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8§ 1. — Introduction.

In his lectures on dynamics]acobi confined himself to the application of
Hamilton’s method to those problems for which the motion depended opty the
configuration of points, but not upon their velocities. owéver, asRiemann has
remarked already, that method can also be applied to mablems for which the
velocities come into question.

If one addresses the mutual attraction of points andunderstand3 to mean one-
half of thevis vivaandU to mean that function that will give the componeritéhe force
that acts at a point when it is differentiated witspect to the rectangular coordinates of
that point then itJ includes only the coordinates along with time, implcdt explicitly,
but not upon the velocities, then the equation:

(1) 5jf(T+U)dt:o.

In this, the variation is understood to mean thatlimits are not varied. This equation
also preserves its validity when condition equatiare present, which can include time;
however, we shall ignore such things entirely.

The existence of equation (1) will be assumed dothe first requirement for the
Hamiltonian method. It follows from the usual equationsyaition, and conversely, the
latter can be derived from it.

However, ifU includes the velocities then it will be questioleatwvhether the usual
equations of motion would follow from equation (1Pne must then examine whether
that would be true in each problem. In the foroese, we can start from that equation,
but in the latter, we cannot. However, in the ferncase, if one should succeed in
determining another functiokl, such that when one substitutes it for the presiou
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functionU in equation (1), the usual equations of motion would fofican it, then one
can put that new equation at the forefront of any furithesstigations.

We still do not have a general method for finding that ke Riemann gave some
brief remarks in regard to the case in which the potlertiasisted of two parts, one of
which included the velocities, while the other one was @riethem.

If a U has been found in some way thgn ..., g, will be independent coordinates,
and in order to extend the differential quotients, new tues pi, ..., py will be
introduced by the equations:

o(T+U) _

1 p/11

aq,,

so the differential equations of the problem wik lderived from equation (1).
Hamilton’s method replaces the system of differential eiquatwith a first-order partial
differential equation in + 1) variables whose general solutMiis to be sought, which
then includes arbitrary constantas, ..., a,, in addition to the additive constarsts

If one then succeeds in proving that theeguations:

v o
601_'81’ " oda, A
w_ v
aql 1y «eey aq/ Vs

in which theg are new arbitrary constants, are the integral ttmpsof the above system
of differential equations then the applicationHzmilton’s method will be justified, and
the problem will have been reduced to performingate integrals. However, it we do
not succeed in that proof then the results wililllogory.

One can find the general proof dacobis Lecture 20 for the case in whidh
includes only the coordinates and time, impliciblly explicitly, but not the velocities.
However, a special analysis will always be necgs&ar those cases in whidd does
include the velocities.

Neumann(') has found the expressiththat should be inserted into equation (1) in a
curious way for the closely-associated problematifaction according to Weber's
electrodynamical lawsand in so doing, gave a new meaning to those laws

Even now, that interesting law has been the bafsimany investigations, but in the
opinion of many researchers, it will probably pkgreater role at some later time. It is
certainly quite important already, insofar as tlies theNewtonian case as a special
case.

In what follows, we would like to examine whethke Hamiltonian method can be
applied to this problem, and indeed, what we stigltuss first will be thenotion of a
point that is attracted to a fixed center accordingVeber’s laws.

() Neumann Prinzipien der Elektrodynamik Tiibingen, 1868. — Cf., als@eeger Inaugural
dissertationDe motu perturbationibusque planetarum e@éttingen, 1864.
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However, before we go on to the actual investigatiwe, shall first make some
necessary remarks about the connection betWéser's expressions andeumann's.

If r is the distance from the poirty, z to the attracting center amdalis its mass then
according toNeber, the attraction that acts in the directiorr efill be:

m 1 (drY Zerir
2 R=- —|1-=0— | += ,
) rz{ cztédtj c? dtz}

In this, c is a very large constant, and indeed one suspeaitst is roughly the speed of
light.
The usual force function will then be:

(3) Ulzj?(l—l;j.

c

It is clear that the motion of the point will takéace in a plane that is determined by
the direction ofr and the initial push. There will then be no bdsisabandoning the
plane that the point determines. We thereforeigerdurselves to two coordinates.

The equations of motion are:

2
mitzxz %(:aaL:lErz(’
“@ d? ouU
m y: R_y:_l y

dt? r or r

2
mg(d_sj = 26U1 |£: 2dUl ,
dt dt

and they imply that:

dt or dt

as is easy to see, and upon integration, that:
(5) T=Us+c.

The principle ofvis viva is therefore valid, and it cannot be applied wii further
assumptions. Let us also mention, by the way, tthetarea principle is also true, since
we are dealing with a central force.

Now, Neumann has found that one will come to the equations ofion (4) when
one sets:

(6) :m@+§j

r C

in equation (1), instead of the usual, and in fact, one will come to thdtas follows: If
the center attracts the poirty, z with massm according toNewton's laws then the
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distancero will belong to the potentiah/ ro. Now, assuming that the potential does not
assert itself immediately, but comes to one withfihige velocity of the moving point
(e.g., that of light or sound) then the potential atpbimt that belongs to the distange
will first be attained when it is found at anothertaer, such tham/r is the potential
that acts there, whereas / ro, or as would emerge frolMdeumanns analysis, the

expression:
12
m r
U=—|1+—|,
r c

in whichc is the speed with which the potential advances in space
The fact that one actually goes from equation (1) to tensa(4) is easy to show
now. IfT is one-half thevis vivathen one will have:

o[ T dt= jf mX &% dt+ | " myd Y d.

Integration by parts will give a new integral for everegral on the right-hand side,
along with a part that is free of integrals. The tattél drop out since the end positions
will not be varied, and what will remain will then:be

4 4 1 [/
5jtoT dt:—mjto(x Ox+ yIy d.

2

12
It follows further fromU = m(1+ r j that:
r c

12
U :6_U5r +6—U,5r' =M 1+r_2 5r+2m: or',
or or r c rc

SO:

Y _oum r'2 2mr pu r'
5L)U dt= I%T(“?jdrdH 2 L)?Jr dt.
If one applies integration by parts to the lagegnal and combines everything then it
will follow that:
12 ]
(1+r—2+2r2r jérdt= ["Rorat.
c c fo

of'udt=-["T
ty b r

Therefore:

5]“(T+U)dt:— jtﬂm%— Rfjax{ my/— F¥j5 } = 0.
fo fo r r

However,ox and oy are mutually independent, such that the followaagations will
be true:
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mx =R, my=RY;
r r

however, these are the equations of motion above.
We shall now take equation (1) to be the starting pdithie investigation.

§ 2. — Derivation of the differential equations of the problem
in independent coordinates.

r and# are introduced as independent coordinates by way of theiatgiat
X=rcosd, Yy=rsindg,

such that T + U) will be a function of, r’, &, 4. If one defines:
4
5L (T +U)dt

and applies integration by parts then since thesphat are free of integrals will drop out,
that will yield:

0= n{a(nw _g(a(n U)ﬂ&{a(n U) __d(a(n uﬂd?}dt,

fo or dt or' 04 dt\ o

in place of equation (1) i 1
Sincedr andof are mutually independent that will imply the edoias:

a(T +U) _E(G(T+ U)j: 0
or dt\ or ’

a(T +U) _E(G(T+ U)j o
09 dt 0 '

These are the equations of motion in the new form.
The value of T + U) in the new coordinates is:

m mj mrd
+ +—.
2 r

T+U)=r"%—+—
( ) (2 rc’

New quantitiep are introduced by the equations:
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o(T +U) _ AT +Y) _
or’ b 03 2
ie.:
plzz'm(1+—12j, P2=mP Y.
2 rc

If we now denoteT + U) by |T + U | once the new quantities have been introduced
then we will get:

2 2
|T+U|: 1pl 1 + p22+m:p1r'+p219,+m.
4m(+j 2mr® r r
2 rc?

The following equations are now true for this eegsion:

AIT+U]_

op, op,

AT+U]_ o,

OIT+U|_ aT+U) _
99 99

0[T+U[__o(T+U) 2m
or or rz’

If one introduces these results into the equatiomation above then that will yield the
following differential equations for the problem:

a') alT—+U| = —d_pl —Z_Zn,
1) or dat r
0|T+U|_ dp
= - =0,
2 08 dt
and one will then come to:
0|T+U|_dr
Q) T —a,
(2) -
8) 0|T+U |:E
ap, dt’
8 3. — Presentation of the first-order partial differential equation.
If we set:

(1) V= [*(T+U)dt
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and formdV, but in such a way that the end positions are alsedsahen the expressions
that are free of integrals will no longer drop ouglsthat we will have:

t
6(T+U)5r +6(T+U)d9
or' 0

o]

to

. 6(T+U)_£(6(T+ U)ﬂ&{a(n U)__d(a(n UHJ’? ot
wll or  dtl or 09 dtl 9 |

From what was said above, the last part is equaéto. If we then leto and % denote
the initial position, while and denote the final position then what will remairil\we:

AT +V) 5 _AT+U) 5 AT+U) 5 AT+Y)
or’ or, 09 05,

oV =

59, .

However, if we conside¥ to be a function of the initial and final posit®mand the
elapsed time then:

=0t + N 59 + NV 5+ WV 59,
39, a 99

If one compares the last two expressions and lsetsarresponding factors equal to each
other, since the variations are arbitrary, thenfoélewing equations will arise:

oV _o(T+U) _ vV _9T+V) _
o or L FEE Y 2
v_ Ty oV _ _aT+U) __
ar, ar, Y] PG

The p can then be replaced with partial differential tgrats ofV in the independent
coordinates.

For now, we shall consid&f to be a function of the initial and final posit®and the
elapsed timd; the latter is included explicitly iv, as well as implicitly in the final
coordinates, but not in the initial coordinatessthat:

2 aV_ v, av dr oV @

dt at or dt 09 dt
Moreover, differentiating equation (1) with respexthe upper limit will give:

3b) N _riu

dt
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By subtracting (3a) and (3b), we will get:

ov oV , dV

O=—x+—r1"+—3F - (T +U),
ot or 04
or when we sets:
ov ov
=—r'+—F-(T+U)=pir' +p 9'-|T+U
7 P» PY: ( )=pir' +p2 | |

:2|T+U|—2—m—|T+U|=|T+U|—ZTm,
r

ov _
(4) E+[/I— 0.

We can introduce, J, p;, p2 into this equation in place of r’, 4, and4’; however,p;
andp, can be replaced witdV / or andoV / 04, such that only, &, t, oV /dr, 0V / 03
will still remain in equation (4). Under these transfations equation (4) will then go to
afirst-order partial differential equation with three independent variabdesl V will be
defined as a function of t, and & by it.

8 4. — Proof of the applicability of the Hamiltonian method to ourproblem.

We must prove the following assertion:

If V is the general solution of the first-order partial eliéintial equation above — i.e.,
an integral that contains arbitrary constamt&nd a. in addition to the additive constants
a, and we set:

ov ov
(1 ~— =5,

oa, oa,

:,32,

in which £ and 53, are new arbitrary constants, and if we select tHeviadg equations
from the group (2) if§ 3:
ov _ ov

I Nep, LYop,,
(1) ar P1 39 p2

then we assert that these equations are the integraicegpuir the system of differential
eguations at the end §f2

Proof: The proof will be complete when we show that diffgi@ing equations (I)
and (I1) with respect towill lead to the differential equations above.

Equations (1) are initially true identically for any drbryt — e.g., for (+ dt), as well.
If 1 then differentiate both sides with respectt tinen | can set both sides equal to each
other. Now, since enters inta@V / da; explicitly, as well as implicitly (i and &), that
will yield:
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2
0= oV N RY, GCH+ oV Gg
oa,0t Oa,or dt 0da,08 dt

2
:62\/+azvgcﬂ+ oV Gg
oa,ot da,or dt da,0d dt

Moreover, | can partially differentiate equation (48i3 with respect to the, since
the a are arbitrary, so the equation will also be true idatiyi for (o + da). We will
then get:

0= 62\/ +a_¢l’
b) oa, ot Oda;
__0V oy
oa,ot oda,
However:
ov , dVv
=—r'+—3J-(T+U),
v or 04 ( )

in whichr’, &, dV / dr, dV / 05 are replaced with, &, p;, andp, by means of the
equations:

r/: pl /: p2
1 1 mr?
2m(+2j
2 rc
T ST

If one has representefas a function of, r, J, p1, andp; in that way then obviouslg;

and a, will be included ing only insofar as they are presentpinandp, ; equations (b)
will then go to:

_ 0V L0 PP, Oy Op;
da,0t dp, da, O0p, da,

A% LY oo 0y Db,
da,ot dp, da, 0Jp, da,

or to:
2
0= oV + oV ﬂ.}.a—vﬂ’
oa,ot oOa,or op, 0da,0d dp,
2
_ 0V [0V oy 9V Iy
oa,ot da,or op, O0a,0d dp,

(e)
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The system of equations (a) and (e) have the samicemdtk. |If the solution of that
system gives something well-defined then that must yiedd slime values for the
unknowns; i.e., one must have:

(5) ﬂ: 6_[/1 %: 6_[/1
dt op dt dp,’

such that we have avoided the solution of equationdyg)resenting the system (e).
However, the equations will always give something welingel (as long as their

coefficients remain finite, which will always be asged) when the determinant of the
coefficients in non-zero; i.e., as long as:

R=S4 00V 50 [9V :Zii(a_ngf’_(f’_Vj;:o_
or\da, ) 04\ 0a, oa,\ or ) 0a,\ 08

“However, if R = 0 then the quantitie®V / da1 andoV / da» would not be mutually
independent when they are considered to be functionsuad J; an equation must exist
betweermdV/da ,0V/da,, ;n, a2, andt that does not containand. One will then
have an equation of the form:

0=F (t,r,ﬂ,a—v a—vj
or 039

i.e., a first-order partial differential equatidmat the assumed solutidhmust satisfy and
that does not contaidV / dt. However, that will be impossible whahis actually a
complete solution of equation (4).” The basisttuat is word-for-word the same as the
one inJacobi, pp. 161, et seq.

Hence, as long a€ is actually a complete solution of the equatiomjuestion,R
cannot be non-zero. The conclusion that equati®nexist will then be justified.

Now, if equations (5) are identical to equatioPif § 2 namely, to:

O|T+U|_dr |T+U|_ds

op, dt op, dt

then equations (I) will actually be the integraliatjons of the latter. That will be the
case if one has:

w=|T+U |—27m
in 8 3, from which, it will follow that:

oy _3|T+U]| _dr
op, op, dt’

and likewise:
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oy _0|T+U| _dd
op, ap, dt

Hence:Equations (I) are the integral equations for the differential equati@ps 8§ 2

In order to prove the same thing for equations (i totally differentiate them with
respect td and get:

dp _0°v 0%V dr 9°V &
dt odrdt drordt oroddt’

(@ dp, _ 9V , 9V dr 9V o9
dt 090t oras di 9999 dt’
Since:
oV _op 0V _op 0V _0p,
oot or ' arod 98 9899 98
and
oV _ 0p,
odor  or

and from equations (5):
dr_oy  d9_oy

dt op,  dt ap,’

moreover, the system (d) will go to:

dn 0V on 9¢ ,op 0¢
dt odrot or op, or oJp,
dp, _ 0V, 0p 9y, 0p, 0¥
dt ~ ag9ot oI op 99 op,

However, sinceé and# first enter intadV / dt, but then enter intg explicitly, as well
as implicitly in thep, the partial differentiation of equation (4) witbspect tar and &
will give:
0=9V 04 op | oy 9p, Oy

orot op, or odp, Or oOr

_OV 0y b 0y dp, Oy
odot dp, 9F 0Jp, 0J 0F

()

such that subtracting the systems (e) and (f)giuk:

(6) d_plz —a_l// d_p2: —a_l//
dt or ' dt 09
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However, since/=|T +U |- 2m/r, it will follow from (6) that:

dn_ 9|T+U| 2m

dt or rz’
dp, __3IT+U]_,
dt 09 '

However, these are equations (18i@. Hence:equations (Il) are the integral equations
for the corresponding differential equations.

With that, we have produced the proof of the applicabiitythe Hamiltonian
method to our problem, and indeed in a form in which it banextended to many
variables in a very simple way. We are now convincet tti@integration of the first-
order partial differential equation will yield the correesult.

8 5. — Integrating the first-order partial differential equation.
If one now replaces’and’ with thep and therp; andp; with 0V / dor anddV / 04 in

the equation:
ov

—+¢=0
ot v
or
2 2
a_v+a_\/’r’+a_\/79’_ 1pl 1 _ pzz_Ln:O
ot o' 99 4m(+2j 2mr? r
2 rc
then that equation will go to:
2 2
4) 6_V+(6_Vj G#+(a—vj 1 L)
ot or 2m(rc®+2) \04) 2mrc r

t enters int@V / dt, but not explicitly, and for that reason, we hstically setoV / ot
=morV=amt+W,inwhicha is an arbitrary constant, bW is constant irt, such that,
sincedW /04 =0V /dd, oW/ or =dV/or, the equation will go to:

ow )’ rc? oW)® 1 m _
o+ E > + >T— = 0.
or 2m(rc®+2) \ 94 ) 2mr® r

Sinced enters into onlgW /0, but not explicitly, we set:

a—W:az, W=m3+7Z,
09

in whichZ is constant it and, sodW/or =dZ /dr. The equation goes to:
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2 2 2
L+ (a_zj = rcz + a, . _r_n =0,
or) 2m(rcc+2) 2mr® r
SO

m a’ 2
Z=,2m ——a,-—=2= || 1+— | dr,
I\/{r ! 2mr2j( rczj

such that the general solution of equation (4ll yield:

2mr? rc®

(A) V:alt+0'279+\/%.[ \/(Tm—al— a j(ﬂij dr.

As we proved above, the integral equations fomtkehanical problem are:

ov 0Z ov 0Z
- = =t+—, = =t+ ,
oa, A oa, oa, % oa,

SO:

/1+%mr

(B) t= B +mf——=—
JZm_az

r r?

-2am

That integral gives the connection betwéandr.
We further get:

1+ Calr

2
rc’

2 a? ’

\/ -2 -2am
rr

(C) 9=+,
r2

which will then give the connection betwe&mandr.
If one introduceZ =1 /r into the last integral then the equation will go t

l1+ 2 @z
(C*) ﬁ:ﬁz_azj\/z IC

mwz-2,m-aZ

13
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8§ 6. — Determination of the constants, etc.

It follows from equation (B) that:

m,[1+— [dr
dt = re
2 a’
\/ P pr 2
It follows from equation (C) that:
a1+ [dr
d9= —_V_1C
2 2 '
2\/ ern —%—Zalm

and dividing the two equations will yield:
a>=m rzy
dt

However, sincer?> d is twice the surface area of an element that th@savector
describes,a, will be the same constant that gives us the lawredsa We already
mentioned above that the latter will be true here.

If the initial state is given by:

ds
to, ro, o, Vop=| — ,
0, lo, 20 o (dtjt:to

and the angl¢g; that the initial velocity defines with the radigss such that:

dg sinf =rod dsg cosf =drg,
and therefore:
dr . dJd
Vocosfp=| — | , Vosinf=r,| — | ,
0 C0SF (dtlo oSnf °(dtlo

then that will yield:
_ z(dﬁj _ :
m=mE|— | =mihVoSinS.
dt ),

It further follows thata; will be the constant that emerges from tigevivaprinciple

from the fact that:
2 2
2m —&—Zalm
_dr_ ror?
vV cosf = a :
m,|1+—
rc
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2 2
m2(1+izj Vcod g= 21— 92 _2qm,
rc r

r2

or when the value af; is substituted:

200 =—mV + Z—m(l—v2 cos ,[z’izj
rc

r

r c

-mv + —[1—:j =-mv + 2U,,

soT =U; —m. ais determined from the initial state to be:

At the same time, it is confirmed at this pointtttigevis vivaprinciple is meaningful for
our problem.
In order to establish the meaning of the constgntge must give the integrals well-

defined limits. If we establish a well-defined nemgal valuerg as our lower bound then
that will yield:

/1+—mr
(B) t_mj + 4,

2ma
rr?

0

2= my +r_[ \éco§,80

-2am

and forr =rq (i.e.,t =tp), all that will remain on the right will bg,, such thajz; will be
the initial value ot. It likewise follows from (C) thap; is the initial value ot.

Sincet and must always be real, it will follow from equati¢B) (in which the roots
in the numerator are never imaginary, becausealways positive) that the roots in the
denominator can never be imaginary, which will iynpihat r has a maximum and a
minimum value. They are determined from the eguati

2m2 2
_0’_5_ 2a,m=0
r r
to be
_m 1 20, a
r=——+— -
20, 20, m
and
m 1 _2a,a
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will then be easy to calculate from the initial ssatéhenc is given.

The possible positions of the attracted point are tastricted to a ring between two
concentric circles that have radiimfandr, around the attracting center.

As far as evaluating the elliptic integrals is conedinwe refer toSeegeis
dissertation, in which they are treated elegantly.

We would like to preserve the names of aphelion and piemnhier the maximum and
minimum distances, resfbeegerhas proved that the successive perihelia and aphelia are
not separated by an angle mfas they would be witNewton's law, but by something
else.

This remark, with the help of the above, shall seoverovide us with a picture of the
motion that takes place.

It next follows from the equation of the area priteip

m r219’: ar
that 4 can never change sign, such that the motion wilagsaproceed in the same
sense. It will always enclose the small circle badgenclosed by the large one.
Furthermore, on the grounds of the same principle, e¢tacity will turn back from
the tangent to the path in proportion to the distanoe fthe center, such that it will be

slowest at the aphelion. Finally, one gets thastmes’ will belong to the same
It follows from thevis vivaprinciple by eliminating the constantsthat:

T —T1 =U- Ul
2 12
(o)) 23 )

For equal that belong to the san#, that will then imply that:

or

which is an equation that will be possible only when:

r'=zr’ .

As a result, the sam& andr’ (up to sign) will always belong to the sameso equatls/
dt, as well, and up to sign, the sadrg dt anddr / (r d&); in words:

If any circle around the center intersects theated point repeatedly then that will
always happen with the same velocity and the sargke aup to sign.

That will imply the following important property of thabit:
If P is a perihelion and is the aphelion that follows it then the path fréno the
following perihelion P, will be congruent to the path frol® to A and will lie



Holzmiller — Attraction according to Weber’s lawsetéctrodynamics. 17

symmetrically with respect to the lideC whenC means the center. The path fréto
A; is congruent to the one frofto P, and will lie symmetrically with respect to the line
P,C, etc.

The aphelia then follow each other at the same langlistances, and likewise, the
perihelia follow with the same angular positions.thi latter isy; andy/ mis irrational
then the orbit will have infinitely many congruent arnwile if )/ /7is rational then the
number of those arms will be finite, and the orbitl wikn back into itself. Initially, it
has as many symmetry axes througas perihelia and aphelia, taken together. If one
additionally links a point at which two arms of the oibtiersect with the center then a
symmetry axis will again come about. We also have red@H@ite or infinite number in
the latter group.

For c = 0, where the potential does not need any time then teeaatithe attracted
point, the law will agree withNewton's, and the orbit of the point will be an ellipse when
only r; remains finite. The distance between the individpaksia will then be infinitely
small; i.e.,yy= 0. One can then get a rough picture of the orbivdoy largec (andc is
very large in reality) in perhaps the following way: A moimoves on an ellipse
according td\Newton's law, while for this motion, the ellipse rotateswslowly around
the focus at which the attracting force is found.

8 7. — The same problem for three coordinates.
In order to show how fast théamiltonian method takes us to our goal, we would
like to work through the same problem once more witeelmoordinates.

The independent coordinates are introduced by the equations:

X=r CcoS¢, Yy=rsingcosy, z=rsingsiny,

such that:
X,2 +y2+2,2 :r,2+r,2 ¢,2+r2 sz ¢ wlz’
SO
_m > 2 0 2 ir? ,
—E(r +r'2@’  +rosint @ ).
Furthermore:
12
0=a ]
r c
SO
2 2 ~in2
m
€y T+U)= r'zm(%+i2j+mr g2 TS0l g2, I
rc 2 2 r

The introduction of the comes about by way of the equations:

oT+U) _

r 1:2mr’(%+ij, SO =B
r 5 1

rc?
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o(T +U) p
=p=mr ¢, o) = 22
o¢' P ¢ ¢ mr?
o(T+U) . p
2 - =mPsit gy, o) =,
oy’ Ps i v mr®sin® ¢
The transformedT(+ U) will then become:
P 55 P
(2) IT+U|= + 2 LB
(1 1 j 2mr®  2mresinfg T
am| 3 +—
rc
This has the property that:
0|T+U|_ 2p, _ ., o|T+U|_ 2p, _ ,,
= =r’ = 5 _¢ ,
op, 4m(%+1zj op, 2mr
rc
AT+U|_  2p  _ .
ap, 2mr? sin’ ¢
as well as the fact that:
6(T+U):_6|T+U|_2_m 6(T+U):_6|T+U|
or or rz’ Ll op

oT+U) __3|T+U|_,
oy oy ’

in which theq are the independent coordinates, go to:

g OT+UI__dn_am
or dat r
3|IT+U|_ dp,
| - ]
) B) o9 ot
9IT+U|_ dp _
Tyl _THog
Y dt

and for that reason:

18
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o0|T+U|_ ,

o) U
o,

0|T+U ,

0 p) 2T*UI_ 4
on,

0|T+U ,
o,

If we now set:
[*T+uydt=v
then that will yield:

an v _ 9T +U) _

oV _o+U) _ v _
ar ar’ v g og

P2,

OV _ a(T+U) _
ow oy P

Moreover, it follows from:

dv _ov ov dr oV & oV &
dt ot or dt 9 dt 9y dt

and

d_V:T+U
dt

that one has the equation:

ov
E+p1r’+pz¢'+psw'—(T+U):o,

or

(V) a_v{a_vj _re +(6—Vj Lt Moy
ot or ) 2m(2+rc®) (0@ ) 2mr® 2msitg r

That is a first-order partial differential equationfour variables. In order to integrate it,
we heuristically set:
ov
E:al' SO V=mt+W,

such that the equation goes to:

Afowy re fow) 1 (aw)_ 1 |_n?
3 >+ —* B———|=——am
or ) 2+rc 09 ) r oY ) resin“g r
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We add-a’ /r? to both sides and set:

2
J(OWY réd oy a;s
il — =—-mm-—%,
or

2+rc? r r
or

then the equation will go to:

1 a_P Zi.{_ oP ZD 1 _a_ZZZO
2I\ag ) r2 (0w ) r?sin’¢| r?

GEAEA
¢ oy ) sin‘g

If one adds a2/ sir? ¢ to both sides and sets:

or

1 a_P 2: 0,2_ a'zz
2 0¢ 2 sin’g’

2a;

sin® ¢

SO

P:j 2q2 - d¢ +Z,

then the equation will be converted into:

2
Jf0Z)y 1 az |
2oy ) sing  sin’g

Z= jasﬁdz// =ya,/2+(a).

or

The general integral of our differential equatioi then be:

20
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2m? 2a; 2
A V=mt+ -2a.m- 1+— | dr
) d jJ(r s rj[ rczj

+ 2a—S

while the differential equations of the problem:are

/1+F dr
(B) B =

(©) Bo=-

With the substitution:

the last integral will go to:

such that we will get:

,f 1+F dr n e
(C*) ﬁz :.[ 2 2 * 2
T T

Ultimately, the final equation is:

dg

(D) Y-B= a| — .
sin’ ¢, | aZ - _”g
sin“ ¢

21
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If one introduces cop as the variable here then that will give:

vz [ 90—~ arcos | cong |,
\/0'22 @ a, —a,

-aZ-aZcot?
from which, it will then follow that:

(E) cos—[3%) = achaz cot ¢,

2 2

such that motion will take place in a plane.

Sinceg assumes only values between 0 and’18@ integrals that are taken to de
will imply that the minimum value of sig is a5 / a» . Hence, ifl is the inclination of the
plane of the orbit with respect to the ecliptic, for e¥hione hasp = 9, then the
minimum of sing will be:

95 = sin (90 —J) = cosJ.
aZ

Since one then has:
\/ az _\/ aZcos J — + cot ]

az-a: a-a’cos’J

equation (E) can also be written as:
(E) cos (/—3) = + cotJ [Tot @,

For ¢ = 90, one has cos/{— /) = 0, so (/— &%) =+ 90°. However, thay that belongs
to ¢ = 9C is the length of the ascending (descending, resuml®; i.e.3; is the length of
the ascending nodg 90",

If we now give definite numerical values to thepaplimit on the integral in order to
understand the meaning of all the constants theuilifollow from equation (D) thaj3
is the initial value ofy. The initial position of the planet is then tlosvest or highest
point of the orbit. It follows from this that:

¢o:(gi\]j.

One can also read off the latter from equatio), (fecause one will then have:

- =0,
and it will then follow that:
1 =+ cotJ cot ¢,
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so sincep assumes only values between 0 and®180

¢o:(gi\]j.

From equation (G, B would prove to be zero. In order to verify thise (like
Jacobi, pp. 188) can consider the following argument:

From:
T a?-a?
coSgo = cos(—;]j =, | ==
2 a,
and the substitution above:
_ |ay-a;
Cos¢ = p=; [(Tosn,

2
that will imply that the initial value of is zero, so equation (Lwill go to:

1+i Calr

rc’
2m’
\/ -2am-
r

However, ¢ is the hypotenuse of a rectangular sphericaldt@awhose cathetes areand
(90° — 1) (cf., the illustration inJacobi). 7 is then equal to $0minus the distance from
the planet to the ascending node. The integralvaitish forr =rq, and will go to 90
minus the distance from the initial position of fhlanet to the ascending node, such that
£ will take on the following geometric meaning:

+ n .
2 |
r2

p=-|
r2

B = ! [90° — distance from the initial position of the plat@the ascending node].

2a;

However, that distance amounts td,%b one will actually havg; = 0.
If one differentiates equations (B), (C), and {@jh respect to the corresponding
variables and compares the results then thatwyily that:

d_tZ: d_wsmz ¢,
mr’  a,
or
93 4t = r? sir? ¢ du.
m
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Hence,as / mis the projection of twice the areal velocity onte xly-plane, but the
true value of twice the areal velocity must be:

Gl _apm o
mcos)] ma, m

a, then takes on the same meaning a8 6 a3 is then obtained from the equatiog
= a, cosJ, and finallya; is, in turn, the constant that arises from ¥igevivaprinciple.
These constants are all obtained from the initial state

As far as the matter of performing the elliptic intdgia concerned, we can refer to
Seeger

Appendix

Sincet does not enter into our problem explicitly, and tfgevivaprinciple is true, in
addition, everything thaltacobi said in Lecture 21 can be extended to our problem, such
that one casignificantly shorten the path to the partial difatial equation.

One introduces a new independent variabley way of the equatioaV / ot = a and
setsV equal to a new functiow/ =V —ta =V -t (dV / dt) then one will haveé = - o0W/
da, and the equation:

ov
1 —+y=0
1) pralld
will go to an equation of the form:
ow oW
2 a+ eers @y — ., — | =0

If Wis ascertained by integration then one can easilyw $hat the integral equations
will be:

oW ow ow

a—z,[a’l,..., —=p0,,, —=r-t,
3) a, oa,_, oa

oW _ oW _ oW _

_aql [ 3q, 0,1 _aq, n, -

However, thevis vivaprinciple reads:
4) 0=a+T-U,

and it can be shown that equations (2) and (4) are identica

For all problems in which one is dealing with attrac@émcording toNeber's law, if
t is not present explicitly and thes vivaprinciple remains in effect then one can find the
partial differential equation in the following way:
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If one applies the transformations of tHamiltonian method to the vis viva equation
and sets p= d0W/ dq; then one will immediately obtain the first-order partial differaht
equation from which the integral equations of the system of differefiations will
follow.

In order to show this for our problem and employ theviptes transformations for
that, we introduce:

U=-U; +—

into equation (4) such that it will go to:

(5) Tru-Z=-a,
or, from equation (2) i8 7:
2 2 2
. 1 +2p22+2 2p3-2 _m:_al'
4m(;+r02j mr’>  2mr’sinfg r

If one then setp; = dW/ dq; then that will give:

2 2 2 >
%(awj cm2+ oW G%+ oW Dzl. L
or ) 2+rc o9 ) r oY ) resing r

This equation coincides with the one that was eeriforWin 8 7.




