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§ 1. – Introduction. 
 

 In his lectures on dynamics, Jacobi confined himself to the application of 
Hamilton ’s method to those problems for which the motion depended upon only the 
configuration of points, but not upon their velocities.  However, as Riemann has 
remarked already, that method can also be applied to many problems for which the 
velocities come into question. 
 If one addresses the mutual attraction of points and one understands T to mean one-
half of the vis viva and U to mean that function that will give the components of the force 
that acts at a point when it is differentiated with respect to the rectangular coordinates of 
that point then if U includes only the coordinates along with time, implicitly or explicitly, 
but not upon the velocities, then the equation: 
 

(1)      
1

0

( )
t

t
T U dtδ +∫ = 0. 

 
In this, the variation is understood to mean that the limits are not varied.  This equation 
also preserves its validity when condition equations are present, which can include time; 
however, we shall ignore such things entirely. 
 The existence of equation (1) will be assumed to be the first requirement for the 
Hamilton ian method.  It follows from the usual equations of motion, and conversely, the 
latter can be derived from it. 
 However, if U includes the velocities then it will be questionable whether the usual 
equations of motion would follow from equation (1).  One must then examine whether 
that would be true in each problem.  In the former case, we can start from that equation, 
but in the latter, we cannot.  However, in the former case, if one should succeed in 
determining another function U, such that when one substitutes it for the previous 
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function U in equation (1), the usual equations of motion would follow from it, then one 
can put that new equation at the forefront of any further investigations. 
 We still do not have a general method for finding that new U.  Riemann gave some 
brief remarks in regard to the case in which the potential consisted of two parts, one of 
which included the velocities, while the other one was free of them. 
 If a U has been found in some way then q1, …, qν will be independent coordinates, 
and in order to extend the differential quotients, new quantities p1, …, pν will be 
introduced by the equations: 

( )T U

qµ

∂ +
′∂

= pµ , 

 
so the differential equations of the problem will be derived from equation (1).  
Hamilton ’s method replaces the system of differential equations with a first-order partial 
differential equation in (ν + 1) variables whose general solution V is to be sought, which 
then includes n arbitrary constants α1, …, αν , in addition to the additive constants α. 
 If one then succeeds in proving that the 2ν equations: 
 

 
1

V

α
∂
∂

= β1, …, 
V

να
∂
∂

= βν , 

 

 
1

V

q

∂
∂

= p1, …, 
V

qν

∂
∂

= pν , 

 
in which the β are new arbitrary constants, are the integral equations of the above system 
of differential equations then the application of Hamilton ’s method will be justified, and 
the problem will have been reduced to performing certain integrals.  However, it we do 
not succeed in that proof then the results will be illusory. 
 One can find the general proof in Jacobi’s Lecture 20 for the case in which U 
includes only the coordinates and time, implicitly or explicitly, but not the velocities.  
However, a special analysis will always be necessary for those cases in which U does 
include the velocities. 
 Neumann (*) has found the expression U that should be inserted into equation (1) in a 
curious way for the closely-associated problem of attraction according to Weber’s 
electrodynamical laws, and in so doing, gave a new meaning to those laws. 
 Even now, that interesting law has been the basis of many investigations, but in the 
opinion of many researchers, it will probably play a greater role at some later time.  It is 
certainly quite important already, insofar as it includes the Newtonian case as a special 
case. 
 In what follows, we would like to examine whether the Hamilton ian method can be 
applied to this problem, and indeed, what we shall discuss first will be the motion of a 
point that is attracted to a fixed center according to Weber’s laws. 

                                                
 (*) Neumann, Prinzipien der Elektrodynamik, Tübingen, 1868. – Cf., also Seeger, Inaugural 
dissertation: De motu perturbationibusque planetarum etc.  Göttingen, 1864. 
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 However, before we go on to the actual investigation, we shall first make some 
necessary remarks about the connection between Weber’s expressions and Neumann’s. 
 If r is the distance from the point x, y, z to the attracting center and m is its mass then 
according to Weber, the attraction that acts in the direction of r will be: 

 

(2)     R = − 
2 2

2 2 2 2

1 2
1

m dr r d r

r c dt c dt

  − ⋅ + ⋅  
   

. 

 
In this, c is a very large constant, and indeed one suspects that it is roughly the speed of 
light. 
 The usual force function will then be: 
 

(3)      U1 = 
2

21
m r

r c

′ 
− 

 
. 

 
 It is clear that the motion of the point will take place in a plane that is determined by 
the direction of r and the initial push.  There will then be no basis for abandoning the 
plane that the point determines.  We therefore confine ourselves to two coordinates. 
 The equations of motion are: 
 

(4)     

2
1

2

2
1

2

,

,

Ud x x x
m R

dt r r r

Ud y y y
m R

dt r r r

 ∂= = ⋅ ∂


∂ = = ⋅
 ∂

 

and they imply that: 
2

d ds
m

dt dt
 
 
 

= 12
U dr

r dt

∂ ⋅
∂

= 12
dU

dt
, 

 
as is easy to see, and upon integration, that: 
 
(5)      T = U1 + c1 . 
 
The principle of vis viva is therefore valid, and it cannot be applied with no further 
assumptions.  Let us also mention, by the way, that the area principle is also true, since 
we are dealing with a central force. 
 Now, Neumann has found that one will come to the equations of motion (4) when 
one sets: 

(6)      U = 
2

21
m r

r c

′ 
+ 

 
 

 
in equation (1), instead of the usual U1 , and in fact, one will come to that U as follows: If 
the center attracts the point x, y, z with mass m according to Newton’s laws then the 
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distance r0 will belong to the potential m / r0 .  Now, assuming that the potential does not 
assert itself immediately, but comes to one with the finite velocity of the moving point 
(e.g., that of light or sound) then the potential at the point that belongs to the distance r0 
will first be attained when it is found at another distance r, such that m / r is the potential 
that acts there, whereas m / r0, or as would emerge from Neumann’s analysis, the 
expression: 

U = 
2

21
m r

r c

′ 
+ 

 
, 

 
in which c is the speed with which the potential advances in space. 
 The fact that one actually goes from equation (1) to equations (4) is easy to show 
now.  If T is one-half the vis viva then one will have: 
 

1

0

t

t
T dtδ ∫ = 

1 1

0 0

t t

t t
mx x dt my y dtδ δ′ ′ ′ ′+∫ ∫ . 

 
 Integration by parts will give a new integral for every integral on the right-hand side, 
along with a part that is free of integrals.  The latter will drop out since the end positions 
will not be varied, and what will remain will then be: 
 

1

0

t

t
T dtδ ∫ = − 1

0

( )
t

t
m x x y y dtδ δ′′ ′′+∫ . 

 

 It follows further from U = 
2

21
m r

r c

′ 
+ 

 
 that: 

 

δU = 
U U

r r
r r

δ δ∂ ∂ ′+
′∂ ∂

 = − 
2

2 2

2
1

m r mr
r r

r c rc
δ δ

′ ′  ′+ + ⋅ 
 

, 

so: 

1

0

t

t
U dtδ ∫ = − 

1 1

0 0

2

2 2

2
1

t t

t t

m r mr r
r dt r dt

r c c r
δ δ

′ ′ ′  ′+ + 
 

∫ ∫ . 

 
 If one applies integration by parts to the last integral and combines everything then it 
will follow that: 

1

0

t

t
U dtδ ∫ = − 

1

0

2

2 2

2
1

t

t

m r rr
r dt

r c c
δ

′ ′ 
+ + 

 
∫ = 

1

0

t

t
R r dtδ∫ . 

Therefore: 
1

0

( )
t

t
T U dtδ +∫ = − 

1

0

t

t

x y
mx R x my R y dt

r r
δ δ    ′′ ′′− + −    

    
∫ = 0. 

 
 However, δx and δy are mutually independent, such that the following equations will 
be true: 
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m x″ = 
x

R
r

, m y″ = 
y

R
r

; 

 
however, these are the equations of motion above. 
 We shall now take equation (1) to be the starting point of the investigation. 
 
 

§ 2. – Derivation of the differential equations of the problem 
 in independent coordinates. 

 
 r and ϑ are introduced as independent coordinates by way of the equations: 
 

x = r cos ϑ, y = r sin ϑ, 
 
such that (T + U) will be a function of r, r′, ϑ, ϑ′.  If one defines: 
 

1

0

( )
t

t
T U dtδ +∫  

 
and applies integration by parts then since the parts that are free of integrals will drop out, 
that will yield: 
 

0 =
1

0

( ) ( ) ( ) ( )t

t

T U d T U T U d T U
r dt

r dt r dt
δ δϑ

ϑ ϑ
 ∂ + ∂ +  ∂ + ∂ +    − + −       ′ ′∂ ∂ ∂ ∂       

∫ , 

 
in place of equation (1) in § 1. 
 Since δr and δϑ are mutually independent that will imply the equations: 
 

( ) ( )T U d T U

r dt r

∂ + ∂ + −  ′∂ ∂ 
= 0, 

 
( ) ( )T U d T U

dtϑ ϑ
∂ + ∂ + −  ′∂ ∂ 

 = 0. 

 
These are the equations of motion in the new form. 
 The value of (T + U) in the new coordinates is: 
 

(T + U) = 
2

2
22 2

m m mr m
r

rc r

ϑ′ ′ + + + 
 

. 

 
 New quantities p are introduced by the equations: 
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( )T U

r

∂ +
′∂

= p1,  
( )T U

ϑ
∂ +

′∂
= p2 , 

i.e.: 

p1 = 2r′ m 2

1 1

2 rc
 + 
 

,  p2 = m r2 ϑ′ . 

 
 If we now denote (T + U) by | T + U | once the new quantities have been introduced 
then we will get: 

| T + U | = 
2 2
1 2

2

2

1 1 2
4

2

p p m

mr r
m

rc

+ +
 + 
 

= p1 r′ + p2 ϑ′ + 
m

r
. 

 
 The following equations are now true for this expression: 
 

1

| |T U

p

∂ +
∂

= r′,  
2

| |T U

p

∂ +
∂

= ϑ′, 

 
| |T U

ϑ
∂ +

∂
= 

( )T U

ϑ
∂ +

∂
 = 0, 

 
| |T U

r

∂ +
∂

= − 
2

( ) 2T U m

r r

∂ + −
∂

. 

 
If one introduces these results into the equation of motion above then that will yield the 
following differential equations for the problem: 
 

(1)     

1
2

2

| | 2
) ,

| |
) 0,

dpT U m

r dt r
dpT U

dt

α

β
ϑ

∂ + = − − ∂
 ∂ + = − =
 ∂

 

and one will then come to: 

(2)     1

2

| |
) ,

| |
) .

T U dr

p dt

T U d

p dt

α

ϑβ

∂ + = ∂
 ∂ + =
 ∂

 

 
 

§ 3. – Presentation of the first-order partial differential equation. 
 

 If we set: 

(1)      V = 
1

0

( )
t

t
T U dt+∫  
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and form δV, but in such a way that the end positions are also varied, then the expressions 
that are free of integrals will no longer drop out, such that we will have: 
 

 δV = 
1

0

( ) ( )
t

t

T U T U
r

r
δ δϑ

ϑ
∂ + ∂ ++

′ ′∂ ∂
 

 

+ 
1

0

( ) ( ) ( ) ( )t

t

T U d T U T U d T U
r dt

r dt r dt
δ δϑ

ϑ ϑ
 ∂ + ∂ +  ∂ + ∂ +    − + −       ′ ′∂ ∂ ∂ ∂       

∫ . 

 
From what was said above, the last part is equal to zero.  If we then let r0 and ϑ0 denote 
the initial position, while r and ϑ denote the final position then what will remain will be: 
 

δV = 0 0
0 0

( ) ( ) ( ) ( )T U T U T U T U
r r

r r
δ δ δϑ δϑ

ϑ ϑ
∂ + ∂ + ∂ + ∂ +′ ′− + −

′ ′ ′ ′∂ ∂ ∂ ∂
. 

 
However, if we consider V to be a function of the initial and final positions and the 
elapsed time then: 

δV = 0 0
0

V V V
r r

r
δ δϑ δ δϑ

ϑ ϑ
∂ ∂ ∂+ + +
∂ ∂ ∂

. 

 
If one compares the last two expressions and sets the corresponding factors equal to each 
other, since the variations are arbitrary, then the following equations will arise: 
 

  
V

r

∂
∂

=
( )T U

r

∂ +
′∂

= p1 , 
V

ϑ
∂
∂

= 
( )T U

ϑ
∂ +

′∂
 = p2 , 

 

 
0

V

r

∂
∂

= −
0

( )T U

r

∂ +
′∂

= − p01 , 
0

V

ϑ
∂
∂

= − ( )T U

ϑ
∂ +

′∂
= − p02 . 

 
The p can then be replaced with partial differential quotients of V in the independent 
coordinates. 
 For now, we shall consider V to be a function of the initial and final positions and the 
elapsed time t; the latter is included explicitly in V, as well as implicitly in the final 
coordinates, but not in the initial coordinates, such that: 
 

3a)     
dV

dt
= 

V V dr V d

t r dt dt

ϑ
ϑ

∂ ∂ ∂+ ⋅ + ⋅
∂ ∂ ∂

. 

 
Moreover, differentiating equation (1) with respect to the upper limit t will give: 
 

3b)      
dV

dt
= T + U. 
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By subtracting (3a) and (3b), we will get: 
 

0 =
V V V

r
t r

ϑ
ϑ

∂ ∂ ∂′ ′+ +
∂ ∂ ∂

− (T + U), 

or when we sets: 

 ψ = 
V V

r
r

ϑ
ϑ

∂ ∂′ ′+
∂ ∂

− (T + U) = p1 r′ + p2 ϑ′ − | T + U | 

 

 = 2 | T + U | − 2m

r
− | T + U | = | T + U | − 2m

r
, 

 

(4)  
V

t

∂
∂

+ψ = 0. 

 
We can introduce r, ϑ, p1, p2 into this equation in place of r, r′, ϑ, and ϑ′ ; however, p1 
and p2 can be replaced with ∂V / ∂r and ∂V / ∂ϑ, such that only r, ϑ, t, ∂V / ∂r, ∂V / ∂ϑ 
will still remain in equation (4).  Under these transformations equation (4) will then go to 
a first-order partial differential equation with three independent variables, and V will be 
defined as a function of r, t, and ϑ by it. 
 
 

§ 4. – Proof of the applicability of the Hamiltonian method to our problem. 
 

 We must prove the following assertion: 
 If V is the general solution of the first-order partial differential equation above – i.e., 
an integral that contains arbitrary constants α1 and α2 in addition to the additive constants 
α, and we set: 

(I)     
1

V

α
∂
∂

= β1 , 
2

V

α
∂
∂

= β2 , 

 
in which β1 and β2 are new arbitrary constants, and if we select the following equations 
from the group (2) in § 3 : 

(II) 
V

r

∂
∂

= p1 , 
V

ϑ
∂
∂

= p2 , 

 
then we assert that these equations are the integral equations for the system of differential 
equations at the end of § 2. 
 
 Proof: The proof will be complete when we show that differentiating equations (I) 
and (II) with respect to t will lead to the differential equations above. 
 Equations (I) are initially true identically for any arbitrary t – e.g., for (t + dt), as well.  
If I then differentiate both sides with respect to t then I can set both sides equal to each 
other.  Now, since t enters into ∂V / ∂α1 explicitly, as well as implicitly (in r and ϑ), that 
will yield: 
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(a)    

2 2 2

1 1 1

2 2 2

2 2 2

0 ,

0 .

V V dr V d

t r dt dt

V V dr V d

t r dt dt

ϑ
α α α ϑ

ϑ
α α α ϑ

 ∂ ∂ ∂= + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ = + ⋅ + ⋅
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
 Moreover, I can partially differentiate equation (4) in § 3 with respect to the α, since 
the α are arbitrary, so the equation will also be true identically for (α + dα).  We will 
then get: 

b)     

2

1 1

2

2 2

0 ,

0 .

V

t

V

t

ψ
α α

ψ
α α

 ∂ ∂= + ∂ ∂ ∂


∂ ∂ = +
 ∂ ∂ ∂

 

However: 

ψ = 
V V

r
r

ϑ
ϑ

∂ ∂′ ′+
∂ ∂

− (T + U), 

 
in which r′, ϑ′, ∂V / ∂r, ∂V / ∂ϑ are replaced with r, ϑ, p1, and p2 by means of the 
equations: 

r′ = 1

2

1 1
2

2

p

m
rc

 + 
 

, ϑ′ = 2
2

p

mr
, 

 

p1 = 
V

r

∂
∂

, p2 = 
V

ϑ
∂
∂

. 

 
If one has represented ψ as a function of t, r, ϑ, p1, and p2 in that way then obviously α1 
and α2 will be included in ψ only insofar as they are present in p1 and p2 ; equations (b) 
will then go to: 

 0 = 
2

1 2

1 1 1 2 1

p pV

t p p

ψ ψ
α α α

∂ ∂∂ ∂ ∂+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

, 

 

 0 = 
2

1 2

2 1 2 2 2

p pV

t p p

ψ ψ
α α α

∂ ∂∂ ∂ ∂+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

, 

or to: 

(e) 

2 2 2

1 1 1 1 2

2 2 2

2 2 1 2 2

0 ,

0 .

V V V

t r p p

V V V

t r p p

ψ ψ
α α α ϑ

ψ ψ
α α α ϑ

 ∂ ∂ ∂ ∂ ∂= + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ = + ⋅ + ⋅
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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 The system of equations (a) and (e) have the same coefficients.  If the solution of that 
system gives something well-defined then that must yield the same values for the 
unknowns; i.e., one must have: 

(5)      
dr

dt
= 

1p

ψ∂
∂

, 
d

dt

ϑ
= 

2p

ψ∂
∂

, 

 
such that we have avoided the solution of equations (a) by presenting the system (e).  
However, the equations will always give something well-defined (as long as their 
coefficients remain finite, which will always be assumed) when the determinant of the 
coefficients in non-zero; i.e., as long as: 
 

R = 
1 2

V V

r α ϑ α
   ∂ ∂ ∂ ∂± ⋅   ∂ ∂ ∂ ∂   

∑  =
1 2

V V

rα α ϑ
∂ ∂ ∂ ∂   ± ⋅   ∂ ∂ ∂ ∂   

∑  ≠ 0. 

 
 “However, if R = 0 then the quantities ∂V / ∂α1 and ∂V / ∂α2 would not be mutually 
independent when they are considered to be functions of r and ϑ; an equation must exist 
between ∂V / ∂α1 , ∂V / ∂α2 , α1 , α2 , and t that does not contain r and ϑ.  One will then 
have an equation of the form: 

0 = , , , ,
V V

F t r
r

ϑ
ϑ

∂ ∂ 
 ∂ ∂ 

, 

 
i.e., a first-order partial differential equation that the assumed solution V must satisfy and 
that does not contain ∂V / ∂t.  However, that will be impossible when V is actually a 
complete solution of equation (4).”  The basis for that is word-for-word the same as the 
one in Jacobi, pp. 161, et seq. 
 Hence, as long as V is actually a complete solution of the equation in question, R 
cannot be non-zero.  The conclusion that equations (5) exist will then be justified. 
 Now, if equations (5) are identical to equations (2) in § 2, namely, to: 
 

1

| |T U

p

∂ +
∂

= 
dr

dt
,  

2

| |T U

p

∂ +
∂

= 
d

dt

ϑ
, 

 
then equations (I) will actually be the integral equations of the latter.  That will be the 
case if one has: 

ψ = | T + U | − 2m

r
 

 
in § 3, from which, it will follow that: 
 

1p

ψ∂
∂

= 
1

| |T U

p

∂ +
∂

 = 
dr

dt
, 

and likewise: 



Holzmüller – Attraction according to Weber’s laws of electrodynamics.  11 

2p

ψ∂
∂

= 
2

| |T U

p

∂ +
∂

 = 
d

dt

ϑ
. 

 
Hence: Equations (I) are the integral equations for the differential equations (2) in § 2. 
 In order to prove the same thing for equations (II), we totally differentiate them with 
respect to t and get: 

(d)    

2 2 2
1

2 2 2
2

,

.

dp V V dr V d

dt r t r r dt r dt

dp V V dr V d

dt t r dt dt

ϑ
ϑ

ϑ
ϑ ϑ ϑ ϑ

 ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ = + +
 ∂ ∂ ∂ ∂ ∂ ∂

 

Since: 
2V

r t

∂
∂ ∂

= 1p

r

∂
∂

,      
2V

r ϑ
∂

∂ ∂
 = 1p

ϑ
∂
∂

,      
2V

ϑ ϑ
∂

∂ ∂
= 2p

ϑ
∂
∂

 

and 
2V

rϑ
∂

∂ ∂
= 2p

r

∂
∂

, 

and from equations (5): 
dr

dt
= 

1p

ψ∂
∂

, 
d

dt

ϑ
= 

2p

ψ∂
∂

, 

 
moreover, the system (d) will go to: 
 

(e)     

2
1 1 2

1 2

2
2 1 2

1 2

,

.

dp p pV

dt r t r p r p

dp p pV

dt t p p

ψ ψ

ψ ψ
ϑ ϑ ϑ

 ∂ ∂∂ ∂ ∂= + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂∂ ∂ ∂ = + ⋅ + ⋅
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
 However, since r and ϑ first enter into ∂V / ∂t, but then enter into ψ explicitly, as well 
as implicitly in the p, the partial differentiation of equation (4) with respect to r and ϑ 
will give: 

(f)     

2
1 2

1 2

2
1 2

1 2

0 ,

0 ,

p pV

r t p r p r r

p pV

t p p

ψ ψ ψ

ψ ψ ψ
ϑ ϑ ϑ ϑ

 ∂ ∂∂ ∂ ∂ ∂= + ⋅ + ⋅ + ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂∂ ∂ ∂ ∂ = + ⋅ + ⋅ +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
such that subtracting the systems (e) and (f) will give: 
 

(6)     1dp

dt
= −

r

ψ∂
∂

,  2dp

dt
= − ψ

ϑ
∂
∂

. 
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However, since ψ = | T + U | − 2m / r, it will follow from (6) that: 
 

1
2

2

| | 2
,

| |
0.

dp T U m

dt r r
dp T U

dt ϑ

∂ + = − − ∂
 ∂ + = − =
 ∂

 

 
However, these are equations (1) in § 2.  Hence: equations (II) are the integral equations 
for the corresponding differential equations. 
 With that, we have produced the proof of the applicability of the Hamiltonian  
method to our problem, and indeed in a form in which it can be extended to many 
variables in a very simple way.  We are now convinced that the integration of the first-
order partial differential equation will yield the correct result. 
 
 

§ 5. – Integrating the first-order partial differential equation. 
 

 If one now replaces r′ and ϑ′ with the p and then p1 and p2 with ∂V / ∂r and ∂V / ∂ϑ in 
the equation: 

V

t

∂
∂

+ψ = 0 

or 

    
2 2
1 2

2

2

1 1 2
4

2

p pV V V m
r

t r mr r
m

rc

ϑ
ϑ

∂ ∂ ∂′ ′+ + − − −
′∂ ∂ ∂  + 

 

= 0 

then that equation will go to: 
 

(4*)   
2 22

2 2

1

2 ( 2) 2

V V rc V m

t r m rc mr rϑ
∂ ∂ ∂   + ⋅ + −   ∂ ∂ + ∂   

= 0. 

 
 t enters into ∂V / ∂t, but not explicitly, and for that reason, we heuristically set ∂V / ∂t 
= α1 or V = α1 t + W, in which α1 is an arbitrary constant, but W is constant in t, such that, 
since ∂W / ∂ϑ = ∂V / ∂ϑ, ∂W / ∂r = ∂V / ∂r, the equation will go to: 
 

α1 + 
2 22

2 2

1

2 ( 2) 2

W rc W m

r m rc mr rϑ
∂ ∂   ⋅ + −   ∂ + ∂   

 = 0. 

 
Since ϑ enters into only ∂W / ∂ϑ, but not explicitly, we set: 
 

W

ϑ
∂
∂

= α2 , W = α1ϑ + Z, 

 
in which Z is constant in t and ϑ, so ∂W / ∂r = ∂Z / ∂r.  The equation goes to: 
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α1 + 
2 22

2
2 22 ( 2) 2

Z rc m

r m rc mr r

α∂  ⋅ + − ∂ + 
 = 0, 

so 

Z

r

∂
∂

= 
2
2

1 2 2

2
2 1

2

m
m

r mr rc

αα  − − +  
  

, 

i.e.: 

Z = 
2
2

1 2 2

2
2 1

2

m
m dr

r mr rc

αα  − − +  
  

∫ , 

 
such that the general solution of equation (4*) will yield: 
 

(A)    V = α1 t + α2 ϑ +
2
2

1 2 2

2
2 1

2

m
m dr

r mr rc

αα  − − +  
  

∫ . 

 
 As we proved above, the integral equations for the mechanical problem are: 
 

1

V

α
∂
∂

= β1 = t +
1

Z

α
∂
∂

,  
2

V

α
∂
∂

= β2 = t +
2

Z

α
∂
∂

, 

so: 

(B)     t = β1 +
2

22
2

12

2
1

2
2

dr
rcm

m
m

r r

α α

+ ⋅

− −
∫ . 

 
That integral gives the connection between t and r. 
 We further get: 

(C)     ϑ = β1 +
2

2 22
2 2

12

2
1

2
2

dr
rc

m
r m

r r

α
α α

+ ⋅

− −
∫ , 

 
which will then give the connection between ϑ and r. 
 If one introduces Z = 1 / r into the last integral then the equation will go to: 
 

(C*)    ϑ = β2 −
2

2 2 2 2
1 2

2
1

2 2

dZ
rc

m Z m Z
α

α α

+ ⋅

− −∫ . 
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§ 6. – Determination of the constants, etc. 
 

It follows from equation (B) that: 

dt = 
2

22
2

12

2
1

2
2

m dr
rc

m
m

r r

α α

+ ⋅

− −
. 

It follows from equation (C) that: 

dϑ = 
1 2

22
2 2

12

2
1

2
2

dr
rc

m
r m

r r

α

α α

+ ⋅

− −
, 

 
and dividing the two equations will yield: 
 

α2 = m r2
d

dt

ϑ
. 

 
However, since r2 dϑ is twice the surface area of an element that the radius vector 
describes, α2 will be the same constant that gives us the law of areas.  We already 
mentioned above that the latter will be true here. 
 If the initial state is given by: 

t0, r0, ϑ0, v0 = 
0t t

ds

dt =

 
 
 

, 

 
and the angle β2 that the initial velocity defines with the radius r0 is such that: 
 

ds0 sin β0 = r0 dϑ0 ,  ds0 cos β0 = dr0 , 
and therefore: 

v0 cos β0 = 
0t

dr

dt
 
 
 

,  v0 sin β0 = 
0

0
t

d
r

dt

ϑ 
 
 

, 

then that will yield: 

α2 = 
0

2
0

t

d
mr

dt

ϑ 
 
 

= m r0 v0 sin β0 . 

 It further follows that α1 will be the constant that emerges from the vis viva principle 
from the fact that: 

v cos β = 
dr

dt
= 

22
2

12

2

2
2

2
1

m
m

r r

m
rc

α α− −

+
, 
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2
2

2
1m

rc
 + 
 

 v2 cos2 β = 
22
2

12

2
2

m
m

r r

α α− − , 

 
 or when the value of α2 is substituted: 
 

 2α1 = − mv2 + 2 2
2

2 1
1 cos

m
v

r rc
β − 

 
 

  = − mv2 + 
2

2

2
1

m r

r c

′ 
− 

 
 = − mv2 + 2U1, 

 
 so T = U1 – α1.  α1 is determined from the initial state to be: 
 

2α1 = 2 2 2
0 0 0 2

0 0

2 1
1 cos

m
mv v

r r c
β

 
+ − 

 
. 

 
At the same time, it is confirmed at this point that the vis viva principle is meaningful for 
our problem. 
 In order to establish the meaning of the constants β, we must give the integrals well-
defined limits.  If we establish a well-defined numerical value r0 as our lower bound then 
that will yield: 

(B)  t = 
2

22
2 2

12

2
1

2
2

dr
rcm

m
r m

r r

α α

+ ⋅

− −
∫  + β1 , 

 
and for r = r0 (i.e., t = t0), all that will remain on the right will be β1 , such that β1 will be 
the initial value of t.  It likewise follows from (C) that β2 is the initial value of ϑ. 
 Since t and β must always be real, it will follow from equation (B) (in which the roots 
in the numerator are never imaginary, because r is always positive) that the roots in the 
denominator can never be imaginary, which will imply that r has a maximum and a 
minimum value.  They are determined from the equation: 
 

22
2
2

2m

r r

α− − 2 α1 m = 0 

to be 

r1 =
2

2 1 2

1 1

21

2 2

m
m

m

α α
α α

+ −  

and 

r2 =
2

2 1 2

1 1

21

2 2

m
m

m

α α
α α

− −  
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will then be easy to calculate from the initial states when c is given. 
 The possible positions of the attracted point are then restricted to a ring between two 
concentric circles that have radii of r1 and r2 around the attracting center. 
 As far as evaluating the elliptic integrals is concerned, we refer to Seeger’s 
dissertation, in which they are treated elegantly. 
 We would like to preserve the names of aphelion and perihelion for the maximum and 
minimum distances, resp.  Seeger has proved that the successive perihelia and aphelia are 
not separated by an angle of π, as they would be with Newton’s law, but by something 
else. 
 This remark, with the help of the above, shall serve to provide us with a picture of the 
motion that takes place. 
 It next follows from the equation of the area principle: 
 

m r2ϑ′ = α2 
 
that ϑ′  can never change sign, such that the motion will always proceed in the same 
sense.  It will always enclose the small circle and be enclosed by the large one. 
 Furthermore, on the grounds of the same principle, the velocity will turn back from 
the tangent to the path in proportion to the distance from the center, such that it will be 
slowest at the aphelion.  Finally, one gets that the same ϑ′  will belong to the same r. 
 It follows from the vis viva principle by eliminating the constants α that: 
 

T – T1 = U – U1 
or 

( ) ( )2 2 2 2 2 21
1 1 12 r r r rϑ ϑ ′ ′ ′ ′+ − +  = 

22
1

2 2 2 2
1

1 1
1 1

rr

r c r c

′′   
− − −  

   
. 

 
For equal r that belong to the same ϑ′, that will then imply that: 
 

( )2 21
12 r r′ ′− = ( )2 2

12 2

1
r r

c r
′ ′− , 

 
which is an equation that will be possible only when: 
 

r′ = 1r ′± . 

 
As a result, the same ϑ′ and r′  (up to sign) will always belong to the same r, so equal ds / 
dt, as well, and up to sign, the same dr / dt and dr / (r dϑ); in words: 
 
 If any circle around the center intersects the attracted point repeatedly then that will 
always happen with the same velocity and the same angle, up to sign. 
 
 That will imply the following important property of the orbit: 
 If P is a perihelion and A is the aphelion that follows it then the path from A to the 
following perihelion P1 will be congruent to the path from P to A and will lie 
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symmetrically with respect to the line AC when C means the center.  The path from P1 to 
A1 is congruent to the one from A to P1 and will lie symmetrically with respect to the line 
P1C, etc. 
 The aphelia then follow each other at the same angular distances, and likewise, the 
perihelia follow with the same angular positions.  If the latter is γ, and γ / π is irrational 
then the orbit will have infinitely many congruent arms, while if γ / π is rational then the 
number of those arms will be finite, and the orbit will turn back into itself.  Initially, it 
has as many symmetry axes through c as perihelia and aphelia, taken together.  If one 
additionally links a point at which two arms of the orbit intersect with the center then a 
symmetry axis will again come about.  We also have either a finite or infinite number in 
the latter group. 
 For c = ∞, where the potential does not need any time then to arrive at the attracted 
point, the law will agree with Newton’s, and the orbit of the point will be an ellipse when 
only r1 remains finite.  The distance between the individual aphelia will then be infinitely 
small; i.e., γ = 0.  One can then get a rough picture of the orbit for very large c (and c is 
very large in reality) in perhaps the following way: A point moves on an ellipse 
according to Newton’s law, while for this motion, the ellipse rotates very slowly around 
the focus at which the attracting force is found. 
 
 

§ 7. – The same problem for three coordinates. 
 

 In order to show how fast the Hamilton ian method takes us to our goal, we would 
like to work through the same problem once more with three coordinates. 
 The independent coordinates are introduced by the equations: 
 

x = r cos ϕ, y = r sin ϕ cos ψ, z = r sin ϕ sin ψ, 
such that: 

x′2 + y′2 + z′2 = r′2 + r′2 ϕ′ 2 + r2 sin2 ϕ ψ′ 2, 
so: 

T = 
2

m
(r′2 + r′2 ϕ′ 2 + r2 sin2 ϕ ψ′ 2). 

 Furthermore: 

U = 
2

21
m r

r c

′ 
+ 

 
, 

so: 

(1)    (T + U) = 
2 2 2

2 2 21
2 2

1 sin

2 2

mr mr m
r m

rc r

ϕϕ ψ ′ ′ ′+ + + + 
 

. 

 
 The introduction of the p comes about by way of the equations: 
 

 
( )T U

r

∂ +
′∂

= p1 = 1
2 2

1
2mr

rc
 ′ + 
 

, so  r′ = 1

1
2 2

1
2

p

m
rc

 + 
 

, 
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( )T U

ϕ
∂ +

′∂
= p2 = m r2 ϕ′, so  ϕ′ = 2

2

p

mr
, 

 

 
( )T U

ψ
∂ +

′∂
= p3 = m r2 sin2 ϕ ψ′, so  ψ′ = 3

2 2sin

p

mr ϕ
. 

 
The transformed (T + U) will then become: 
 

(2)    | T + U | = 
22 2
31 2

2 2 2
1
2 2

1 2 2 sin
4

pp p m

mr mr r
m

rc
ϕ

+ + +
 + 
 

. 

This has the property that: 
 

1

| |T U

p

∂ +
∂

= 1

1
2 2

2
1

4

p

m
rc

 + 
 

= r′, 
2

| |T U

p

∂ +
∂

= 2
2

2

2

p

mr
 = ϕ′ , 

 

3

| |T U

p

∂ +
∂

= 3
2 2

2

2 sin

p

mr ϕ
= ψ′ , 

as well as the fact that: 
 

( )T U

r

∂ +
∂

= − 
2

| | 2T U m

r r

∂ + −
∂

, 
( )T U

ϕ
∂ +

∂
= − 

| |T U

ϕ
∂ +

∂
, 

 
( )T U

ψ
∂ +

∂
= − 

| |T U

ψ
∂ +

∂
= 0, 

 
in which the q are the independent coordinates, go to: 
 

(I)     

1
2

2

1

| | 2
) ,

| |
) ,

| |
) 0,

dpT U m

r dt r
dpT U

dt

dpT U

dt

α

β
ϕ

γ
ψ

 ∂ + = − −
∂

 ∂ + = − ∂
 ∂ + = − = ∂

 

and for that reason: 
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(II)     

1

2

3

| |
) ,

| |
) ,

| |
) .

T U
r

p

T U

p

T U

p

α

β ϕ

γ ψ

 ∂ + ′= ∂
 ∂ + ′= ∂
 ∂ + ′=

∂

 

 If we now set: 
1

0

( )
t

t
T U dt+∫ = V 

then that will yield: 

(III)   
V

r

∂
∂

= 
( )T U

r

∂ +
′∂

= p1,  
V

ϕ
∂
∂

= 
( )T U

ϕ
∂ +

′∂
= p2 , 

 
V

ψ
∂
∂

= 
( )T U

ψ
∂ +

′∂
= p3 . 

 Moreover, it follows from: 
 

dV

dt
= 

V V dr V d V d

t r dt dt dt

ϕ ψ
ϕ ψ

∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

 

and 
dV

dt
= T + U 

that one has the equation: 
 

V

t

∂
∂

+ p1 r′ + p2 ϕ′  + p3 ψ′  − (T + U) = 0, 

or 

(IV)  
22 2

2 2 2

1 1

2 (2 ) 2 2 sin

V V r c V m

t r m rc mr m rϕ ϕ
 ∂ ∂ ∂ + + ⋅ −   ∂ ∂ + ∂   

 = 0. 

 
That is a first-order partial differential equation in four variables.  In order to integrate it, 
we heuristically set: 

V

t

∂
∂

= α1 , so V = α1 t + W, 

 
such that the equation goes to: 
 

2 22 2
1
2 2 2 2 2

1 1

2 sin

W r c W W

r r c r rϕ ψ ϕ
    ∂ ∂ ∂  + + ⋅      ∂ + ∂ ∂       

=
2m

r
− α1 m. 

 



Holzmüller – Attraction according to Weber’s laws of electrodynamics.  20 

We add − 2 2
2 / rα  to both sides and set: 

 
2 2

1
2 22

W r c

r r c

∂ 
 ∂ + 

 = 
2m

r
− α1 m − 

2
2
2r

α
, 

or 

W

r

∂
∂

= 
22
2

1 2 2

2
2 1

m
m

r r r c

αα  
− − +   

  
, 

i.e.: 

W = 
22
2

1 2 2

22 2
2 1

m
m dr

r r r c

αα  
− − +  

  
∫  + P, 

 
then the equation will go to: 
 

2 2 2
21

2 2 2 2 2

1 1

sin

P P

r r r

α
ϕ ψ ϕ

    ∂ ∂+ ⋅ −    ∂ ∂     
= 0 

or 
2 2

1
2 2

1

sin

P P

ϕ ψ ϕ
    ∂ ∂+ ⋅    ∂ ∂     

= 2
2α . 

 
If one adds – 2

2α / sin2 ϕ to both sides and sets: 

 
2

1
2

P

ϕ
 ∂
 ∂ 

= 
2

2 2
2 2sin

αα
ϕ

− , 

so 

P = 
2

2 2
2 2

2
2

sin
d

αα ϕ
ϕ

−∫  + Z, 

 
then the equation will be converted into: 
 

2

1
2 2

1

sin

Z

ψ ϕ
 ∂ ⋅ ∂ 

= 
2
2
2sin

α
ϕ

, 

or 

Z = 3 2 dα ψ∫  = 3 2ψ α + (α). 

 
The general integral of our differential equation will then be: 
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(A)    V = α1 t +
22
2

1 2 2

22 2
2 1

m
m dr

r r r c

αα  
− − +  

  
∫  

 

+ 
2

2 2
2 32

2
2 2

sin
d

αα ϕ ψ α
ϕ

− +∫  + (α), 

 
while the differential equations of the problem are: 
 

(B)    β1 = t – m 
2

22
2

1 2

2
1

22
2

dr
r c

m
m

r r

αα

+

 
− − 

 

∫ , 

 

(C)    β2 = – m 
2

222
22 32
2 21 2

2
1

222 22
sin

dr
r c d

m
r m

r r

ϕ
αα αα ϕ

+
+

  −− − 
 

∫ ∫ . 

With the substitution: 

 cos ϕ = 
2 2
2 3

2
2

α α
α
−

 ⋅⋅⋅⋅ cos η, 

 

 sin ϕ dϕ = 
2 2
2 3

2
2

α α
α
−

sin η dη, 

the last integral will go to: 

2
2

1

2
dη

α ∫ = 

2

1

2
22

Gr

Gr

η
α

, 

such that we will get: 

(C*)    β2 =

2

1

2

2 22
2 2 2

1 2

2
1

2 22
2

Gr

Gr

dr
rc

m
r m

r r

η
α αα

+
+

− −
∫ . 

 Ultimately, the final equation is: 
 

(D)     ψ – β3 = 3 2
2 2 3

2 2sin
sin

dϕα
αϕ α

ϕ
−

∫ . 
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If one introduces cot ϕ as the variable here then that will give: 
 

ψ – β3 = − 3 2 2 2 2
2 3 3

cot

cot

d ϕα
α α α ϕ− −∫ = − arccos 

2
3

2 2
2 2

cot
α ϕ

α α
 
 
 − 

, 

 
from which, it will then follow that: 
 

(E)     cos (ψ – β3) = 
2
3

2 2
2 2

α
α α−

 cot ϕ, 

 
such that motion will take place in a plane. 
 Since ϕ assumes only values between 0 and 180o, the integrals that are taken to be ϕ 
will imply that the minimum value of sin ϕ is α3 / α2 .  Hence, if J is the inclination of the 
plane of the orbit with respect to the ecliptic, for which, one has ϕ = 90o, then the 
minimum of sin ϕ will be: 

3

2

α
α

 = sin (90o – J) = cos J. 

 Since one then has: 
2
3

2 2
2 3

α
α α−

= 
2 2
3

2 2 2
2 2

cos

cos

J

J

α
α α−

 = ± cot J, 

 
equation (E) can also be written as: 
 
(E*)    cos (ψ – β3) = ± cot J ⋅⋅⋅⋅ cot ϕ. 
 
For ϕ = 90o, one has cos (ψ – β3) = 0, so (ψ – β3) = ± 90o.  However, the ψ that belongs 
to ϕ = 90o is the length of the ascending (descending, resp.) node; i.e., β3 is the length of 
the ascending node ∓ 90o. 
 If we now give definite numerical values to the upper limit on the integral in order to 
understand the meaning of all the constants then it will follow from equation (D) that β3 
is the initial value of ψ.  The initial position of the planet is then the lowest or highest 
point of the orbit.  It follows from this that: 
 

ϕ0 = 
2

J
π ± 
 

. 

 
One can also read off the latter from equation (E*), because one will then have: 
 

ψ0 − β3 = 0, 
and it will then follow that: 

1 = ± cot J cot ϕ, 
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so since ϕ assumes only values between 0 and 180o : 
 

ϕ0 = 
2

J
π ± 
 

. 

 
 From equation (C*), β3 would prove to be zero.  In order to verify this, we (like 
Jacobi, pp. 188) can consider the following argument: 
 From: 

cos ϕ0 = cos 
2

J
π 
 
 
∓  = 

2 2
2 3

2
2

α α
α
−

 

and the substitution above: 

cos ϕ = 
2 2
2 3

2
2

α α
α
− ⋅⋅⋅⋅ cos η , 

 
 that will imply that the initial value of η is zero, so equation (C*) will go to: 
 

β3 = − 
2

2 22
2 2 2

1 2

2
1

2 22
2

dr
r c

m
r m

r r

η
α αα

+ ⋅
+

− −
∫ . 

 
However, ϕ is the hypotenuse of a rectangular spherical triangle whose cathetes are η and 
(90o – η) (cf., the illustration in Jacobi).  η is then equal to 90o minus the distance from 
the planet to the ascending node.  The integral will vanish for r = r0 , and will go to 90o 
minus the distance from the initial position of the planet to the ascending node, such that 
β2 will take on the following geometric meaning: 
 

β2 = 
2
2

1

2α
[90o – distance from the initial position of the planet to the ascending node]. 

 
However, that distance amounts to 90o, so one will actually have β2 = 0. 
 If one differentiates equations (B), (C), and (D) with respect to the corresponding 
variables and compares the results then that will imply that: 
 

2

dt

mr
= 

3

dψ
α

sin2 ϕ, 

or 

3

m

α
dt = r2 sin2 ϕ dψ. 
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 Hence, α3 / m is the projection of twice the areal velocity onto the xy-plane, but the 
true value of twice the areal velocity must be: 

 

3 1

cosm J

α ⋅ = 3 2

3m

α α
α

⋅ = 2

m

α
; 

 
α2 then takes on the same meaning as in § 6.  α3 is then obtained from the equation α3 
= α2 cos J, and finally α1 is, in turn, the constant that arises from the vis viva principle.  
These constants are all obtained from the initial state. 
 As far as the matter of performing the elliptic integrals is concerned, we can refer to 
Seeger. 
 

Appendix 
 

 Since t does not enter into our problem explicitly, and the vis viva principle is true, in 
addition, everything that Jacobi said in Lecture 21 can be extended to our problem, such 
that one can significantly shorten the path to the partial differential equation. 
 One introduces a new independent variable α by way of the equation ∂V / ∂t = α and 
sets V equal to a new function W = V – t α = V – t (∂V / ∂t) then one will have t = − ∂W / 
∂α, and the equation: 

(1)      
V

t

∂
∂

+ψ = 0 

will go to an equation of the form: 
 

(2)     α + 1
1

, , , , ,
W W

q q
q qν

ν

ψ
 ∂ ∂
 ∂ ∂ 
… …  = 0. 

 
 If W is ascertained by integration then one can easily show that the integral equations 
will be: 

(3)    
1 1

1 1

1 1
1 1

, , , ,

, , , .

W W W
t

W W W
p p p

q q q

ν
ν

ν ν
ν ν

β β τ
α α α−

−

−
−

∂ ∂ ∂ = = = − ∂ ∂ ∂
 ∂ ∂ ∂ = = =
 ∂ ∂ ∂

…

…

 

 
However, the vis viva principle reads: 
 
(4)      0 = α + T – U, 
 
and it can be shown that equations (2) and (4) are identical. 
 For all problems in which one is dealing with attraction according to Weber’s law, if 
t is not present explicitly and the vis viva principle remains in effect then one can find the 
partial differential equation in the following way: 
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 If one applies the transformations of the Hamiltonian method to the vis viva equation 
and sets pi = ∂W / ∂qi then one will immediately obtain the first-order partial differential 
equation from which the integral equations of the system of differential equations will 
follow. 
 In order to show this for our problem and employ the previous transformations for 
that, we introduce: 

U = − U1 +
2m

r
 

 
into equation (4) such that it will go to: 
 

(5)      T + U − 2m

r
= − α1 , 

or, from equation (2) in § 7: 
 

22 2
31 2

2 2 2
1
2 2

1 2 2 sin
4

pp p m

mr mr r
m

rc
ϕ

+ + −
 + 
 

 = − α1 . 

 
 If one then sets pi = ∂W / ∂qi then that will give: 
 

2 22 2
1
2 2 2 2

1 1

2 sin

W rc W W

r rc r rϕ ψ ϕ
    ∂ ∂ ∂  + ⋅ + ⋅      ∂ + ∂ ∂       

 = 
2m

r
− m α1 . 

 
This equation coincides with the one that was derived for W in § 7. 
 

____________ 
 


