
The Birth of Lie's Theory of Groups 
Thomas Hawkins 

In 1865 when Sophus Lie (1842-1899) completed his 
studies at the University of Christiania (now Oslo), Nor- 
way, he had no idea he was destined to become a math- 
ematician. He had done well, but not brilliantly, in all 
subjects and was toying with the idea of becoming an 
observational astronomer. He even gave lectures on the 
subject in the student union. He had a real talent for ex- 
plaining the geometry of the heavens. To support himself 
financially while in this state of career indecision he gave 
private instruction in mathematics. In this connection, 
Lie began to read the geometrical works by Poncelet, 
Chasles, and above all Pl~icker. Inspired by his reading, 
he did some original mathematical research on the real 
representation of imaginary quantities in projective ge- 
ometry, a portion of which was accepted for publication 
by one of the leading mathematics journals of the t ime- -  
Crelle's journal in Berlin. On the basis of this experience, 
he decided to devote himself to geometrical research, to 
become a mathematician. He was 26 years old. Five years 
later, during the fall of 1873, Lie made a second fateful 
decision: to devote himself to the enormous task of cre- 
ating a theory of continuous transformation g roups - - a  
task that meant doing mathematics of a quite different 
sort from the geometrical work that had occupied him in 
his first years of mathematical research, 1869-1871-  a 
task that ended by occupying most of his creative math- 
ematical energies for the remainder of his career. 

The purpose of this article is to explain how Lie was 
led from the one decision to the other. To accomplish this, 
I have to immerse you in the mathematical world inhab- 
ited by Lie, a world that is quite different from the one to 
which you are accustomed. The first two sections of this 
article concern the early geometrical work of Lie (1869- 
1871), done in close contact with Felix Klein. It was from 
this work that the ideas emerged which served to redirect 
Lie's researches. The third section briefly discusses the 
years 1872-1873, when the theory of first-order PDEs, 
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particularly in the form given to it by the work of Ja- 
cobi, provided what turned out to be a fertile context 
for the development of the group-related ideas that had 
emerged during Lie's geometrical investigations. One of 
the reasons the history of mathematics is fascinating is 
that it provides insight into the dynamics by means of 
which ideas and concepts from diverse mathematical 
theories combine, in remarkable, often unexpected ways, 
to give birth to entirely new mathematical theories. In the 
course of showing you how Lie was led from his deci- 



sion to become a mathematician to his decision to create a 
new and far-reaching mathematical theory, I also hope to 
give you some feeling for the manner in which concepts, 
theorems, ideas, and viewpoints from 19th-century alge- 
bra, geometry, and analysis played roles in this creative 
process. 

Tetrahedral Line Complexes 

On the basis of the mathematical creativity exhibited by 
Lie in his essay on the real representation of imaginar- 
ies, he was granted a stipend to leave Norway and to 
travel to various centers. His first stop was Berlin, where 
the mathematical scene was dominated by Kummer and 
Kronecker and, above all, Weierstrass. Berlin was cer- 
tainly one of the world's foremost centers of mathemat- 
ics in 1869. However, the mathematics and the spirit in 
which it was done did not appeal to Lie, who found it too 
analytical. In Berlin he met another visitor who felt as he 
did. His name was Felix Klein (1849-1925). He was just 
20 years o ld - -7  years younger than Lie--a l though he 
already had his doctorate. Klein had been Pliicker's stu- 
dent, and after his mentor's untimely death in 1868, he 
had edited Plficker's lectures on line geometry for publi- 
cation. Lie had, in fact, studied these lectures, and when 
they met in Berlin, they were both actively engaged in 
line-geometric research. So Klein and Lie enjoyed each 
other's mathematical company. They were self-styled 
"Synthesists" in the midst of analysts and arithmeticians. 

Although Lie and Klein had interests in common, 
their backgrounds and personalities were quite differ- 
ent. Klein had a relatively solid mathematical educa- 
t i o n -  first at Bonn under Plficker and then in G6ttingen, 
where Alfred Clebsch (1833-1872) had attracted a cir- 
cle of students, including, for example, Max Noether. 
Clebsch had been trained in Jacobian analysis and math- 
ematical physics at the University of K6nigsberg. As we 
shall see in the third section, his contributions to Jacobi's 
theory of PDEs in the 1860s were to influence Lie. By 
the time Klein met Clebsch, however, he was working 
on algebraic geometry and the theory of invariants. His 
unexpected death from diphtheria at age 39 was a blow 
to Klein, who had great admiration for him. 

Klein enjoyed learning about the work of others be- 
cause he wanted to "understand" it from his own point 
of view and to place it within a more encompassing, 
conceptually unified picture. By contrast, Lie had a lim- 
ited mathematical background (and no doctorate yet). 
He tended to focus rather exclusively on developing his 
own (highly original) ideas and became interested in the 
work of others only when it was clear it was relevant to 
his own interests. This difference in personalities dictated 
the way they related to each other: Lie developed his 
ideas, explained them to Klein, Klein reacted, Lie (some- 
times) responded to Klein's reactions, and so on. 

When Klein and Lie met in Berlin, Lie was study- 
ing what were known as tetrahedral line complexes. 

Line complexes were a basic object of study in line ge- 
ometry, a geometry in which lines rather than points 
are taken as the basic objects. Thus, lines rather than 
points are coordinatized. Given a line f c p3(C), if 
( X l , . . .  , X4) and (yl,-- . ,  y4) are the homogeneous coor- 
dinates of two points on ~, set pij = x i y j  - x j y ~ .  Then 
P12, P13, P14, P23, /942, and P34 are the six homogeneous 
P1/icker coordinates of L They satisfy the relation 

f2 = P12P34 + P13P42 + PI4P23 -~ 0. 

In terms of line coordinates, a line complex of degree d is 
a set of lines f = ( P 1 2 ~  � 9  �9 ~ P 4 2 )  whose line coordinates Pi; 
satisfy a homogeneous polynomial equation of degree 
d (in addition to f~ = 0). From an abstract viewpoint, 
line complexes are simply projective varieties in p5(C), 
but in the mid-19th century the fact that the homoge- 
neous coordinates corresponded to lines was always in 
view, and attention was focused on particular types of 
line complexes and their special geometrical properties. 

The tetrahedral line complex studied by Lie was a spe- 
cial second-degree complex, which may be defined ge- 
ometrically as follows. Let A denote a tetrahedron with 
faces determined by planes 7h, . . . ,  7r4, and let k be a fixed 
constant. The totality T of all lines f c CP 3 such that the 
cross ratio of p~ = f n 7ri, i = 1 , . . . ,  4, is k is called a tetra- 
hedral complex. Other mathematicians had considered 
the geometry associated to a tetrahedral complex before 
Lie, but Lie's approach was totally original. Consider the 
set G of all projective transformations of space which fix 
the vertices of A. (Lie himself did not introduce nota- 
tion such as G; he simply spoke of the transformations 
in G as the transformations of the tetrahedron.) Then for 
any fixed line t0, the set T of all lines T[Q] such that 
T c G is a tetrahedral complex. In effect, a tetrahedral 
complex for Lie was the orbit of some fixed line under 
the transformation of G. An idea of what the transforma- 
tions comprising G are like can be obtained by choosing 
for A the tetrahedron with vertices at the origin and the 
points at infinity on the coordinate axes. Then the T E G 
are given in Cartesian coordinates by 

x '  = A x ,  y '  = # y ,  z '  = u z .  (1) 

In his study of the geometry of tetrahedral complexes, 
Lie took advantage of the following properties of the 
transformations of G: If T1, T2 E G: (a) T1 o T2 E G; (b) 
T1 o T2 = T2 o T1; (c) for "general" p, q �9 p3 (C), a unique 
T �9 G exists such that T ( p )  = q; (d) there is a threefold in- 
finity (oc 3) of transformations in G. For us today, the fact 
that G is a group stands out. We see Lie using the com- 
mutativity and simple transitivity of G. But in 1869, the 
theory of groups was not a part of the basic mathemat- 
ics known to all active mathematicians. In 1869, "group 
theory" meant the theory of finite permutation groups, 
which was known to have a nice application to algebraic 
equations as shown by Galois. However, relatively few 
mathematicians were actively interested in this subject. 
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One place where permutation groups and Galois the- 
ory were the subject of lectures was the University in 
Christiania, where Sylow presented such lectures in 1862. 
In fact, Lie had actually attended these lectures! If history 
were more "rational," this would have been a turning 
point in Lie's life. But, apparently, history is not so ratio- 
n a l -  and, as a result, is more fascinating. According to 
Lie, he understood hardly anything that Sylow said and 
the lectures made no impression on him whatsoever. This 
is not surprising, since throughout his life Lie never dis- 
played an interest in algebra or the theory of numbers; he 
was at heart a geometer. In 1862, he was still more than 
5 years away from his decision to become a mathemati- 
cian. Undoubtedly, Lie came away from Sylow's lectures 
with a vague realization that the theory of permutation 
groups had an important application to the resolution 
of algebraic equations, but there is no evidence to sug- 
gest that, before he met Klein, Lie regarded the totality of 
transformations G of the tetrahedral complex as the ana- 
logue of a group of permutations or, more importantly, 
that he thought this analogy was somehow significant. 
All the evidence suggests that it was Klein who perceived 
in Lie's work a continuous analogue of the theory of per- 
mutation groups, with analogous applications. 

Before coming to Berlin, Klein had spent several 
months in G6ttingen with Clebsch and his students. 
Shortly before Klein arrived, Clebsch had been in con- 
tact with a young French mathematician named Camille 
Jordan (1838-1922). Jordan was in the finishing stages 
of composing a systematic treatise on the theory and 
application of permutation groups. Jordan's book rep- 
resented the first attempt to systematize Galois's cryptic 
ideas on polynomial equations and, in particular, to em- 
phasize and develop their group-theoretic basis. Jordan 
was also interested in applying the theory of permuta- 
tion groups to geometry, and this is why he made contact 

Figure 1. Kummer surface with 16 real nodal points. (Repro- 
duced from Kummer's Quartic Surface by R.W.H.T. Hudson, 
Cambridge University Press.) 
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with Clebsch. Consider, for example, the fourth degree 
Kummer surface with 16 nodal points (Fig. 1). Jordan was 
interested in the polynomial of degree 16 whose roots 
yield the nodal points. From the geometrical properties 
of these points, he was able to determine the Galois group 
of the equation, and then to use its s tructure--  the com- 
position ser ies- - to  conclude that the resolution of the 
equation reduced to resolving the general equation of 
degree 6 and some quadratic equations. Clebsch's work 
in enumerative algebraic geometry supplied Jordan with 
further geometrically relevant polynomial equations to 
analyze in this fashion. 

Clebsch admittedly did not fully understand the group 
theory Jordan was applying, but he encouraged Jordan 
in his efforts, apparently sensing their importance. In 
fact, the inaugural 1869 volume of Clebsch's new journal, 
Mathematische Annalen, contained Jordan's expository 
"commentary" on Galois's most famous memoir. How 
much group and Galois theory was discussed among 
Clebsch and his students, including Klein, in G6ttingen is 
unknown, but it seems likely that there was some general 
talk about permutation groups, Galois's theory and Jor- 
dan's geometrical applications. In any case, Klein knew 
about Jordan's work on Kummer surfaces. Klein was an 
expert on these surfaces, which he showed could be stud- 
ied completely in terms of a second-degree line complex. 
He cited Jordan's results about the nodal points in one of 
his papers, written while at G6ttingen in 1869, just before 
he came to Berlin. 

At Berlin, as Klein became acquainted with Lie and 
with his investigations on tetrahedral complexes, he per- 
ceived significant analogies between what Lie was doing 
and Galois's theory. Of primary importance in this con- 
nection was Lie's work on problems of a type considered 
earlier by Pliicker. Plficker associated to a quadratic line 
complex, such as T, a family of "cones." The cone at a 
point p consists of all lines f 6 T which pass through p 
(so p is the "vertex" of the cone). Plficker had used the 
cones to define geometrically interesting surfaces asso- 
ciated to quadratic line complexes. It was in the spirit of 
this work that Lie posed problems such as: Determine 
surfaces S with the property that at each point 19 6 S, the 
complex cone at p "touches" S at p. Here the cone at p 
is said to touch the surface S at p if it meets the tangent 
plane to S at p in one of the lines of the cone as pictured 
in Figure 2. 

Lie observed that a surface S defined by z = ~(z, y) 
has this property if and only if ~ is a solution to a certain 
first-order PDE, that is, an equation of the general form 
f(x,y,z,p,q) = O, where p = Oz/Ox and q = Oz/Oy. 
From the geometry of the situation, Lie could see readily 
that if a surface S has the desired property, then so does 
any surface obtained from S by any transformation of G. 
In terms of the PDE, this says that the transformations 
of G take solutions into solutions. For future reference I 
shall employ the terminology later introduced by Lie to 
describe this property. 



By 1871 Lie had pushed this idea to the following extent: 
Suppose a first-order PDE f (x ,  y, z, p, q) -- 0 admits k _< 3 
known independent, commuting infinitesimal transfor- 
mations. Then new variables X, Y, Z may be chosen so 
that the equation becomes (1) F(P, Q) = 0 if k = 3, (2) 
F(Z,P,Q)  = 0 i f k  = 2, (3) F(X ,Y ,P ,Q)  = 0 i f k  = 1. In 
each case, the form of the transformed equation simpli- 
fies its integration. For example, regarding case (2), Lie 
observed that it followed from known results that the so- 
lution to such a PDE reduces to a quadrature. Lie's proof 
of this proposition was very vague and intuitive. 

Figure 2. A surface touched by complex cones. (Reproduced 
with the permission of Chelsea Publishing Company.) 

A PDE f(x,  y, z, p, q) = 0 is said to admit the transforma- 
tions T E G if each T E G takes solutions into solutions. 

Using the fact that the PDE associated to his problem 
admits the transformations G of the tetrahedron, Lie was 
able to show how to solve it. To this end he introduced the 

logarithmic mapping X = log x, Y = log y, Z = log z, 
which sends the T E G, expressed in the form (1), to the 
T* E G*, where T* is defined by X' = X + a, Y' = 
Y + f l ,  Z' = Z + % w i t h a  = logA, fl = log#,-y = 
log v. Thus, the PDE f (x ,  y, z, p, q) -- 0 transforms into 
a PDE, F(X,  Y, Z, P, Q) = O, which admits the T* E G*. 
Because the PDE F(X,  Y, Z, P, Q) = 0 thereby admits all 
translations, Lie concluded that the function F cannot 
actually vary with X, Y, Z, and, hence, must be of the 
form F(P, Q) -- 0, a type of PDE that had been resolved 
by Euler. 

When Klein learned about Lie's method of solving the 
problem, he was struck by a consequential analogy with a 
result due to Abel. In a famous memoir of 1829, Abel had 
considered a class of polynomial equations whose roots 
had a commutativity property that generalized the prop- 
erty of the roots of cyclotomic polynomials exploited by 
Gauss in Disquisitiones arithmeticae. Abel showed that this 
class of polynomials could also be solved by radicals. 
Abel's commutativity property of the roots is equivalent 
to the Galois group of the polynomial being commuta- 
tive. Klein's observation of this analogy made a great 
and lasting impression on Lie. From that moment on, 
Lie always had in the back of his mind the search for a 
systematic mathematical theory of differential equations 
that would resemble somewhat Galois's theory of alge- 
braic equations. I will call it 

LIE'S ID~IE FIXE. The fact that a differential equation, or a 
system of such equations, admits known (possibly infinitesi- 
mal) transformations, which commute or which, more gener- 
ally, form a group, should translate into information about its 
integration. Establish theorems showing this is the case. 

The Line-to-Sphere Mapping 

Before proceeding further, an update on the travels of 
Lie and Klein is in order. After one semester at Berlin, 
they had moved to the next obvious center of mathemat- 
i c s -  Paris, where they spent the spring and early sum- 
mer of 1870. Towards the end of their stay in Paris, Lie 
discovered a remarkable line-to-sphere mapping, which 
switched the focus of his research from tetrahedral com- 
plexes to the properties and implications of his new map- 
ping. I will have more to say about this historically im- 
portant work in a moment. 

The outbreak of the Franco-Prussian war caused Klein 
to leave Paris and return to Germany. Lie, being Nor- 
wegian, opted to hike back to Norway via Italy. He was 
an avid hiker with a reputation for great endurance. Lie 
also had some interesting hiking techniques. For exam- 
ple, according to Klein, in order to keep his clothing dry 
while hiking in the rain, he would take it off and put it in 
his backpack! He must have made an interesting sight. 
Perhaps this was one reason why he was picked up by 
the French authorities. He was suspected of being a Ger- 
man spy and thrown into prison. The letters he had writ- 
ten encouraged the authorities in their suspicions, for 
when Lie wrote (in German) about "lines" and "spheres" 
they thought he was writing about "infantry" and "ar- 
tillery." When Lie said it was mathematics and began to 
explain, "Let x, y and z be rectangular coordinates . . . .  " 
they decided he was insane! Eventually, he was released 
(through the intervention of Darboux), and he returned 
to Norway to write up the new mathematical discoveries 
he had made in Par is - -and in pr ison--as  his doctoral 
dissertation. 

Lie and Klein's stay in Paris proved to be a far more 
congenial mathematical experience than their stay in 
Berlin. Camille Jordan was there and they met him. In 
fact, Jordan's great treatise on permutation groups and 
Galois's theory rolled off the press while they were in 
Paris. Klein at least appears to have taken a look at it 
and was impressed-- impressed both by the monumen- 
tal nature of the theory expounded by Jordan and by 
how little he understood of it! Klein and Lie did not 
spend much time talking to Jordan, and they spent no 
time trying to decipher his treatise. They were impressed 
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by the existence of the theory, but they did not envision 
its technical details as the basis for a theory of continu- 
ous groups. By this time, the concept of an infinitesimal 
transformation was basic to their group-related studies 
connected with tetrahedral complexes and Lie's idde fixe, 
and they believed infinitesimal transformations would 
be fundamental to the development of a theory of con- 
tinuous groups as well. Their primary research interests 
remained geometrical, and the person they spent most 
of their time talking to in Paris was a geometer, Gaston 
Darboux (1842-1917). 

Darboux, who was Lie's age, was part Of a group of 
French mathematicians who sought to develop an ap- 
proach to geometry that combined concepts from dif- 
ferential geomet ry- - for  which there was a great tradi- 
tion in France going back to Monge- -  and concepts from 
projective geometry in the tradition of Poncelet. Lie and 
Klein tended to refer to this methodological amalgam 
as French "metrical geometry." French metrical geome- 
try was inspired in part by a theorem of Liouville (1846) 
which showed that, by contrast to the case of the plane, 
conformal transformations of space are less abundant: 
They can all be generated by composition of certain pro- 
jective transformations (similarity transformations) and 
transformations closely related to projective transforma- 
tions: what were called transformations by reciprocal 
radii, that is, inversions in spheres. One of the tools used 
by Darboux and his colleagues was a "pentaspherical 
coordinate" system. Darboux pointed out to them that 
there was a remarkable formal similarity between some 
of Klein's line-geometrical results (expressed in six ho- 
mogeneous line coordinates) and Darboux's results (ex- 
pressed in five pentaspherical coordinates). In July 1870, 
shortly before his departure from Paris, Lie discovered 
a basis for such analogies in what he called his sphere 
mapping. 

Lie's sphere mapping was a by-product of his gen- 
eralization of a basic notion in projective geometry: 
reciprocity, a notion that Pliicker in particular had em- 
phasized and himself generalized. One of the simplest 
examples is the duality between points and planes in 
space. It is given by 

x X  + y Y  + zZ  + l =0 .  (2) 

Thus, corresponding to a fixed point whose coordinates 
are given by the lower case x, y, z, is the plane of points 
capital X, 1I, Z satisfying (2). Lie's sphere mapping is 
based on the reciprocity determined by the two linear 
equations 

( X + i Y ) - z Z - x = O ,  z ( X - i Y ) + Z - y = O .  (3) 

By virtue of these equations it is possible to associate 
various geometrical objects in complex projective space 
r, with Cartesian coordinates (x, y, z), to objects in space 
R, with Cartesian coordinates (X, Y, Z). For example, for 
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each fixed point P = (X, Y, Z) E R, (3) represents a sys- 
tem of two linear equations in three unknowns x, B, z, 
and the solutions/9 = (x, p, z) form a line f C r. Thus, 
(3) establishes a correspondence �9 : P - ,  f between 
points of R and certain lines of r. The lines f = ~(P)  ob- 
tained by varying P E R form a linear (=degree one) line 
complex s = {~ : ~ = ~(P) ,  P E R}, and the mapping 

: R ---* s is one-to-one. Given any line ~ c r, let C(f) 
denote the set of lines ~* from the complex s which in- 
tersect the given ~. Then the corresponding set of points 
in R, S(f) = r [C(f)], is a sphere, that is, a set of points 
in R satisfying the usual Cartesian equation of a sphere, 
although the center and the radius may be complex num- 
bers. 

In this manner, Lie set up a correspondence between 
all lines in r and "spheres" in R - - a n d ,  thus, between 
the line geometry relative to a linear line complex s in r 
and a "sphere geometry" in R. For example, lines which 
intersect in r correspond to spheres which touch in R. In- 
cidentally, Lie sphere geometry (in any dimension) has 
recently become of interest to a number of mathemati- 
cians. 

These properties of the line-to-sphere correspondence 
bring out another aspect of reciprocities in general to 
which Lie first called attention. Each of them defines 
what he called a contact transformation. Contact trans- 
formations of 3-space do not transform points, they 
transform what Lie called "surface elements." A sur- 
face element ds consists of a point a = (x, y, z) and 
an infinitesimal surface through that point which may 
be identified with the tangent plane, (z* - z) = 
p(x* - x) + q(x* - x), to the surface at point a = (x, y, z). 
In the spirit of Pliicker, Lie thought of ds as coordina- 
tized by the (x, y, z, p, q). Thus, a contact transformation 
is a transformation T : (x, y, z,p, q) ---* (X, Y, Z, P, Q) of 
surface elements. Lie called these transformations "con- 
tact transformations" because they preserve the contact 
between surfaces; that is, if two surfaces touch at a point, 
they are transformed by a contact transformation into 
surfaces which touch at the image point. 

Any "point transformation" - -  that is, any transforma- 
tion in which X, II, Z are functions of (x, y, z) (and not 
p and q as well)--defines (by prolongation) a contact 
transformation, for point transformations evidently pre- 
serve the contact between surfaces. But many contact 
transformations are not generated by point transforma- 
tions. An example is provided by the contact transfor- 
mation E : (x, y, z,p, q) ---* (X, II, Z, P, Q) associated to 
the reciprocity (3). E may be defined geometrically as 
follows: Given a surface element in r as represented by a 
point and a plane through it, consider all lines through 
that point and lying in that plane. These lines correspond 
in R to a family of spheres which touch in a common 
point and, hence, share a common tangent plane. This 
point and plane define the corresponding surface ele- 
ment in R under the contact transformation E. Here the 
point (X, Y, Z) depends not only on the point (x, y, z) 



but also on the chosen plane through it and, hence, on p 
and q. 

Lie pursued his investigations related to the sphere 
mapping in two directions, both of which are histori- 
cally important. The first direction was encouraged by 
the discovery in July 1870 that, by virtue of the sphere 
mapping reciprocity r ~ R, the asymptotic curves on 
a surface in r correspond to the lines of curvature on 
the associated surface in R. Asymptotic curves and lines 
of curvature were two types of curve lying on a sur- 
face of interest to differential geometers of the time. Lie 
and Klein had learned in Paris that Darboux and his col- 
leagues had recently determined the lines of curvature of 
a certain class of fourth-degree surfaces which arise nat- 
urally from pentaspherical coordinates and were called 
generalized "cyclides." Lie observed that if one thought 
of these cyclides as "living" in the space R, then the cor- 
responding surfaces in r were the Kummer surfaces that 
Klein had studied. In this way, Lie was able to transfer 
the results of the French on lines of curvature of gener- 
alized cyclides to a description of the asymptotic curves 
on Kummer surfaces - -  a new result at that time and one 
that greatly impressed Klein. 

With the encouragement of Klein, Lie set out to ex- 
plore the relations, established by his sphere mapping, 
between line geometry in the space r and the metrical 
geometry of the Darboux school in the space R. The con- 
tact transformation G sets up a correspondence between 
transformations of r and transformations of R: t : r ~ r 
corresponds to T : R ~ R, where T = Y]t[~] -1. Lie ob- 
served that various types of familiar geometrical trans- 
formations of r correspond, in this manner, to familiar 
types of geometrical transformations of R. All of these 
types corresponded to groups, although Lie did not men- 
tion this fact explicitly. For example, the totality L10 of 
0o 1~ projective transformations of r which (as line trans- 
formations) take s into itself corresponds to the totality 
G10 of 0010 conformal transformations T of S. The total- 
ity M7 of OO 7 t E L10 which fix ~ (the line at ~ in the 
xy plane) corresponds to the totality H7 of all similarity 
transformations T (generated by translations, rotations, 
and scaling maps). 

Klein found Lie's results very stimulating. The metri- 
cal geometry of the French involved properties invariant 
under the group Glo of conformal transformations or, 
more generally, under the group H7 of similarity trans- 
formations. For Klein, the key to Lie's success was the 
mapping 9. He saw Lie's correlation of projective line 
geometry in r with metrical geometry in R as based on 
the existence of the map r : s --, R, which brings with 
it Llo --~ Glo and M7 --* H7. Incidentally, the group Llo, 
the projective group of a linear line complex as Lie later 
called it, is the projective symplectic group with structure 
type C2. Symplectic groups first arose in Lie's work in this 
manner. As the group Glo of conformal transformations 
has structure type B2, one could say (anachronistically) 
that Lie's correspondence between the projective line ge- 

ometry of a linear complex in r and the metrical geometry 
of R was a reflection of the "accidental isomorphism" of 
C2 and 82. 

Lie's work convinced Klein that he had become too 
dogmatic in his assumption, encouraged by his associ- 
ation with Clebsch, that projective geometry was more 
fundamental than other types of geometry. The equiv- 
alence established by the map �9 put three-dimensional 
metrical geometry on an equal footing with the line ge- 
ometry of the linear complex s Now the totality of 
all lines in 3-space coordinatized by Plficker coordi- 
nates is four-dimensional, s being of course only three- 
dimensional. This fact led Klein to ask whether an analo- 
gous correspondence exists between all of line geometry 
(which is four-dimensional) and four-dimensional met- 
rical geometry. Klein showed the answer is yes. 

Klein's answer, published in 1871, is itself less impor- 
tant historically than the new conception of the essence 
of geometry implicit in it, for Klein took the radical view 
that a geometry can be described by specifying (i) a man- 
ifold A4 of "elements" and (ii) a group G of transforma- 
tions T : A4 ~ At, which defines the invariant relations 
of the geometry. He regarded two geometries (A41, G1) 
and (.M2, G2) as equivalent if there exists a one-to-one 
map �9 from A41 onto J~2 such that G1 -- k~-lG2 k~. 
Klein regarded line geometry as determined by the pair 
A41,G1, where .A41 consists of all (xl , . . .  ,x6) E PS(C) 
which satisfy f~ = x 2 + . . .  + x 2 = 0. Here, following 
Klein, Plficker coordinates pq have been replaced by 
those coordinates xi in which the quadratic form f~ 
is expressible as x 2 + . . .  + x 2. Accordingly, G1, the 
group of all projective line transformations, consists of 
all T C PGL(6, C) such that T takes .M1 into itself. Four- 
dimensional metrical geometry was defined by anal- 
ogy with the three-dimensional case as the pair .M2, G2, 
where .M2 = p4(C), and G2 is the conformal group of 
4-space, the group generated by four-dimensional sim- 
ilarity transformations and transformations by recipro- 
cal radii. Having characterized line geometry and four- 
dimensional metrical geometry in this radically new way, 
Klein then showed that these two geometries are equiv- 
alent in the sense that a mapping @ exists. 

The conception of geometry implicit in the above- 
described work was made explicit by Klein 2 months 
later in an essay "On Geometrical Methods." In it he took 
the view that every geometrical method is determined by 
specifying a manifold A4 and a group G of transforma- 
tions taking it into itself. Although Klein never published 
this essay, the ideas were finally published in his famous 
Erlangen Program of 1872. As you can see, Klein owed 
much in the way of inspiration for these ideas to Lie's 
work on his sphere mapping. 

Lie himself was led in another direction by the sphere 
mapping research. Lie's reciprocity defined by (3) was, 
he realized, but one example of an infinite family of re- 
ciprocities. Just as (3) defined the contact transformation 
~, so too, any type of reciprocity 
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F ( x , y , z , X , Y , Z )  = 0  
(A) F(x ,  y, z, X ,  Y, Z)  = O, (B) G(x,  y, z, X ,  Y, Z)  0 

F ( x , y , z , X , Y , Z )  = 0  
(C) G ( x , y , z , X , Y , Z ) = O  

H ( x , y , z , X , Y , Z )  = 0 

defines an associated contact transformation T: 
(x, y, z, p, q) --* (X, Y, Z, P, Q). For example, take type 
(A). Fix X, Y, Z and regard F = 0 as defining z as a func- 
tion of x and y, to obtain, by differentiation of F = 0, 
the equations Fx + Fzp = 0 and F v + Fzq = 0, where 
F~ = a F / O x , p  = Oz/Ox, etc. Similarly, with x, y, z held 
fixed, differentiation of F = 0 yields F x  + F z P  = 0 and 
F y  + F z Q  = 0. The 5 equations F = 0 , . . . ,  F y  + F z Q  = 
0 in the 10 unknowns x , y , z , p , q , X , Y , Z , P , Q  can be 
solved for X, Y, Z, P, Q (assuming the requisite implicit 
function theorem applies) to obtain 5 equations express- 
ing each of X, Y, Z, P, Q as a function of x, y, z, p, q. These 
equations define the contact transformation T associated 
to the reciprocity F(  x, y, z, X ,  Y, Z) = O. 

Pliicker had called attention to type (A) - -bu t  in two 
dimensions and with F restricted to being a polynomial. 
Type (C) defines ordinary "point transformations"; for 
example, for a fixed point x, y, z, system (C) defines (gen- 
erally) a po in t - -  the intersection of three surfaces. But it 
was Lie who saw all of these types as contact transforma- 
tions. His sphere mapping represents a type (B) contact 
transformation--apparently the first of type (B) to be 
considered by any geometer. 

By 1872 Lie had obtained a characterization of con- 
tact transformations that proved more useful in analyt- 
ical reasoning and which may make the concept seem 
more familiar today. Contact transformations of three- 
dimensional space turn out to be those transformations 
of five variables, T : ( x , y , z , p , q )  ~ ( X , Y , Z , P , Q ) ,  
which leave the Pfaffian equation d Z -  ( P d X  + Q d Y  ) = 0 
invariant, meaning that 

dZ - ( P d X  + Q d Y )  = p[dz - (pdx + qdy)], 
p = p(x, y, z, p, q) # O. (4) 

Although geometry had been the inspiration for the 
general idea of a contact transformation, Lie's interest in 
developing it was due mainly to its potential importance 
in the study of PDEs. In the mid-1860s the German math- 
ematician Paul Du Bois-Reymond had focused attention 
on a very special type of contact transformation, a type 
which had been used occasionally in the 18th century 
by Euler, D'Alembert, and Legendre to transform PDEs. 
Typical is the transformation 

X = - q ,  Y = p, Z = z - p x -  qy, 
P = y, Q = -x .  (5) 

This transformation takes a first-order PDE 
F ( X ,  Y, Z, P, Q) = 0 into another such PDE, 
f ( x ,  y, z ,p,  q) = 0;because Z = z - p x - q y  = z - Y x + X y ,  
so P = cgZ/OX = y and Q = OZ/OY = - x .  In other 
words, (5) actually transforms a first-order PDE into an- 
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other such equation because the first three equations (for 
X, Y, Z) imply the remaining two, so that P is actually 
coZ/OX and Q is actually OZ/OY.  

Du Bois-Reymond tried to get a more general class 
of transformations by which a first-order PDE might be 
transformed into another, but he did not get very far. 
Certainly he had no general concept of a contact trans- 
formation. Lie realized that any contact transformation 
may be used to transform a first-order PDE. As Lie had 
learned while in Paris, Monge had showed how to de- 
velop the 18th-century theory of PDEs in terms of ge- 
ometrical constructs. Lie dreamed of doing something 
analogous by means of the geometrical notions associ- 
ated with contact transformations. One aspect of that 
dream was a prospective "invariant theory" of contact 
transformations. A general goal was to determine when 
two given systems of PDEs can be transformed into one 
another by a contact transformation. Such a transforma- 
tion would take the solutions of the one system into those 
of the other, so that solving the one system would be tan- 
tamount to solving the other. Now, if one system has a 
property (P) that is preserved under all contact transfor- 
mations, then it can only be transformed into another 
system having (P). Therefore, the problem arises to de- 
termine invariant properties of systems of PDEs in the 
hopes of determining necessary and sufficient conditions 
that one system be transformable into another by a con- 
tact transformation. The idea of this prospective invari- 
ant theory was partly inspired by the results Lie had 
obtained transforming various types of PDEs using the 
contact transformation E associated to the sphere map- 
ping. 

Lie was thinking about this in the closing months of 
1871 when he received a copy of Klein's essay on geo- 
metrical methods. At first, Lie failed to see what Klein 
was proposing. But once he understood, he became very 
enthusiastic, because his project on invariant properties 
of PDEs exemplified what Klein was saying in his es- 
say: Lie's prospective theory could be thought of as the 
study of the Kleinian geometrical method correspond- 
ing to the five-dimensional manifold of surface elements 
x, y, z, p, q and the group of all contact transformations. 
(Strictly speaking, these contact transformations form a 
Lie pseudogroup - -  but all group-related concepts were 
only vaguely articulated at this time.) Klein, in turn, was 
excited by Lie's observations, for he had not had any- 
thing like Lie's example in mind! When Lie and Klein 
were finally together again in the fall of 1872, they made 
their new ideas public in the following ways. Lie, with 
Klein's editorial assistance, announced some of his ideas 
on PDEs and contact transformations. Klein, with Lie's 
assistance, composed his Erlangen Program on geomet- 
rical methods. In the Program, Klein wrote, "Given a 
manifold and a group of transformations of it, develop 
the invariant theory related to the g r o u p " - - a n d  that is 
precisely what Lie intended to do for the group of contact 
transformations. 



In the Erlangen Program, Klein called for the devel- 
opment of an autonomous theory of continuous trans- 
formation groups. He pointed out that in Jordan's 1870 
treatise, the theory of finite groups is first developed in- 
dependently, then its applications are developed. Klein 
and Lie were suggesting some sort of development of 
the theory of continuous groups, with the applications 
to follow. Klein probably had geometrical applications 
in mind, but Lie still had his idde fixe-- an application of 
group theory to differential equations somewhat analo- 
gous to Galois's theory and perhaps now also involving 
the invariant theory of contact transformations. But who 
would develop the group theory? Did they actually envi- 
sion carrying out such a development themselves? Cer- 
tainly not in 1872. Neither of them felt prepared to do it, 
even though they claimed the continuous theory would 
be easier to develop than the "discrete" theory. After 
writing the Erlangen Program, Klein's interests turned to 
other matters, which did not involve continuous groups 
at all. As for Lie, he was neither prepared nor inclined to 
grapple with the theory of continuous groups. For exam- 
ple, according to his recollections, he realized at the time 
the Erlangen Program was written that implicit in it was 
the problem of classifying continuous groups. Lie, how- 
ever, felt that such a classification was "absurd or impos- 
sible" - -  that is, so far beyond what he would be capable 
of resolving as to appear ridiculous. This is the same neg- 
ative attitude that both Lie and Klein had shared earlier, 
in 1871, when a spinoff of the work on tetrahedral com- 
p l e x e s -  their theory of W-configurations--had led to 
a problem of classifying certain commutative subgroups 
of the general projective group. This classification prob- 
lem they also had dismissed as too difficult to consider 
after attempting to resolve it in special cases. Slightly 
over I year later, however, Lie had completely changed 
his mind! By the end of 1873 he had decided that he could 
develop a theory of continuous groups, and that the ef- 
fort to do so was warranted. What caused him to change 
his mind? In a word, the answer is: Jacobi. 

Jacobi and First-Order PDEs 

By the time Lie and Klein got together to write the Erlan- 
gen Program, Lie was trying to work out his geomet- 
rical theory of PDEs, based on his "invariant theory" 
of contact transformations. At that time, the theory of 
first-order PDEs was dominated by the results of Jacobi 
that had been inspired by his study of Hamilton's papers 
on dynamics. Jacobi had actually obtained these results 
in the late 1830s--he died in 1 8 5 1 -  but many of them 
were first published by Clebsch in the period 1862-1866. 
Many mathematicians.were interested in developing Ja- 
cobi's theory, but Lie was unique in that he approached it 
with a geometrical background and with "groups" and 
his idde fixe in the back of his mind. To conclude this arti- 
cle, I will briefly indicate how Lie's approach was linked 
by Lie to Jacobi's theory, and why the link encouraged 

him to take on the challenge in the Erlangen Program. 
Let 

FI(x,p) = Fl(Xl , . . . ,Xn,Pl , . . . ,pn)  = O, 
Oz (6) 

Pi - Oxi' 

denote a first-order PDE which does not explicitly in- 
volve the dependent variable z = ~(x l , . . . ,  x,~). It was 
known that the solution of any first-order PDE could be 
reduced to this special type. Jacobi's method of solving 
(6) made fundamental use of the brackets that had been 
introduced by Poisson in 1809 in connection with La- 
grangian mechanics. If G and H are any functions of 2n 
variables 

( x , p )  = ( X l , . . .  , x n , P l , . . .  ,Pn) ,  

then 
(G,H) = ~--~ ( OG OH OG OH~ 

i = 1 0 p i O x i  ~ ~ ] . (7) 

Jacobi observed that the PDE (6) could be completely 
solved if functions F2, �9 �9 �9 Fn of the variables (x, p) could 
be determined such that F1, . . . ,  Fn are functionally in- 
dependent and satisfy the relations (Fi, Fj) = 0 for all 
i and j .  He then proceeded to devise a method for pro- 
ducing the functions Fi. [In other words, Jacobi's method 
made the Hamiltonian system defined by H = F1 (x, p) 
completely integrable.] 

Jacobi also discovered a property of the Poisson 
bracket (7) that Poisson and Lagrange had apparently 
missed: 

JACOBI'S IDENTITY. If F, G, and H are any three func- 
tions of the variables (x, p), then 

((F, G), H) + ((G, H), F) + ((H, F), G) = 0. (8) 

The Jacobi Identity played a fundamental role in Jacobi's 
method for determining the functions F2, �9 �9 �9 Fn. He also 
saw the Identity as having important implications for 
an earlier method he had devised for solving a first- 
order PDE. The earlier method solved F1 (x, p) = 0 by 
determining 2n - 1 functionally independent solutions 
�9 = F1, . . . ,  F2n-1 to (F1, (I)) = 0, one of which is auto- 
matically (I) = F1. Jacobi believed that if he knew just 
two solutions 0 = F2 and (I) = F3 to (F1, O) = 0 such 
that F1, F2, F3 are functionally independent, then "in gen- 
eral" the remaining 2n - 1 could be determined by (8). 
Indeed, given the solutions F2 and F3, it follows readily 
from (8) that F4 = (F2, F3) is another solution. The same 
reasoning then implies that F5 = (F3, F4) is another so- 
lution, and so on. Jacobi was convinced that "in general" 
it would be possible to produce in this manner the req- 
uisite 2n - 1 independent functions. He realized, on the 
other hand, that in "particular cases," such as when a 
certain number of solutions to (F1, O) = 0 are known 
from general mechanical principles, the above bracket- 
ing process falls short of the goal of generating 2n - 1 in- 
dependent solutions. For example, it could happen that 
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F4 = (F2, F3) vanishes or is some function of F1, F2, and 
F3. He claimed that in such cases, knowledge of these so- 
lutions could be used to simplify the problem of solving 
the PDE F1 (x, p) = 0. 

Perhaps due to the poor health that plagued him after 
1843 as a consequence of diabetes, Jacobi never published 
any detailed justification of his claims before his death in 
1851. Most mathematicians doubted them. Still left open 
w a s  

JACOBI'S PROBLEM. Suppose �9 = F1, . . . , Fr are r func_ 
tionally independent solutions to ( F1, cb ) = 0 with the prop- 
erty that bracketing produces no more solutions, that is, for all 
i, j ( Fi, Fj ) is functionally dependent on F1, . . . , Fr: 

(Fi ,Fj )  = f2 i j (F1, . . . ,F~) ,  i , j  = 1 , . . . , r .  (9) 

How does knowledge of Fa , . . . ,  G simplify the problem of 
solving F1 (x, p) = 0? 

Although several mathematicians had dealt with this 
problem in the case that the equations in (9) have the 
special form (Fi, Fj) = 0, +1, Lie was the first to tackle 
the general problem. For him, it was an expression of his 
idde fixe. This understanding of the problem was based 
on discoveries he had made in seeking to develop his 
invariant theory of contact transformations. 

Before discussing these discoveries, some preparatory 
remarks about Lie's use of infinitesimal transformations 
are necessary. Infinitesimal transformations were funda- 
mental to the conception of a continuous group that Lie 
had developed as an outgrowth of his work on tetrahe- 
dral complexes in 1870. For him, a group of transforma- 
tions was continuous because its transformations could 
be generated by infinitesimal ones. In present-day for- 
mulations of Lie's theory, the infinitesimal transforma- 
tions of a group are the elements of its Lie algebra. Lie 
himself tended to think of the infinitesimal transforma- 
tions as themselves belonging to the group. He identified 
such a transformation 

dT:  y = ( Y l , . . . , Y m )  ~ (Yl + d y l , . . . , y m  + dym), 

dyi = 71i(y)dt 

with the system of ordinary differential equations 

dyi = ~i(y), i = 1 , . . , m .  (10) 
dt 

If yi(t) = f i ( t ,y(~ i = 1 , . . . , m ,  is the solution to 

this system satisfying the initial condition yi(to) = y~O), 
then these equations defined the one-parameter family 
of transformations Tt : y(0) __, y(t) generated by dT. 

As Lie learned about the theory of first-order PDEs as 
it stood circa 1870, he found that solving the system (10) 
was equivalent to solving the linear homogeneous PDE 

m Of 
Z r/dY) ~ -- O. (11) 
i=1  
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Mathematicians writing about (11) would switch to (10) 
without a word and vice versa: To them, (10) and (11) 
were two sides of the same coin. Lie also fell into this 
habit of identification. Thus, dT could be identified with 
the system (10) or with (11). Jacobi's work added an- 
other twist to this identification process. In developing 
his method of solving first-order PDEs, Jacobi had intro- 
duced differential-operator notation such as 

m o f  
Y ( f )  = Z ~li(Y) Oyi 

i=l 

so that (11) can be expressed succinctly as Y ( f )  = O. 
He also utilized the fact that if X ( f )  is another such op- 
erator, then so is X ( Y ( f ) )  - Y ( X ( f ) ) .  Eventually, Lie 
identified the infinitesimal transformation dT with Y ( f )  
(which nowadays would, in turn, be identified with a 
vector field). If this identification is expressed by the no- 
tation dU ~ X ( f ) ,  dT  ~ Y ( f ) ,  then Jacobi's calculus 
of differential operators led Lie to the further identifica- 
tions: 

dUo dT ~ X ( f )  + Y(f), 
dUo  d T o  dU -1 o dT -1 ~ X ( Y ( f ) )  - Y ( X ( f ) ) .  

(12) 

These identifications proved inspirational to him as he 
developed his invariant theory of contact transforma- 
tions. 

In the (n + 1)-dimensional space of points (x, z) = 
(x l , . . . ,  x,~, z), contact transformations are transforma- 
tions T : (x, z, p) ~ (X, Z, P) of the 2n + 1 variables 
(x, z ,p)  = ( x l , . . . , X n , Z ,  p l , . . . , p n )  which satisfy the 
higher-dimensional analog of (4). Lie discovered that in 
developing his theory for PDEs of the form F(x ,  p) = O, 
he could restrict his attention to those with equations of 
the form Xi = ~i(x,p),  Z = z + ~(x,p), P~ = 7ri(x,p). 
Following Lie, these contact transformations will be re- 
ferred to as transformations of (x, p). He realized that, as 
transformations (x, p) ---* (X, P),  they define canonical 
transformations in the sense of Hamilton-Jacobi dynam- 
ics. A link between the theory of PDEs and his idde fixe 
was provided by his discovery that dT ~ X ( f )  is an in- 
finitesimal transformation of (x, p) if and only if there is 
a function W ( x ,  p) such that 

X ( f )  : [W,f] f o r a l l f  = f ( x , z , p ) ,  (13) 

where the generalized Poisson brackets are defined for 
functions G, H of (x, z ,p)  by 

O__~G D H  D___GG OIt 
[G, H l = ~ - 

0 ' i=l Opi Oxi OXi Pi 

D 0 0 
Dxi  - Ox--i + Pi -~z" 



Generalized Poisson brackets had been introduced into 
Jacobi's theory by his successors. They have the same 
basic properties as the Poisson brackets (7). In particu- 
lar, the analogous Jacobi Identity holds. Lie discovered 
the connection between infinitesimal transformations of 
(x, p) and functions W(x, p) by a line of reasoning typi- 
cal in projective geometry: Take a simple fact (e.g., about 
a circle) and apply projective transformations to turn it 
into a general theorem (e.g., about conics). Lie's simple 
fact was from the theory of first-order PDEs, and contact, 
rather than projective, transformations were applied to 
obtain the general result. 

Consider Jacobi's Problem. Giventhe solutions ep = Fi 
to (F1, ~) = 0, it follows from the chain rule that any 
function of F1,... ,  Fr, F = O(F1, �9 �9 �9 F~) for some func- 
tion O of r variables, is also a solution to (F1, ~) = 0. 
Thus, in Jacobi's Problem all solutions of the form F = 
O(F1, . . . ,  F~) are known,  and the problem is to use this 
information to simplify the integration of F1 (x, p) = 0. 
Now by virtue of (13), in Lie's mind F = O(F1, . . . ,  F~) 
corresponded to an infinitesimal transformation X (f) = 
[F, f]. He realized that an infinitesimal transformation 
X( f )  is admitted by a PDE Fl(x,p) = 0 if and only if 
X(F1) = 0 for all (x,p) satisfying Fl(x,p) = 0. By virtue 

o f  (13), X(F1) = IF, F1] = (F,F~) = 0, so that F~ = 0 
admits the infinitesimal transformation X ( f ) = IF, f] 
corresponding to F = O(F1, . . . ,  F,). Lie also realized 
that these X( f )  form a Lie algebra. This property of the 
X( f )  is a consequence of the Jacobi Identity for gener- 
alized Poisson brackets. At this time, Lie did not con- 
cern himself with the question as to whether  a group 
corresponded to this Lie algebra. He seems to have as- 
sumed it did, but, in any case, he focused his attention 
on the "group" of infinitesimal transformations X(f) ,  
which will be denoted by G(F1, . . . ,  G) .  Jacobi's Prob- 
lem could then be interpreted as an expression of his idde 
fixe: 

Given that the PDE FI(x,p) = 0 admits the group 
6(F1, �9 �9 �9 F~ ) of infinitesimal transformations, how does 
this knowledge simplify the problem of solving it? 

Lie provided an answer to this question and called the at- 
tendant  theory his theory of function groups. It became 
the core of his invariant theory of contact transforma- 
tions. Now it can be seen as a precursor of that part of 
symplectic geometry involving Poisson structures. 

Although the concept of a function group was mo- 
tivated by Jacobi's Problem, Lie's actual definition was 
independent  of the Problem and runs as follows. Given 
functionally independent  functions of (x, p), F1 , . . . ,  F~, 
which satisfy relations, of the form (9) - - b u t  which need 
not be solutions to (F1, O) = 0 - -  let $ '(F1,. .  �9 F~) consist 
of all functions F which are functionally dependent  on 
F1 , . . . ,  Fr, so that F = O(F1, . . . ,  F~) for some O. Then 
G (F1, . . . ,  Fr) consists of all infinitesimal transformations 
of the form X( f )  = [F, f] for some F E 9V(F1,..., F~). In 

his publications, written for 19th-century analysts with 
no understanding of group-related concepts, Lie offi- 
cially designated 5V(F1,..., Fr) as an "r-term function 
group" and did not mention G(F1, . . . ,  Fr), even though 
he himself thought  in terms of G. Equipped with the Pois- 
son bracket, ,~(F1, . . . ,  Fr) is a Lie algebra in its own right, 
and the mapping F --* X (f)  = [F, f] is a homomorphism 
with kernel consisting of the constant functions, so that 
the distinction between Y and G is more significant con- 
ceptually than mathematically. 

Using his theory of function groups, Lie was able 
to resolve the problem of when  two systems of PDEs, 
Fi(x,p) = 0 and Gi(x,p) = 0, i = 1 , . . . , r ,  are trans- 
formable into each other by a contact transformation in 
the sense that each Fi gets transformed into the corre- 
sponding Gi. Recall from the second section that this was 
a major goal of his prospective invariant theory in 1871. 
Lie first solved the problem when the Fi and Gi form 
r-term function groups. In this case, the necessary and 
sufficient condition is that for all i and j, (Fi, Fj) is the 
same function of F1,. �9 �9 Fr as (Gi, Gj) is of G1, . . . ,  G~: 

(Fi, Fj) = 12ij(F1,..., Fr) 
(14) 

iff (ai, aj) = f~ij(G1, . . . , at). 

As we shall see, Lie discovered this theorem had an in- 
spiring application to the group classification problem. 

As a Lie algebra, G(F1, �9 �9 �9 F~) is infinite-dimensional. 
Jacobi's method of solving first-order PDEs was also the 
source of Lie's discovery that finite-dimensional groups 
are likewise important to the theory of first-order PDEs. 
In 1866 Clebsch had developed his theory of complete 
systems of linear homogeneous PDEs, motivated by the 
fact that both Jacobi's method and his own extension of 
it to Pfaffian equations reduced the problem to solving 
complete systems. (Clebsch's theory is now subsumed 
in the theory of completely integrable vector fields.) Lie 
sought to apply his idde fixe to complete systems just 
as he had to Jacobi's Problem. In the case of Jacobi's 
Problem he had seen that if F1 (x, p) = 0 admits a finite 
number  of infinitesimal transformations, then, by apply- 
ing the bracketing process, it can be assumed without  
loss of generality that F1 = 0 admits a function group 
~ (F1 , . . . ,  F~). Within the context of complete systems, 
somewhat  analogous reasoning led him to the discovery 
that if a complete system admits a finite number  of in- 
finitesimal transformations, then without  loss of general- 
ity it can be assumed that the system admits infinitesimal 
transformations X1 ( f ) , . . . ,  X~ (f)  which satisfy 

Xi(Xj( f ) )  - Xj(Xi( f ) )  = ~ cijkXk(f). 
i=1  

(15) 

In modern  terms this means that the Xi(f)  span a finite- 
dimensional Lie algebra. To Lie, it meant that the com- 
plete system admits a group which depends continu- 
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ously on a finite number of parameters, the type of group 
that had arisen in his early work related to tetrahedral 
complexes. These groups could now be seen to be im- 
portant to the general theory of PDEs. Moreover, Lie dis- 
covered a link between these groups and his theory of 
function groups, a link which encouraged him to believe 
that he was now in a position to solve, for these groups, 
the sort of classification problem that he had earlier dis- 
missed as impossible. 

For Lie, two transformation groups were essentially 
the same--"s imilar"  was his t e rm- - i f  the transforma- 
tions of the one could be transformed into those of the 
other by means of a variable change. On the infinitesimal 
level on which he operated, the problem of classifying 
all finite-dimensional groups of transformations was to 
determine up to similarity all finite-dimensional groups 
(Lie algebras) of infinitesimal transformations in m vari- 
ables, X( f )  = ~_,im=l rli(y)Of/cgyi, y = (Yl,... ,Ym). 
Today, Lie's problem would be formulated as that of 
determining all Lie algebras of vector fields up to dif- 
feomorphisms. In the case m = 1, Lie was able to use 
(15) to conclude by elementary considerations that there 
are only three distinct possibilities (the projective group 
of the line and its subgroups). This success undoubt- 
edly helped him appreciate the value of (15), but his 
confidence that he could achieve comparable success in 
the case of any number of variables came from another 
source. 

As soon as the number of variables exceeds one, there 
are contact transformations as well as point transforma- 
tions to consider. Point transformations being (as noted 
in the second section) special types of contact transfor- 
mations, Lie's problem was to classify all Lie algebras of 
infinitesimal contact transformations. In this connection 
he had discovered that just as the study of projective 
transformations can be reduced to the study of linear 
transformations, so too the study of contact transforma- 
tions can be reduced to the study of what he called "ho- 
mogeneous contact transformations." On the, infinitesi- 
mal level, these are transformations of (x, p) which leave 
z fixed. Consequently, by (13), an infinitesimal homo- 
geneous transformation has the form X (f) = [W, f] = 
(W, f). Lie's problem reduced to classifying all Lie alge- 
bras of infinitesimal homogeneous contact transforma- 
tions Xi(f)  = (Fi, f).  Since in this case X ( f )  is given by 
a Poisson bracket, it follows from Jacobi's Identity that 
Xi(Xj( f))  - Xj (Xi ( f ) )  = ((Fi, Fj), f), and so the Lie 
algebra property (15) implies 

(Fi, Fj) = ~ CijkFk. (16) 
k = l  

Equation (16) was the primary reason why Lie changed 
his mind about the impossibility of group classification 
problems. It showed him that a finite-dimensional group 
has associated to it a function group. Suppose that p _< r 
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of the functions Fi are functionally independent and that 
the notation is such that F1,... ,  Fp are independent. Then 
for k > p, Fk is some function of F1,..., Fp, and (16) im- 
plies that (Fi, Fj ) is expressible as a function of F1, . . . ,  Fp, 
which is precisely the condition (9) that F1,..., Fp deter- 
mine a p-term function group G(F1,..., Fp). 

By means of this connection between the r- 
dimensional group and the p-term function group, Lie 
believed he could classify the r-dimensional groups 
into general similarity types by applying the results of 
the theory of function groups. To give some idea of 
how this w o r k e d - - a n d  some of the critical points Lie 
over looked-- i t  suffices to consider the case in which 
F1, . . . ,  Fr are functionally independent, so p = r. Sup- 
pose Xi( f )  ---- (Fi, f)  and Yi(f) -- (Hi, f)  define two 
groups of this type, and that in addition [possibly by 
taking suitable linear combinations of the Yi (f)] the con- 
stants cijk are the same for the Yi(f). In other words, the 
assumption is that the two Lie algebras are isomorphic. In 
view of (16) this means, of course, that (Fi, Fj) is the same 
function of F1, . . . ,  Fr as (Hi, Hi) is of H1, . . . ,  Hr. Thus, 
(14) is satisfied, so that by the related theorem Lie could 
infer the existence of a homogeneous contact transforma- 
tion which takes each function Hi into the corresponding 
Fi. This meant that the two r-dimensional groups Xi(f)  
and Y/(f) are similar. In other words, Lie concluded that 
groups of this type are similar if and only if their Lie 
algebras are isomorphic, so that the classification prob- 
lem reduces in this case to that of classifying Lie algebras 
up to isomorphism. Lie envisioned a limited number of 
nonisomorphic possibilities and evidently felt it would 
not be difficult to determine them. In the fall of 1873 he, 

. . .  the task of creating a theory of continuous 
transformation groups, the task that became 
his life work. 

thus, glossed over an algebraic problem which is still not 
completely resolved today! The problem was first tack- 
led in 1888 by Killing, who resolved it in the semisimple 
case. 

Since Lie's classification of groups with p < r also de- 
pended on the classification of Lie algebras, his overall 
approach was not as effective as he believed. At the time, 
however, it seemed that his theory of function groups, 
and more generally his invariant theory of contact trans- 
formations, had provided him with precisely the tools he 
needed to tackle the group classification problem. Not 
only was he now convinced of the importance of contin- 
uous groups to the general theory of PDEs but he also 
saw the theory of these groups as drawing on the same 
mathematical tools as the general theory of PDEs. These 
considerations gave him the courage to make the deci- 
sion to commit himself completely to the task of creating 
a theory of continuous transformation groups, the task 
that became his life work. 



Concluding Remarks 

Lie's encounter with the work of Jacobi was evidently a 
decisive factor in his decision. But, as the presentation in 
the first two sections indicates, it was only because of his 
experiences during 1869-1871, when geometry was the 
focus of his interests, that Lie was in a position to see in 
Jacobi's theory something no one else saw. During 1869- 
1871 his work had been dominated by two successive re- 
search projects: the study of the geometry of tetrahedral 
complexes and the study of the sphere mapping. From 
the first came a fundamental concept and a fundamen- 
tal idea: the concept of a continuous group of transfor- 
mations and the idea of a continuous analog of Galois's 
theory of algebraic equat ions--  his idde fixe. Likewise, a 
fundamental concept and a related idea originated in the 
sphere mapping work: the concept of a contact transfor- 
mation and the idea of an invariant theory of contact 
transformations. It was in terms of these ideas and con- 
cepts that Lie assimilated the theory of first-order PDEs 
of Jacobi and his successors, and turned it into something 
quite different. 

. Further Reading 

For further information about Lie's early geometrical 
work, see the articles by T. Hawkins ("Line Geome- 
try, Differential Equations and the Birth of Lie's Theory 
of Groups") and by D. Rowe ("The Early Geometrical 
Works of Sophus Lie and Felix Klein") in Volume 1 of The 
History of Modern Mathematics (D. Rowe and J. McCleary, 
eds.), London: Academic Press (1989). For more infor- 
mation about Jacobi's influence on Lie, see T. Hawkins, 
Jacobi and the birth of Lie's theory of groups, Arch. His- 
tory Exact Sci. (to appear). A modem presentation of Lie's 
group-theoretic approach to differential equations can be 
found in P. Olver, Applications of Lie Groups to Differen- 
tial Equations, New York: Springer-Verlag (1986). Olver's 
book also contains informative historical notes, such as 
one on Lie's function groups and symplectic geometry 
(pp. 417418). Killing's work is discussed in T. Hawkins, 
Wilhelm Killing and the structure of Lie algebras, Arch. 
History Exact Sci. 26 (1982), 127-192. See also: T. Hawkins, 
Non-Euclidean geometry and Weierstrassian mathemat- 
ics: The background to Killing's work on Lie algebras, 
Studies in the History of Mathematics (E.R. Phillips, ed.), 
Washington DC: Mathematical Association of America 
(1987), pp. 21-36; A.J. Coleman, The greatest mathemat- 
ical paper of all time, Mathematical Intelligencer 11 (3) 
(1989), 29-38; N.H. Ibragimov, Sophus Lie and harmony 
in mathematical physics, The Mathematical Intelligencer 16 
(1) (1993), 20-28. 
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