices of G. (7, x) is a tree decompostion of G provided the
following conditions hold:

— For every vertex v € V there is a vetex ¢ in T with v € x (¢).

— For every edge (v, w) € E there is a vertex ¢ in T such that {v, w} € x(¢).

— For any vertices t,,1,t in T, if t, lies on a path from # to t;, then x(¢;) N
x () S x ().

The width of a tree decomposition (7', x) is defined as the maximum of |x (¢)] — 1
over all vertices ¢ in 7. The treewidth tw(G) of G is the minimum width over all its
tree decompositions.

For a fixed k, deciding whether a graph has treewidth at most k can be decided in
linear time [11]. However, computing the treewidth of a given graph is an NP-hard
problem [2].

Tree decompositions can be used to obtain fast algorithms for subclasses of
otherwise intractable problems. For SAT, Gottlob et al. have shown, for instance,
that clause sets with bounded treewidth of the variable interaction graph are fixed-
parameter tractable [36]. Szeider proved that clause sets with bounded treewidth of
the factor graph are fixed-parameter tractable [63].

A problem is called fixed-parameter tractable (FPT) [23, 49] if its run-time depends
exponentially only on the parameter k but is otherwise polynomial, that is, it is
O(f(k) - 1), where f is any function, / is the size of the problem instance (for SAT
the number of occurring literals), and « is a constant independent of k.

Treewidth is also closely related to bucket elimination algorithms for SAT.
Dechter [19, 52], for example, has presented such an algorithm. Zabiyaka and
Darwiche have defined the notion of functional treewidth [71] and give results of
an algorithm based on this notion for circuit benchmarks from the LGSynth93
suite. Narodytska and Walsh [48] have applied an algorithm that exploits structural
properties related to treewidth to automotive configuration problems. Array Logic
[27], working with decompositions and partial solution tables, is also closely related
to tree decompositions and has been applied to configuration problems. Especially
in the application area of product configuration, treewidth seems to be a promising
concept.

2.4 Graph Layout Algorithms

The graph layout or graph drawing problem consists of generating a geometric
representation of a graph in two or three dimensions. Nodes have to be positioned in
the Euclidean space while optimizing certain layout properties like minimal number
of edge crossings, uniform edge length, and reflection of inherent symmetry [22, 29].

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 225

Different algorithms are available for graph layout, a prominent one being
the spring-embedder model of Eades [24] or its close relative, the force-directed
placement algorithm of Fruchterman and Reingold [29]. Both are known to produce
layouts that reflect symmetry very well.? The physical model used by the spring-
embedder assumes metal springs of a certain length attached between each pair of
connected nodes. The springs impose attractive and repellent forces on the nodes
depending on their current distance in the layout. The layouter attempts to minimize
the sum of all affecting forces (i.e., the energy of the whole system) by iteratively
repositioning the nodes.

Unfortunately, using only local spring forces is not sufficient to obtain a globally
untangled graph [67]. As an example, Walshaw [67] considers a chain of three
vertices a, b, and c that are connected by two edges {a, b} and {b, c}. Now, having
only local spring forces, a placement where a and ¢ are put at the same location and
b one spring length away would be a state of minimal energy and thus considered
optimal. However, having a and ¢ put at the same place is typically not regarded as
an acceptable layout. On a larger scale, repulsion is necessary to push whole regions
that are not immediately connected away from each other. The standard technique
[24, 29, 67] to avoid such situations is to add global repellent forces between all
vertices. These are typically simulated by a physical model that considers nodes
as equally charged particles that push away from each other. A drawback of this
approach is that a simplistic algorithm to compute global forces requires quadratic
time in the number of vertices. However, there are more advanced algorithms like
the Fast Multipole Method (FMM) [37] or the Barnes—Hut-algorithm [4] that can
avoid the quadratic behavior — at the cost of a more complicated implementation,
though.

3 Implementations

We have developed two tools for visualizing SAT instances: DPvis, which generates
two-dimensional layouts of SAT instances and which can also animate runs of the
DPLL algorithm, and 3Dvis, which produces three-dimensional layouts.

3.1 DPvis: Visualizing the DPLL Algorithm

DPvis is a Java tool to visualize the structure of SAT instances and runs of the
DPLL procedure. It builds on the commercially available graph layout package
yFiles of yWorks (http://www.yworks.com), from which it uses the Organic Layouter
and Smart Organic Layouter, both of which implement force-directed placement
algorithms. DPvis is also able to generate animations showing the dynamic change
of a problem’s structure during a DPLL run. Besides implementing a simple variant
of the DPLL algorithm on its own, DPvis features an interface to MiniSAT [26], a
state-of-the-art DPLL implementation, by which runs of MiniSAT can be visualized
—including the generated search tree and the effects of clause learning. A screenshot
of DPvis is shown in Fig. 3.

~We have considered other existing layouts as well, like hierarchical or orthogonal layout but found
them not to be equally suitable for our purpose.

@ Springer

http://www.yworks.com

226 C. Sinz

£ visualization of the DP-Procedure - hanoi4-d12.cnf ;Iglll

File Edit Layout Animation Options ?

EHa[a]a]me — 2 [n]

 Assign Literak|-525 #Var: 231 #Clauses: 764

Fig. 3 DPvis tool showing a visualized SAT instance (hanoi4 of the DIMACS benchmark
collection®): The variable interaction graph is shown on the left and a manually generated, partial
search tree on the right

DPvis uses a refined variant of the variable interaction graph, in which 2-clauses
(aka binary clauses, i.e., clauses containing exactly two literals) are represented as
visually emphasized directed or undirected arcs in the graph. Different colors are
used depending on the signs of the literals occurring in the 2-clause. Special treatment
of 2-clauses is motivated by their importance for tractability: a problem consisting
only of 2-clauses is solvable in linear time [3]. Moreover, experiments with random
instances from the (2 + p)-model (problems with a fraction of p 3-clauses and (1 — p)
2-clauses) indicate that random instances with up to 40% of 3-clauses (i.e., p < 0.4)
might be computationally tractable [46]. Binary clauses occur to a considerable
extent in real-world SAT instances (for example, in hardware verification) as well.

Besides providing two different layout algorithms, DPvis allows zooming into the
interaction graph, performing unit propagation, and manually setting variables to
true or false. During all these operations, the variable interaction graph is updated to
reflect the current partial assignment. Moreover, DPvis allows one to navigate freely

3The hanoi4 instance represents the well-known Towers of Hanoi game with four disks, encoded
as a planning problem. Individual actions of the plan as well as their dependencies are clearly visible
as linearly arranged clusters in the graph layout.

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 227

r

8eee 3Dvis
Parameters | View 1

Horizontal Angle: 103

L
Vertical Angle: -66
A |
Zoom: 4,047
Fa

+ ¥

show Edges

_| Show Only 2-Clauses

Node Size: | s
—

E Degree-Dep. Node Size

() Fast Graphics
® High-Quality Graphics

__ Auto-Rotate

Fig. 4 3Dvis showing an instance on equivalence checking of two hardware multipliers
(longmults, available at http://www.cs.cmu.edu/~modelcheck/bme.html)

in the search tree generated by the DPLL algorithm and thus to compare reduced
instances (due to partial variable assignments) at different points of the search tree.

The interface to MiniSAT allows playback of DPLL traces generated by this
SAT-solver. Such traces contain information about case splitting, unit propagation,
learned clauses, and back-jumps, all of which can be animated and analyzed with the
help of DPvis.

DPvis was developed in collaboration with E.-M. Dieringer and was imple-
mented mainly by her. DPvis is available as a Java applet and can be downloaded
from http://www-sr.informatik.uni-tuebingen.de/~sinz/DPvis. Details on DPvis are
described in a different paper [60].

3.2 3Dvis: Three-Dimensional Graph Layout

Our second implementation, 3Dvis, generates three-dimensional layouts. It imple-
ments the multilevel force-directed graph-drawing algorithm by Walshaw [67], is
written in C++, and makes use of OpenGL. There is a Linux version of 3Dvis with a
simple user interface based on the OpenGL Ultility Toolkit (GLUT), and a Mac OS
X version with a Cocoa/Objective-C user interface (see Fig. 4).4

“The Linux version of 3Dvis can be downloaded from http://www-sr.informatik.uni-tuebingen.de/
~sinz/3Dvis. The Mac OS X version is available from the author of this paper on request.

@ Springer

http://www.cs.cmu.edu/~modelcheck/bmc.html
http://www-sr.informatik.uni-tuebingen.de/~sinz/DPvis
http://www-sr.informatik.uni-tuebingen.de/~sinz/3Dvis
http://www-sr.informatik.uni-tuebingen.de/~sinz/3Dvis

228 C. Sinz

Fig.5 Layouts computed by the multilevel algorithm of 3Dvis. On the fop row, layouts of coarsened
graphs for SAT instance bmc-ibm-5 on levels / = 7, 5, 3 are shown, the final layout (/ = 0) is shown
on the bottom. bmec - ibm-5 is an instance from bounded model checking [9], and the 12 time steps of
the unrolled transition relation are clearly visible as clusters on an outer circle. Adjacent time steps
are connected by 2-clauses that interrelate current and next state variables. The last three time steps
(top left) are smaller because of a bounded cone of influence optimization. The checker automaton,
which is connected to all time steps, is clearly visible in the center

In a first step, Walshaw’s multilevel algorithm computes a sequence Gy, ..., G; of
increasingly coarsened graphs, starting with the initial variable interaction graph Gy
and repeating until the size of the coarsest graph consists of only two nodes. Each
coarsening step works by computing a matching (not necessarily perfect), where
each vertex is matched with one of its neighbors (such that no vertex has more than
one neighbor in the matching, but solitary vertices may remain). Computing such
matchings reduces the size of the graph (i.e., the number of vertices) at most by half

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 229

Fig. 6 Search tree of a
depth-bounded run of the 3,810/11,877

DPLL algorithm on the 12,823
longmult8 benchmark
problem o

1,248 1,248

2,508 - .712,508 933
2,103/ 3,161/ 2,108/
5,432 8,721 5,655

a b

in each coarsening step. So, after approximately O(log, | V|) steps, the coarsest graph
is reached.

Then, in reverse order, layouts are computed, for the coarsest graph first, contin-
uing until a layout for the original graph is obtained. In each layout step, nodes for
G; are initially positioned according to the positions computed for G;y,. Then the
force-directed layouter is started on G; with this approximate placement as initial
layout. By computing approximate layouts for coarser graphs first, the whole layout
process can be accelerated. Details on Walshaw’s algorithm can be found in one of
his papers [67]. Figure 5 shows an example of the iterative multilevel layout algorithm
in action. On the top, layouts for the coarsened graphs G7, Gs, and G35 are shown; on
the bottom the final result, a layout for Gy, is depicted.

4 Experiments

In this section, we report on experimental results obtained with our implementations
DPvis and 3Dvis. We start with layout examples and then present run-times of our
implementation of Walshaw’s three-dimensional layout algorithm.

4.1 Graph Layout Examples

We started our experiments on visualization with an example from hardware ver-
ification that stems from equivalence checking of a 16-bit sequential shift-and-add
multiplier with a combinatorial multiplier (see [9] for further information). We used
the file 1ongmults, representing equivalence of bit 8 of the two circuit designs.’
Whereas one single variable interaction graph already reveals a lot of information
about the instance’s structure, we observed that by visualizing depth-bounded runs
of a DPLL-style algorithm and comparing different interaction graphs of the same

Shttp://www.cs.cmu.edu/~modelcheck/bme/bme-benchmarks.html

@ Springer

http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html

230 C. Sinz

Fig.7 Variable interaction graph of the instance longmult8s (top level, after unit propagation)

instance at different states during search, we obtained considerably more informa-
tion. We therefore simulated such depth-bounded runs of a typical DPLL algorithm
in our experiments. The depth-bounded search tree obtained that way for the
longmult8 instance is shown in Fig. 6.

The picture shows the search tree up to depth 3 (one branch extended down
to depth 5), with the initial instance as the root node of the tree. Each node is
labeled with two numbers (n/k), where n indicates the number of propositional
variables of the instance and k the number of clauses. Child nodes are generated
by case distinction (on the indicated variable) and are simplified by subsequent unit
propagation. On search depth 3, we have four nontrivial clause sets (a, b, ¢, d) with
between 2,103 and 3,161 variables. To illuminate the dynamics of the interaction
graphs, we have added a further node at an increased search depth of 5, named d-1.
Variable interaction graphs for these five snapshots are shown in Figs. 8, 9, and 10;
the original (complete) instance is shown in Fig. 7. Diagram a-1 on top of Fig. 10
additionally shows a magnified view of the top left part of Diagram a.

We performed additional experiments with another instance of hardware verifi-
cation, the bounded model checking instance bmc-ibm-2. This instance encodes a
verification problem (IBM CPU Part #2) from IBM’s research laboratory in Haifa.
The instance contains 3,628 variables and 14,468 clauses. It can — together with a
short description about how it was generated — be downloaded from the Canadian
SATLIB site.® The interaction graph of this instance is shown in Fig. 11.

%See respective link on http://www.satlib.org.

@ Springer

http://www.satlib.org

Visualizing SAT instances and runs of the DPLL algorithm 231

Table 1 Run-times of 3Dvis on different SAT instances

SAT Instance #vars #clauses #edges Run-time L3/L0 Memory
vmpc-21 441 45,339 32,193 05/73 6.8
queueinvar-10 886 5,622 17,578 1.3/62 6.3
barrel-5 1,407 5,383 12,201 1.3/15.2 6.4
longmult-4-up 1,764 5,081 5,124 0.9/8.1 5.5
longmult-5-up 2,181 6,355 6,429 1.1/9.8 5.7
barrel-7 3,523 13,765 70,512 9.8/75.1 16.3
1dIx-c-liveness 6,874 65,479 134,672 18.0/468.4 213
x1mul.miter 8,760 55,571 51,610 18.0/218.6 132
bmc-ibm-5 9,395 41,207 55,130 6.3/75.0 12.4
¢7552mul.miter 11,282 69,529 70,553 10.3/105.6 14.4
9dIx-iq1 24,604 261,473 687,398 141.4/3,822.6 85.6
bmc-ibm-6 51,639 368,352 726,085 64.8/38,972.1 83.2
bmc-galileo-8 58,074 294,821 379,050 63.4/45,568.2 62.2
bmce-galileo-9 63,624 326,999 427,698 74.8 /- 68.5
clauses-2 75,528 272,784 392,910 291.7/3,247.1 79.6
9dIx-iq3 69,789 968,295 2,599,017 890.0 /- 319.8
9dIx-iq6-bug? 173,811 5,609,632 9,921,587 4,365.0/39,404.3 1,223.8
9dIx-iq6-bug9 235,184 8,063,818 14,453,844 8,390.4 /- 1,757.1

The instances were selected from the industrial section of previous SAT Competitions [7]. The size
of each instance (number of variables and clauses) is shown, as well as the size of the graph, the
run-time (in seconds) to compute a layout on levels / = 3 and / = 0 (final layout), and the memory
consumption (in MB). A dash indicates a time-out.

For comparison, we initiated experiments with further SAT instances outside
the realm of hardware verification. We used an instance from automotive product
configuration,’” one instance of the well-known pigeonhole problems (hole10), and
a random 3-SAT formula with 100 variables and 425 clauses. The last two instances
are known to be hard for resolution-based SAT-solvers, whereas the configuration
instance is known to be very easy. The variable interaction graphs shown on the
left of Fig. 12 correspond to a state during the run of a DPLL algorithm where
a few literals already have been fixed. After setting of three further variables and
subsequent unit propagation, the interaction graphs shown on the right resulted.

Besides generating variable interaction graphs, we also built resolution graphs.
Figure 13 shows two resolution graphs for restriction a of instances longmult8
and for instance bmc-ibm-2. Clustering and symmetry of the resolution graphs
are similar to the respective variable interaction graphs. This feature suggests that
properties of an instance such as symmetries carry over from one representation to
the other (for the component structure of a SAT instance this is obvious).

4.2 Run-time of 3Dvis
In this section we report on the performance of our implementation 3Dvis of

Walshaw’s algorithm for three-dimensional graph layout. All performance measure-
ments were done with the GLUT/C++ implementation under Linux on a machine

"File c202_Fw, downloadable at http://www-sr.informatik.uni-tuebingen.de/~sinz/DC.

@ Springer

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC

232 C. Sinz

Fig. 8 Variable interaction graphs for two subinstances of longmult8, obtained by setting variable
2,823 to false, variable 1,248 to true, variable 2,508 to true (a) or false (b), and subsequent unit
propagation. In a, the grid structure of the combinatorial multiplier is clearly visible, whereas the
shift-and-add multiplier could be considerably simplified by fixing the value of the three variables. In
b, large parts of the shift-and-add multiplier have remained mainly unchanged, and individual time
steps of the sequential circuit are clearly visible as large, connected clusters

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 233

Fig.9 Variable interaction graphs for two subinstances of longmult8, obtained by setting variables
2,823 and 1,248 to false, variable 933 to true (c¢) or false (d), and subsequent unit propagation. It is
noteworthy that almost no simplification by unit propagation occurred in d, which clearly contrasts
with Fig. 8a, resulting from setting only two variables to opposite values

with a Pentium 4 processor running at 3 GHz (hyperthreading switched off) and
2 GB of main memory. The results of our measurements can be seen in Table 1.
Layouts for instances with up to 10,000 variables are computed in a few minutes;
layouts for larger graphs are still feasible but may require several hours to be
computed. However, as can also be seen from Fig. 5, layouts of coarsened graphs

@ Springer

234 C. Sinz

LI

d-1

Fig. 10 Two further variable interaction graphs: a-1 displays a magnified view of the top left part of
Fig. 8a, and d-1 shows the instance obtained from Fig. 9d by additionally setting variable 618 to true,
variable 19 to false, and subsequent unit propagation. a-1 reveals long chains of variables connected
by bi-implications. Each of these chains could be contracted to only one variable (by an equivalence
detection algorithm) without changing the semantics of the partially processed SAT instance. These
chains, however, emerge only after fixing the values of the two variables (and subsequent unit
propagation) but do not occur in the original instance. d-1 shows that subinstance (d) is considerably
simplified by fixing the values of only two further variables

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 235

Fig. 11 Variable interaction graph for the SAT instance bmc-ibm-2. It is noticeable that the in-
stance — without further restrictions just by unit propagation — already decays into three independent
components

(e.g., on level / = 3) can already give a rough estimate how the final layout will look
and are computed much faster.

5 Observations

We divide our observations into those made on the static graph presentations and
those that take the change of the graph structure into account (cf. Figs. 8, 9, and
especially Fig. 12).

5.1 Static Aspects

When considering graphs obtained from hardware verification instances, we made
the following observations:

1. There are noticeably many implication chains of considerable length (this is best
seen in Diagram a-1 of Fig. 10). In many cases these chains are even made up of

@ Springer

236 C. Sinz

Fig. 12 Variable interaction graphs for different SAT instances before (left) and after (right) three
steps of a DPLL algorithm run (and subsequent simplification by unit propagation). On the fop, an
instance from automotive product configuration is shown, in the middle a pigeon hole formula, and
on the bottom a random 3-SAT formula with a clause-variable-ratio near the phase-transition point.
Whereas the product configuration instance (which is easy for current DPLL-based solvers) reduces
considerably after fixing the value of three variables (and even decomposes into many independent
subcomponents), this effect does not show up on the other instances that are hard for DPLL. These
hard instances reveal a “self-similar” behavior between the whole instance and the subproblems that
occur during runs of the DPLL algorithm, which might partially explain their hardness

equivalences. Many of them do not occur directly in the original instance but
only after setting of a few variables. This fact indicates that incorporation of
equivalence handling (or, more generally, special treatment of 2-clauses) may
be fruitful for such instances.

2. Decomposition into independent subproblems occurs frequently, at least on
higher levels of the search tree. Some problem instances already decay into in-
dependent components after unit propagation (as, e.g., bmc-1ibm- 2; cf. Fig. 11).

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 237

Fig. 13 Resolution graphs for two SAT instances: longmult8 with the same restriction as in
Fig. 8a on the fop, and bmc-ibm-2 on the bottom. Note the similarity with regard to symmetry
and clustering compared to the respective variable interaction graphs in Figs. 8 and 11

@ Springer

238 C. Sinz

This indicates that detection and special handling of independent components
may be a useful feature to integrate into DPLL solvers.

Both aspects — implication chains and decomposition — have been considered in
the SAT literature [10, 33, 50, 58] but are only partially implemented in today’s
solvers. Thus, it may be worthwhile trying to exploit these advantageous properties
more directly in the future.

5.2 Dynamic Aspects

When considering the dynamic change of the graph structure of a SAT instance we
observed the following:

1. Hard problem instances (pigeonhole, random 3-SAT) not only possess a lower
rate of variable reduction by unit propagation but also lack the decomposition
feature that appeared, for example, in the configuration and hardware verifica-
tion instances (see Fig. 12). The hard instances seem to possess a “fractal” or
“self-similar” behavior on problem reduction by unit propagation.

2. A huge amount of problem reduction is caused by so-called top-level assign-
ments (TLAs) [26] (cf. also Fig. 7 in [60]). TLAs are unit clauses that are learned
during the search process. Each top-level assignment fixes the value of a variable
for the whole instance and thus indicates that in each solution of the instance the
TLA-variable must have that fixed value. (The notion of top-level assignment is
closely related to that of a backbone variable [59].)

In other experiments [60] we perceived that although TLAs occur in many
instances (also in random 3-SAT instances), the number of TLAs is much higher
for (comparatively easy) real-world problems than for (comparatively hard) random
3-SAT instances. Comparing the variable interaction graphs of original instances
with those where the detected TLAs were added, revealed a considerable simplifi-
cation for the real-world instances, whereas the structure of random 3-SAT instances
remained mainly unchanged [60].

5.3 Hypotheses

From these observations we derive the following (preliminary) hypotheses:

1. Both long implication chains (cf. Fig. 10, Diagram a-1) and decomposition
into independent subproblems may explain the benign behavior of real-world
instances. These are properties that we have not yet observed in hard instances.
It is important to consider decomposition not only at the top level (i.e., on the
original instance) but also at deeper levels of the DPLL algorithm (cf. Fig. 12,
top) when several variables are set and thus a partial assignment has been applied
to the instance. The decomposition property at the top level is closely related to
tree decompositions.

2. Hard instances seem to exhibit a “fractal,” “self-similar,” or “scale-free” [68]
behavior on reductions by case splitting and unit propagation (cf. Fig. 12, middle
and bottom). For such instances the conformation of the interaction graph does
not change considerably during the search process.

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 239

Making use of these hypotheses in future algorithms seems to be more conceivable
for the first one (see Paragraph 5.1), whereas it is not so evident how to make use
of the second one. However, we dare to hope that observations based on graph
structure similar to ours may stimulate generation of new ideas in both theory and
practice.

6 Related Work

Connecting graph-based concepts with SAT-solving is a relatively frequent topic
in the SAT literature. Rish and Dechter [52] consider a directional resolution
algorithm on instances with a special variable interaction graph structure and gain
tractability results for instances with bounded induced width (which is equivalent
to bounded treewidth) and limited induced diversity (div* < 1). Del Val [21] takes
this approach a step further by examining acyclic component networks and by using
literal interaction graphs instead of variable interaction graphs.

Galesi and Kullmann [30] study properties of the resolution graph resulting in the
establishment of different tractable subclasses (e.g., for clause sets F with Hermitian
rank A(F) < 1).

Previous work on connected components for the SAT problem was conducted
mainly in the context of model counting [6, 39, 56], although there are also
approaches for constraint satisfaction problems in general [28, 38]. Bayardo and
Pehousek extended the SAT solver Relsat 2.0 developed by Bayardo and Schrag
in order to count models using connected components [39]. Their algorithm tries
to detect components recursively at each node of a DPLL search tree. However,
they do not take clause learning into account. Sang et al. carry on the recursive
decomposition approach of Bayardo and Pehousek, and combine it with clause
learning and component caching [56]. Slater [61] compares different SAT solvers
on clustered problem instances, without experimenting with specialized algorithms
that exploit the structure, however.

Park and van Gelder [50] apply hypergraph partitioning algorithms to decompose
a SAT instance into independent subproblems. They claim that using the dual
hypergraph (in which the vertices are clauses and hyperedges encompass clauses with
common variables) induces a more natural decomposition, as a (minimal) cut in the
dual hypergraph coincides with a set of variables that has to be assigned in order to
break the instance into independent components. However, their algorithm seems to
be not competitive in practice. Biere and Sinz [10] modify a zChalff-like SAT-solver
to detect independent components and present techniques to handle these
components.

Another graph-based approach is taken by Walsh [66], who carries over the influ-
ential work of Watts and Strogatz on “small world” networks [68] to combinatorial
search problems. Walsh examines different classes of search problems, for example,
CSP translations of quasigroup problems, with respect to their “small world” prop-
erties (characteristic path length and clustering coefficient of the interaction graph).

Work on visualization of SAT instances was done by Slater [62] and, to some
extent, by Selman [57]. Slater uses different graph translation techniques (variable
interaction graph, literal interaction graph, and further ones) and visualizes the
resulting graphs with the GraphVis software package from AT&T. However, the

@ Springer

240 C. Sinz

hierarchical layouter he uses is not as efficient in revealing symmetries as are force-
directed placement algorithms. Selman [57] uses a specialized three-dimensional
layouter to display variable interaction graphs. In his approach, nodes with different
degree are placed on different “height levels,” and nodes with the same degree are
equally distributed on circles growing with the number of nodes that have to be
placed on them. Again, this layout cannot reveal symmetries and clustering as well
as force-directed placement does. Eén and Biere [25] have implemented a visual
demo of their SAT preprocessor SATELITE that graphically shows how clauses are
processed by their algorithm.

Considering graph visualization in general, there are many graph layout pack-
ages available, for example, Tulip or Graphviz.® Most of these packages focus on
customizable layouts and do not allow for a tight integration with specialized SAT-
related algorithms, however (cf. Fig. 13).

7 Conclusion

We have presented an approach to visualize SAT instance in two and three
dimensions by converting them to graph structures. We have generated visually
attractive graph layouts using two different graph translations (variable interaction
and resolution) by applying force-directed placement algorithms. Moreover, we
have developed a tool, DPvis, that can generate animations of runs of the DPLL
algorithm showing both the generated search tree and the temporal change of the
SAT instance’s structure.

We assume that our techniques can help in obtaining a better understanding of
what makes a particular instance hard or easy. Moreover, we believe that our tool
DPuvis can be of great help in teaching and understanding the DPLL algorithm and
its modern variants that incorporate clause learning.

Possible directions for future work include the design and implementation of
faster graph layout algorithms (by using, e.g., fast multipole methods [37]), visual-
izing clause activity and variable activity in zChaff-like solvers to obtain a better
understanding of clause learning, and trying to establish a theoretical link between
graph properties and hardness of SAT instances.

Acknowledgements I thank Edda-Maria Dieringer for implementing the visualization tool DPvis.
Allen van Gelder suggested to use resolution graphs for visualization. Ofer Strichman provided me
with an interpretation for the graph structure of Fig. 5. Moreover, I thank the anonymous reviewers
for helpful comments and suggestions. And finally, I am indebted to Armin Biere for many fruitful
discussions on SAT visualization.

8See, e.g., http://directory.google.com/Top/Science/Math/Combinatorics/Software/Graph_Drawing
for a list of such packages.

@ Springer

http://directory.google.com/Top/Science/Math/Combinatorics/Software/Graph_Drawing

Visualizing SAT instances and runs of the DPLL algorithm 241

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean satisfiability.
In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pp- 271-276 (2003)

. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree.

SIAM J. Algorithms and Discrete Methods 8, 277-284 (1987)

. Aspvall, M., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain

quantified boolean formulas. Inf. Process. Lett. 8(3), 121-123 (March 1979)

. Barnes, J., Hut, P.: A hierarchical O(nlogn) force-calculation algorithm. Nature 324, 446449

(1986)

. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability modulo theories competition.

In: Proceedings of the 17th International Conference on Computer Aided Verification (CAV
2005), pp. 20-23. Springer, Berlin Heidelberg New York (2005)

. Beame, P., Impagliazzo, R., Pitassi, T., Segerlind, N.: Memoization and DPLL: Formula caching

proof systems. In: Proceedings of the 18th Annual IEEE Conference on Computer Complexity
(Complexity 2003), pp. 248-264 (2003)

. Le Berre, D, Simon, L.: The essentials of the SAT 2003 competition. In: Proceedings of the

6th International Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
pp. 452-467 (2003)

. Le Berre, D., Simon, L. (eds.): Special Volume on the SAT 2005 competitions and evaluations.

Journal on Satisfiability, Boolean Modeling and Computation, vol. 2, (March 2006)

. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools

and Algorithms for the Analysis and Construction of Systems (TACAS’99), number 1579 in
LNCS, pp. 193-207. Springer, Berlin Heidelberg New York (1999)

Biere, A.,Sinz, C.: Decomposing SAT problems into connected components. Journal on Satisfia-
bility, Boolean Modeling and Computation 2, 191-198 (2006)

Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25(6), 1305-1317 (1996)

Braunstein, A., Zecchina, R.: Survey and belief propagation on random k-SAT. In: Proceedings
of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT
2003), pp. 519-528 (2003)

Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput.
35(8), 677-691 (1986)

Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings
of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, pp. 331-337.
Sidney, Australia (1991)

Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving.
Form. Methods Syst. Des. 19(1), 7-34 (2001)

Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, L.L.: Exploiting structure in symmetry
detection for CNF. In: Proceedings 41th Design Automation Conference (DAC 2004), pp. 530—
534 (2004)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7), 394-397 (July 1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201-215
(1960)

Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113(1,2),
41-85 (1999)

del Val, A.: Tractable databases: How to make propositional unit resolution complete through
compilation. In: Proceedings of 4th International Conference on Principles of Knowledge
Representation and Reasoning (KR94), pp. 551-561 (1994)

del Val, A.: Tractable classes for directional resolution. In: Proceedings 17th National Confer-
ence on Al pp. 343-348. Austin, TX (2000)

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Algorithms for automatic graph drawing: an
annotated bibliography. Comput. Geom. 4, 235-282 (1994)

Downey, R.G. and Fellows, M.R.: Parameterized Complexity. Springer, Berlin Heidelberg New
York (1999)

Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149-160 (1984)

@ Springer

242 C. Sinz

25. Eén, N, Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In:
Proceedings of the 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005), pp. 61-75 (2005)

26. Eén, N., Sorensson, N.: An extensible SAT-solver. In: Proceedings of the 6th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2003), pp. 502-518. Springer,
Berlin Heidelberg New York (May 2003)

27. Fleisher, H., Maissel, L.I.: An introduction to array logic. IBM J. Res. Dev. 19(2), 98-109 (1975)

28. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfaction
problems. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence
(IJCAI1985), pp. 1076-1078 (1985)

29. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software — Practice
and Experience 21(11), 1129-1164 (1991)

30. Galesi, N., Kullmann, O.: Polynomial time SAT decision, hypergraph transversals and the her-
mitian rank. In: Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2004), pp. 89-104. Vancouver, Canada (May 2004)

31. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Discrete Appl. Math.
42(2), 177-201 (1993)

32. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the 11th European Confer-
ence on Artificial Intelligence, pp. 105-109 (1994)

33. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas.
In: Proceedings of the 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005), pp. 423-429 (2005)

34. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of the
Design, Automation and Test in Europe Conference and Exposition (DATE 2002), pp. 131-149.
IEEE Computer Society, Paris, France (2002)

35. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J. Autom. Reason. 24(1/2), 67-100 (2000)

36. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in Al and nonmonotonic
reasoning. Artif. Intell. 138(1,2), 55-86 (2002)

37. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73, 325-348
(1987)

38. Bayardo Jr., R.J., Miranker, D.P.: On the space-time trade-off in solving constraint satisfaction
problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IICAI1995), pp. 558-562 (1995)

39. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components. In: Pro-
ceedings of the 17th Nat. Conference on Artificial Intelligence (AAAI 2000), pp. 157-162
(2000)

40. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th Europe Conference
on Artificial Intelligence (ECAT’92), pp. 359-363. Wiley (1992)

41. Kiichlin, W., Sinz, C.: Proving consistency assertions for automotive product data management.
J. Autom. Reason. 24(1,2), 145-163 (February 2000)

42. Kullmann, O.: The SAT 2005 solver competition on random instances. Journal on Satisfiability,
Boolean Modeling and Computation 2, 61-102 (2006)

43. Marques-Silva, J.P., Sakallah, K.A.: Conflict analysis in search algorithms for propositional
satisfiability. In: Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence, pp. 467-469 (Nov. 1996)

44. McMillan, K.: Interpolation and SAT-based model checking. In: Proceedings of the 15th Inter-
national Conference on Computer Aided Verification (CAV 2003), vol. 2725 of LNCS, pp. 1-13
(2003)

45. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT problems. In:
Proceedings of the 10th Nat. Conference on Artificial Intelligence (AAAI-92), pp. 459-465
(1992)

46. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computa-
tional complexity from characteristic “phase transitions”. Nature 400(6740), 133-137 (1999)

47. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001), pp. 530
535. ACM (2001)

48. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compiling configura-
tion problems. In: Configuration Workshop Proceedings, 17th European Conference on Artifi-
cial Intelligence (ECAI-06), pp. 2-7. Riva del Garda, Italy (August 2006)

@ Springer

Visualizing SAT instances and runs of the DPLL algorithm 243

49.

50.

RIN

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Niedermeier, R.: Fixed-parameter Algorithms. Oxford Lecture Series in Mathematics and Its
Applications. Oxford University Press (February 2006)

Park, T.J., Van Gelder, A.: Partitioning methods for satisfiability testing on large formulas. Inf.
Comput. 162, 179-184 (2000)

Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reason. 25(3), 167-217
(2000)

Rish, 1., Dechter, R.: Resolution versus search: Two strategies for SAT. J. Automated Reason.
24(1,2),225-275 (February 2000)

Robertson, N., Seymour, P.D.: Graph minors, II: Algorithmic aspects of tree-width. J. Algo-
rithms 7(3), 309-322 (1986)

Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23-41
(1965)

Cook, S.A.: The complexity of theorem proving procedures. In: 3rd Symposium on Theory of
Computing, pp. 151-158. ACM Press (1971)

Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component caching and
clause learning for effective model counting. In: Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2004). Vancouver, Canada (May 2004)
Selman, B.: Algorithmic adventures at the interface of computer science, statistical physics,
combinatorics. In: Proceedings of the 10th International Conference on Principles and Practice
of Constraint Programming (CP 2004), pp. 9-12. Springer, Berlin Heidelberg New York (2004)
Sheeran, M., Stalmarck, G.: A tutorial on Stalmarck’s proof procedure for propositional logic.
Form. Methods Syst. Des. 16(1), 23-58 (2000)

Singer, J., Gent, I.P., Smaill, A.: Backbone fragility and the local search cost peak. J. Artif. Intell.
Res. 12, 235-270 (2000)

Sinz, C., Dieringer, E.-M.: DPvis — a tool to visualize structured SAT instances. In: Proceedings
of the 7th International Conference on Theory and Applications of Satisfiability Testing (SAT
2004), St. Andrews, Scotland, pp. 257-268. Springer, Berlin Heidelberg New York (June 2005)
Slater, A.: Investigations into satisfiability search. Ph.D. thesis, NICTA, Australian National
University, Acton, Australia (2003)

Slater, A.: Visualisation of satisfiability problems using connected graphs, March 2004.
http://rsise.anu.edu.au/~andrews/problem2graph

Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Proceedings of the
6th International Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
pp. 188-202. Springer, Berlin Heidelberg New York (May 2003)

Vaziri, M., Jackson, D.: Checking properties of heap-manipulating procedures with a constraint
solver. In: Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), number 2619 in LNCS, Warsaw, Poland,
pp- 505-520. Springer, Berlin Heidelberg New York (2003)

Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal
verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2), 73-106 (2003)
Walsh, T.: Search in a small world. In: Proceedings of the 16th International Conference on Al,
pp. 1172-1177 (1999)

Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms
Appl. 7(3), 253-285 (2003)

Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440-442
(1998.)

Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: International
Joint Conference on Artificial Intelligence (IJCAI'03), pp. 1173-1178. Acapulco, Mexico (2003)
Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proceedings of the
32nd Symposium on Principles of Programming Languages (POPL 2005), pp. 351-363. Long
Beach, CA (January 2005)

Zabiyaka, Y., Darwiche, A.: Functional treewidth: bounding complexity in the presence of
functional dependencies. In: Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2006), pp. 116-129 (2006)

@ Springer

http://rsise.anu.edu.au/~andrews/problem2graph

	Visualizing SAT Instances and Runs of the DPLL Algorithm
	Abstract
	Motivation
	Theoretical Background
	SAT and the DPLL Algorithm
	Graph Representations of SAT Instances
	Treewidth and Tree Decompositions
	Graph Layout Algorithms

	Implementations
	DPvis: Visualizing the DPLL Algorithm
	3Dvis: Three-Dimensional Graph Layout

	Experiments
	Graph Layout Examples
	Run-time of 3Dvis

	Observations
	Static Aspects
	Dynamic Aspects
	Hypotheses

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

