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The Screened Model Potential for 25 Elements 

By A. 0. E. ANIMALU and V. HEINE 
Cavendish Laboratory, Free School Lane, 

Cambridge, England 

[Received 26 July 19651 

ABSTRACT 
The Fourier transform of the self-consistent screened model potential has 

been calculated for 25 elements. The results are presented in a form 
applicable to the potential in the solid or liquid metal or semiconductor, or 
to the electron-phonon interaction. They are reliable to  about 0.01 ryd. 
The calculations are a continuation of the work by Heine and Abarenkov 
(1964), using the screening theory of Animalu (1965a). The behaviour a t  
high wave numbers and other points of detail are discussed much more 
thoroughly than before. Some average band effective masses are also 
calculated. 

$1. INTRODUCTION 
THE present paper is a continuation of work by Abarenkov and Heine 
(1965), Heine and Abarenkov (1964), Animalu (1965 a), and Heine et a2. 
(1965), hereafter referred to  as I, 11, I11 and I V  respectively. The purpose 
is to set up the potential felt by an electron in a non-transition metal or 
semiconductor, with a view to calculating the electronic structure of the 
material and such physical properties as depend on it. 

I n  I the interaction of a conduction or valence electron with the ion 
core of an atom was represented by a model pseudo-potential of the form : 

V&f = - ZA,P, for r < R,, 
= - Z / r  for r > R,. . . . . . . . (1) 

Here P, is the projection operator that  picks out the component of the 
wave function with angular momentum 1, and Z is the valency of the ion. 
The parameters A, are determined from the observed spectroscopic 
term values of the isolated ion or atom. I n  I1 it was shown how to add 
the conduction electron gas, and some preliminary calculations on the 
alkali metals showed that the use of the model potential had considerable 
promise. At that time the calculation of the screening of the ionic field 
by the conduction electrons involved treating V ,  as a local potential, 
whereas i t  is non-local on account of the operators P, in (1). The matter 
was put right in 111, where a t  the same time some excellent agreement 
between theory and experiment was reported for the potential matrix 
elements determining the Fermi surface of aluminium. Sundstrom (1965) 
has calculated the resistivities of various liquid metals with the model 
potential, and some use has also been made of i t  by Ashcroft and Wilkins 
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(1965). It is clear that the model potential gives values for the potential 
in a metal sufficiently accurate for useful realistic calculations of electronic 
properties. 

Given are the values 
of A,  relevant to electrons at  the Fermi level in the solid (or liquid) and 
also graphs of the self-consistent screened potential in the metal. The 
latter is given in the following form. Let the atoms be at  positions R, in 
the liquid or regular solid, or solid with phonons or defects. As in I1 and 111, 
the matrix element of the total potential U between plane wave states 
with wave vectors k and k + q can be written in the form : 

where S(q) is the structure factor : 

We therefore report in 5 5 results for 25 elements. 

. . . . . .  (k+qlUlk)= V(q)S(q), (2) 

1 
S(q)= exp(-iq.Rj). . . . . . .  

j 
(3) 

V ( q )  is independent of structure and represents the potential of a neutral 
pseudo-atom in the metal in the sense of Ziman (1964). The results go 
up to values of q ten times the Fermi radius, and tables more detailed than 
the published graphs may be had on requestt. The calculations were 
planned to be physically realistic to about 0-01 ryd, and comparison with 
experiment indicates this has been on the whole achieved. Some results 
for the mean Hartree effective mass, calculated from the model potential, 
are given in 5 6. 

However, before reaching the results in $1 5 and 6 i t  is necessary to 
attend to some details not adequately discussed in I1 and 111. First, 
in 5 2 we define more precisely the potential which we are setting up in 
the metal, particularly as regards our treatment of correlation and exchange, 
and the ' orthogonality correction ' mentioned in 11. By the latter we 
mean the following. The conduction electron states are not even in 
lowest order simple plane waves but contain atomic-like oscillations 
inside the ion cores, which are represented by the orthogonalizing terms 
in the orthogonalized plane wave (OPW) representation of the wave 
functions. The resulting non-uniformity of the total conduction electron 
charge density contributes both to the Hartree potential and the correlation 
and exchange hole. 

Then the parameters A, in (1) depend somewhat on energy E and it  is 
necessary to  evaluate them for an energy E ,  of an electron at  the Fermi 
level. Here E ,  has to  be not on an absolute energy scale but the energy 
relative to a free ion, which is defined and calculated in 8 3.  

I n  5 4 we discuss various questions related to the choice of R, and how 
far the results are internally consistent in the sense of being independent 
of R,. Of course i t  is not V(q)  that  has t o  be independent of R, but 
physical quantities such as band gaps, which may be given in lowest order 

t Technical Report No. 3 by A. 0. E. Animalu, available from the Secretary, 
Solid State Theory Group, Cavendish Laboratory, Free School Lane, Cambridge, 
England. 
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directly by V(q)  but which also include higher-order corrections. The 
same total value may be distributed slightly differently between the 
lowest -order term and the corrections. However, for the model potential 
to be really useful the corrections should be small. They depend on V(q)  
at  large q ,  which oscillates with q due to the discontinuity in V&I a t  r = R,. 
Whether any of the fluctuation of V(q)  is real, or whether it is all spurious 
from the artificial discontinuity in R, is not yet clear. I n  any case 
we suggest for some purposes the use of a damping factor : 

multiplying V(q).  
D(q) = exp [ - 0.03(9/2kF)4], . . . . . . (4) 

8 2. DEFINITION OF THE POTENTIAL 
We wish to set up the potential in the metal felt by an electron, including 

the exchange and correlation interaction with other electrons. It is 
convenient to choose the electron a t  the Fermi level eF, firstly because this 
is what one wants for many studies of transport properties or the shapes 
of Fermi surfaces, and secondly because it is only at eF that the single 
particle energy values ek  are real and well defined in the sense of Landau 
quasi-particles. The ek are the eigenvalues of 

V 2 + V H + 2  * k = E k * k ,  . . . . . (5) ) 
tL2 

(-m 
where V ,  is the Hartree potential and 2 the mass operator. The latter 
represents the exchange and correlation hole around the electron and we 
can split it up at  least notionally into exchange zx and correlation zc : 
We could put Ix as the bare exchange operator of the Hartree-Fock 
equation and define zc as 2 - zx. 

In  (5) and (6), VH, zx, zc and the total electron density n( r )  are the 
sum of three parts, due to (i) the ions, (ii) the conduction band of electrons 
in lowest order, pictured as simple OPW’s, i.e. a uniform charge density 
apart from the ‘ orthogonality correction ’ a t  each ion, and (iii) the change 
in the conduction electron density when we ‘unfreeze’ them and allow 
them to screen the ‘ bare ’ model potential of (i) and (ii) as described in 
11, I11 and IV. 

As regards VII and n there is no question about the three contributions 
(i)-(iii) being strictly additive, and the same is true of the exchange zx if 
we use an unscreened Coulomb interaction. Even if it is argued that one 
ought to imagine a modified exchange interaction, the screening radius 
due to the conduction electrons is sufficiently larger than an ionic radius 
for the zx from the ion to be practically unaffected : conversely the volume 
of the ion is too small and the excitation frequencies of the core electrons 
too large to affect the intra-conduction electron exchange much, so we 
take them as additive. 

2 = zx + z c .  . . . . . . . . . (6) 
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On the other hand, 2, is highly non-additive ; in fact it nearly saturates. 
We can see this explicitly in the approximation of Kohn and Sham (1966) 
who have shown that under certain conditions which are quite well full- 
filled in non-transition metals, 2, can be approximated by : 

Here p, is a local correlation potential depending only on the total electron 
density n(r).  It is defhed in terms of the correlation energy E, (per 
electron) of a uniform electron gas of density n: 

x pc [n( r ) ] .  . . . . . . . . . (7) 

d 
dn 

p C = - ( n E c )  . . . . (8) . . . . .  

The approximation (7) is the same as used intuitively and not quite correctly 
by Heine (1957) and in 11. In  the range of metallic densitites E, and p, 
vary slowly with density (see table 1) and in the limit of high densities 

Table 1. Values of E ,  and p, for a uniform electron gas 

pa 
rttomic units: 

1.6 
1.8 

2.0 
2-2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4-0 
4.2 
4.4 
4.6 
4.8 

6.0 

EC 
(Vd) 

-0.101 
- 0.098 

- 0.095 
- 0.092 
- 0.090 
- 0.087 
- 0.084 

- 0.082 
- 0.079 
- 0.077 
- 0.075 
- 0.073 

- 0.071 
- 0.069 
- 0.068 
- 0.066 
- 0.065 

- 0.064 

- 0.108 
- 0.106 

-0.104 
-0.102 
- 0.100 
- 0.098 
- 0.096 

- 0.094 
- 0.092 
- 0.090 
- 0.088 
- 0.085 

- 0.083 
- 0.081 
- 0.079 
- 0.076 
- 0.074 

- 0,072 

such as inside the ions they also vary slowly as (Gell-Mann and Brueckner 
1967) : 

0.0622 lnr,ryd, . . . . . . . (9) 
where rs in atomic units is the usual radius giving the volume per electron. 
This justifies the statement that 2, is very non-additive. 
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The contributions from (i) to (iii) will be distinguished by subscripts 
With this notation the i (ions), b (band), and s (screening) respectively. 

total potential VH + in ( 5 )  becomes : 

vi+z:zi+ V b + z . s b + z c , i + b + ( ~ + + C z + h z c ) s .  - . (10) 
Here the final screening term, with its contribution to zz and Zc, is all 
part of the screening calculation in 111, and will be included in that way. 
It will not concern us further, except to note that in I1 and I11 the treatment 
of 2 was based purely on a short-range exchange interaction rather than 
the theory of (7) ,  (8) and some improvement in this direction is presumably 
possible. 

The remaining terms of (10) may be re-grouped as follows : 

[Vi + Is1 + X c i ]  -t v b +  [ z z b  + z c b ]  + [ z c ,  i + b - z c i - z c b ] .  (11) 
Here the first bracket is included in the model potential of the ion, including 
the exact correlation terms zci for one electron interacting with an isolated 
ion. The last bracket of (11)  expresses the non-additive nature of the 
correlation potential and gives rise to the ' correlation correction ' V,, of 
11. 

(12) 

pc(ni + nb)  Pc(ni), (13) 

vcc= -pc(nb). . . . . . . . .  (14) 

We evaluate it with the approximation (7)  : 

. . . .  v,, = d n i  + n b )  - pc(ni) - pc(nb). 
Outside the ion core ni is zero so that Vcc = 0, while inside the core 

. . . . . .  
because pc nearly saturates and 

Comparison shows that eqn. (21) of I1 was not quite correct : however, to 
the accuracy we wish to attain, namely 0.01 ryd in the matrix elements (2) 
for q around the first reciprocal lattice vectors, the difference is quite 
negligible because from (8) we have : 

(15) 

where the second term is about 0.01 ryd which in the matrix element is 
reduced in the ratio of atomic to ionic volumes, typically nearly ten. 

Returning to eqn. (1 1)  we have that V b  is the potential from the electron 
density n b  which is not quite uniform because of the orthogonality correc- 
tion. It is equal to a density (1  + u)Z/R everywhere, where Zis the valency, 
Q the atomic volume and u the correction, plus an extra positive charge 
of Zu electronic charges more or less uniformly spread over a sphere of 
radius Rc equal to that of the ion core. It remains to justify the value 

. . . . . . . .  u = ( R ~ / R ~ ) ~  (16) 
suggested in 11, where the atomic radius Ra is the radius of a, sphere of 
volume R. Certainly we expect something of the order of magnitude of 
(16) because a can be calculated in the OPW method where, other things 
being equal, u is immediately proportional to the ratio of ionic to atomic 

P.M. 4 N  
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Li Na 
- 

From OPW (Harrison 1963) 0.07 0.07 
- From OPW (Heine 1957) - 

Equation (16) 0.10 0-10 

volume. Alternatively we can imagine a plane wave turning into atomic- 
like oscillations inside the core, the mean value of I+la being reduced by a 
factor of two (mean value of cosax). Actually it is reduced more than this 
as can be seen from the factor (E  - V)-U4 in the W.K.B. solution. Moreover 
the 1+1 of a conduction wave function has to  drop a t  a radius a bit larger 
than R, because its outer node has to come fairly far out in the main hump 
of the outer shell of core states in order to get orthogonality between them. 
Thus we expect : 

radius a bit bigger than R, ) 9 (17 )  ( Ra 
a= (factor between 4 and 1)  

which brings us back essentially to (16). 
some values of a calculated from OPW’s. 

I n  table 2 we compare (16) with 
We note firstly that (16) fits 

K A1 

0.14 0.08 
- 0.15 

0.13 0.05 

the results as well as any simple expression will, and secondly the marked 
discrepancy between the two OPW values for aluminium. I n  the OPW 
method there is considerable arbitrariness about the choice of auxiliary 
‘ core ’ functions : Heine (1957) used functions calculated from the potential 
seen by a conduction electron, which are much more spread out than the 
actual atomic core states used by Harrison (1963). With Heine’s functions 
the reduction in electron density would be spread over a larger radius. 
We have therefore computed the orthogonality correction for aluminium 
with the two extreme pairs of values a=0*05,  R,=1*1 and a=0*15,  
Rc=2.0.  The value of the correction ranges up to  0.03ryd in V(q)  for 
q up to 2k, and is thus significant, but the difference between the two 
cases is everywhere less than 0.01 ryd in this range (and almost certainly 
beyond). We conclude that (16) is adequate for calculating the small 
but not quite negligible orthogonality correction. 

In zeroth order the conduction 
band is a uniform free-electron gas and we put (Seitz 1940) : 

2:zb -k z c b  = / h ( T s )  -k Pc(ra)  

We turn to the second bracket in (11). 

= - 1*224ra-1 + pC(r8). . . . . . . (18) 
The pc is calculated from (8)) (15)) where our best estimate of E,  is derived 
from Hubbard (1958) : we take values of his eqn. (48) given in his table I, 
corrected by a further 20% of eqn. (42) for the reasons discussed by him. 
Although (18) is independent of position and hence does not contribute 
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to V(q) ,  it is important for establishing the absolute energy scale for the 
conduction band, and we give our interpolated estimates of E ,  and pc 
in table 1 .  

The non-homogeneity of the conduction electron density described as 
‘ orthogonalit,y correction ’ above also affects the charge density in the 
correlation and exchange hole in zz+ 2,. This term was overlooked in 
11, and it tends to cancel the orthogonality correction in the direct Hartree 
potential. The radius of the correlation and exchange hole is large, 
normally larger than Ra, and where i t  overlaps an ion the positive missing 
charge density of the ‘hole’ is modulated in the same way as the full 
Hartree electron density. No doubt one could write down an  expression 
which roughly describes how this effect varies with the position of the 
electron. But judging from the overall magnitude of the orthogonality 
correction and the fact that the hole is so big that i t  covers the whole of an 
atomic cell moderately uniformly, it would seem satisfactory simply to 
reduce the orthogonality correction uniformly by a numerical factor /?. 
I n  the centre of the hole there is zero density of parallel-spin electrons 
because of the exclusion principle and opposite -spin electrons are partially 
repelled so that /3 is less than one half there, whereas i t  tends to unity 
outside the hole. We choose /3=& and therefore write from (16) an 
effective a :  

. . . . . .  aeii  = 4(Rc/Ra)3. * (19) 

8 3. CHOICE OF ENERGY PARAMETER 
As discussed in $ 1,  we require the energy E, relative to a free ion, of an 

electron a t  the Fermi level eF in the metal where eF is on an absolute 
energy scale. I n  the vicinity of an ion in the metal, the Schrodinger 
equation can be written : 

where ( V +  z)ion is the potential of the single ion and ( V + 2 ) r e s t  the 
potential due to all the rest of the system, i.e. the ofher ions and the con- 
duction electrons, including the correlation and exchange hole. We 
can write ( 5 )  as:  

It is as if we were solving the wave equation for an isolated ion with electron 
energy : 

Evidently, this is the parameter for which to evaluate A,(E) if ( V  + x ) r e s t  
can be regarded as a constant independent of position r inside R,: any 
variation outside R, is irrelevant. I n  practice of course ( V +  2 ) r e s t  
depends on r, but a suitably weighted mean inside the sphere R, serves 
well since A, varies only slowly with E (see reference I). 

. . . . . . .  E F = ~ F - ( V + z ) r e s t .  (22) 

4 N 2  
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I n  (22) we first estimate eF from the measured cohesive energy of the 
metal. For present purposes it is quite adequate to treat the conduction 
band as a free-electron gas. The absolute level of the band is simply 
related to the cohesive energy as described in Sietz (1940), and we obtain: 

eF=  - IM.I.E.1- lB.E.E.l+px(rs) + p c ( r s )  

0.6Zea 
- E , - E c + -  . . . .  

8, 

Here M.I.E. is the mean of the first Z ionization energies of the free atom, 
B.E.E. the cohesive energy of the solid per electron (N.B. not per atom), 
k, the Fermi radius, m* an effective mass, and Ex the exchange energy of 
a free-electron gas : 

. . . . . .  E x =  -0.916rS-lryd. (24) 

With the same approximation of a uniform conduction electron density 
we set : 

. . . . . .  z r e s t  = px(r8) + p&). (25) 
The Vrest contains a contribution : 

[ 3 - (&)“I . . . . . . .  
2Ra 

from the electrons inside the same cell as the ion we are considering. The 
electrons and ions in the other cells contribute practically zero potential, 
since they are electrically neutral and approximately spherical. As 
usual, we assume surface cells to  have exactly the same charge distribution 
as cells in the interior of the solid: that is we asume zero surface dipole 
moment. This makes no difference to  any of our results since a surface 
dipole moment would increase e F  and Vrest by the same constant amount 
which subtracts out in (22). 

Equations ( 2 2 )  to (26) now determine E in (21), but i t  is still a function 
of r through the term (26). The purpose of the model potential is to 
reproduce the correct radial derivative of # at R,, and in integrating (21) 
outwards from the origin the (P + 2)ion is, a t  small r ,  much larger than 
E on the right-hand side. Thus a small error or spatial dependence in E 
causes very little change in the wave function there. However, near R, 
where the two terms are more comparable, the effect is bigger. Thus 
we want to take the mean value of (26) over a sphere of radius R, with 
the region close to R, weighted much more heavily than the centre. 
We arbitrarily choose a weighting factor of r3 in addition to the effect of 
the volume element 41rrZdr, giving a weighted mean of (26) equal to : 

“[3-f(%)’]ryd. . . . . . .  
R, (27) 

Thus the A,(E)  have to be taken a t  an energy EF given by (27) and (22) 
to (25). 
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8 4. CONSISTENCY AND LARGE Q 
In this section we discuss three sets of calculations in which the same 

quantity has been evaluated for different choices of RM in the model 
potential. 

We first give in table 3 values of cF in sodium for three choices of R,, 
calculated from 

1257 

R RI -2 .2  - R,=3,0 

t'.(ryd) - 0.150 -0.138 

Here we have used the same model of the potential as in 5 3, i.e. approxi- 
mating to cells as spheres andneglectingorthogonality and other corrections, 
some of which would give small contributions independent of R ,  and 
hence not affecting the comparison of table 3. The three terms in the 
square bracket in (28) are respectively the contribution to the potential 
in a cell of the model potential inside R,, the model potential between 
R, and Ra, and the uniform electron density. Also given in table 3 is 
the value calculated from the experimentally measured quantities in (23) .  
We have used m*lm = 1. Table 3 is indicative of the accuracy obtained 
in lowest order, and it is not clear yet how much the comparison is improved 
by inclusion of second-order and other corrections. 

RM= Ra&O Expt 

-0.141 -0.153 

Table 3 .  Energy at  the Fermi level in sodium 

As second test we have computed V ( q )  for aluminium for R,= 1.6 and 
2.2. They differ by less than 0.006ryd in the range O < q < 2 k F ,  which 
is consistent with second-order corrections for the band gap matrix 
elements of the order of 0.005ryd (reference 111). 

Thirdly, we discuss the uncertainties at large q. The V ( q )  for all atoms 
oscillates at large q, the shape of the curve depending quite markedly on 
the choice of RM. As mentioned in 8 1 ,  there is no unique 'right ' V ( q )  
at large q :  it  is possible to have different pseudo-potentials which when 
applied correctly to infinite order of perturbation all give in principle 
identical results for physically measurable quantities. This is an 
inescapable consequence of the rigorous theory of pseudo-potentials 
(Austin et al. 1962) and the even wider arbitrariness allowed in a model 
potential (reference I). However, for practical purposes one usually 
wishes to study quantities like phonon spectra and shapes of Fermi 
surfaces which are dominated by the V ( q )  up to and including the first 
few reciprocal lattice vectors. One would like the V ( q )  by itself to represent 
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as far as possible the physical quantities, i.e. to have higher-order corrections 
as low as possible. This means one would like to reduce the amplitude 
of the tail of V(q)  beyond the first few reciprocal lattice vectors as much 
as possible: too large a tail can lead to severe convergence difficultibs, 
for instance, in the calculation of phonon spectra. It is undoubtedly 
true that the oscillating tail of V(q)  is mainly due to  the discontinuity in 
the model potential a t  R,. It is ' unphysical ' in the sense that it could 
be to a large extent removed by using a more smoothly varying model 
potential such as that in fig. 1 ( d )  of I. However, this is not true of the 
beginning of the oscillations at  lower q. The fact that V(q)  becomes 
positive in many cases a t  q just less than the f i s t  reciprocal lattice vector, 
corresponds to the inversion of s and p states a t  the f i s t  band gaps of such 
metals, which is a real and important feature of their band structures. 

The 
first is to choose a value of R, such that the A, are approximately equal 
to ZIR,. The model potential (1)  has adiscontinuity both in the magnitude 
and the derivative of V ,  at  R,. As expected, an investigation showed 
the former to be the more serious for a discontinuity of 0.1 atomic units 
or more, and so for each atom R, was chosen to  make it as small as possible. 
Secondly, we suggest eliminating the effect of the remaining discontinuity 
by multiplying V(q) by the damping factor D(q) (4) which corresponds in 
real space to some smoothing of V,. The choice of this particular factor 
rested on the tests shown in fig. 1, which represent V(q)  for a fictitious 
atom not unlike sodium. We have set all A, equal to  A ,  so that we have 

Two measures can be taken to reduce the amplitude of the tail. 

Fig. 1 

0.  

z- 
c 

v 
0- 

> 

. .  . .  

R,= 3.3 and 3.0 \ ,  

I. ;; 
01 - 

0 

I I '. ...: \ 

L i -0.01 

V ( q )  at large q for various R,: The curve for R ,  = 3.0 is not explicitly shown 
since it is almost indistinguishable from that for R,=3.3 on the present 
scale. V ( q )  tends to -0.48 as 
q-f 0. 

Note the very expanded energy scale; 
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a local potential, ignored all orthogonality, etc. corrections, but chosen A,  
correctly for sodium for various R, at energy (22). As expected, the 
smallest amplitude of oscillation is for R, = 3.3 where A ,  is almost exactly 
equal to l/R,. The oscillations for the other two R, differ markedly 
in amplitude and phase, so that even at  q/2kF=2 they seem physically 
not significant. The D(q) in (4) has been chosen to cut off sharply beyond 
this value of q, while leaving the physically significant first positive swing 
of V(q)  as unaffected as possible. A rather more drastic smoothing of 
the potential in real space 

V(r)  = - [: + (A,- i) exp ( -  1-5r/R, . . . . 1 (29) 

was found to eliminate all oscillation of V(q)  including the first node. 
It should be said that our damping V(q) to zero a t  large q springs more 

from ignorance of what it really is, than from conviction that it is 
practically zero. The pseudo-potential theory suggests that the cancel- 
lation becomes less complete at  large q (see eqn. ( 6 )  of Austin et al. (1962)). 
One strange result could be mentioned in this connection : in fig. 1 we have 
also calculated the curve for R, = 3.3, which on the scale plotted is indis- 
tinguishable from RM=3*0. If the oscillations are mainly due to the 
remaining discontinuity at R,, we would expect their phase to change 
by a factor 3.313-0, or at  least by 30 yo of the difference between the curves 
for RM = 3.0 and 4.0. The fact that V(q)  is so insensitive to choice of 
R, just around R, = 3-0 where the major discontinuity vanishes, suggests 
that the remaining oscillations may after all have physical significance. 
For most applications they will be too small to matter, so it will be difficult 
to investigate the question. 

We conclude therefore from all our three tests that it is best to choose 
R, such that the A,  are close to ZIR,, but that the results do not differ 
significantly for variations of R, of 10-20% around that value. 

$ 5 .  NUMERICAL RESULTS AND CONCLUSIONS 
The self-consistent screened pseudo-potential V(q) in ( 2 )  has been 

calculated for 25 metallic and semiconducting elements. It is important 
to note that in ( 2 )  the matrix element depends not only on q because of 
the non-local nature of the potential, but also on k and Ik + ql. We have 
always put k = k,. For q < 2k, we have taken Ik + q1 also equal to k, : 
for q > 2kF we have chosen Ik + q1= q-  k, so that k and k + q are anti- 
parallel. This, and the very rapid variation of the screening factor e ( q )  
near 2kF,  produce the kink at  q/2k,= 1 in the results shown in fig. 2. 
All the quantities required in the calculation are displayed in table 4. 

We now detail the numerical steps and sources of experimental infor- 
mation. Values of A,(E) were calculated as in I at  up to three atomic energy 
levels for each I ,  the spectroscopic values of E being taken from Moore 
(1949). The approximation (9) of I1 was used for the A, with 1 > 2. The 
R, was chosen to lie between R, and R, at a value for which Coulomb 
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V ( q )  for (a) Li, Na, K, Cs; ( b )  Rb, Ca, Ba, Cd, Ge; ( c )  Be, Mg, Zn, Hg; ( d )  Al, 
Ga, In,  T1; ( e )  Si, Sn, Pb; (f) As, Sb, Bi; (9 )  Se, Te. The numbers on 
the left give the limit of V ( q )  as q tends to zero. Note that the curve 
for Cd differs from that in Harrison (1966) and Technical Report No. 3 
on account of a calculation error in the earlier values: the correct table 
is included in Technical Report No. 4. 

wave functions had been punched out for the computer, and such that 
A ,  is as near as possible to Z l R ,  as discussed in 8 4. The results for calcium 
should be regarded as tentative because for some computational reasons 
R, had to be made much smaller than is desirable from the point of view 
of the latter requirement. E ,  was calculated from (22)-(27) with values 
of M.I.E.’s from Moore (1949) and B.E.E.’s from Kittel (1956, p. 99). 
E ,  comes approximately a t  the lowest valence Z=O level, and so A ,  for 
the solid can be interpolated easily from the atomic values. For 1 = 1 and 
2 considerable extrapolation is required, which we have done by straight 
line from the lowest two or three atomic values. For some ions only one 
atomic energy value is known, in which case the slope of the line is deter- 
mined from comparison with neighbouring elements and rows in the 
periodic table. I n  all cases the weighted mean of atomic levels in one 
term were used, so that our calculations include no spin-orbit coupling. 
The extension of the model potential to spin-orbit coupling will be 
discussed by Animalu (1965b). For some applications, such as the 
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calculation of the band mass or the thermoelectric power, the variation 
of model potential with energy is required. The individual A@,,) at 
the atomic levels En, have therefore been preserved as Technical Report 
No. 4, available on request from the address in f 1. 

-- 
Li 
Na 
K 
Rb 
c s  

Be 

Ca 
Ba 
Zn 
Cd 

Mg 

Hg 

A1 
Ga 
In 
T1 

Si 
Ge 
Sn 
Pb 

As 
Sb 
Bi 

Se 
Te 

Table 4. 

0-336 
0.305 
0.240 
0.224 
0.205 

1.01 
0.78 
0.54 
0.45 
0.99 
0.88 
0.97 

1 *38 
1.44 
1.32 
1-44 

2-08 
2.10 
1.84 
1-92 

2.7 1 
2.42 
2.38 

3-42 
3-04 

0.504 
0.339 
0.256 
0.226 
0.207 

1.22 
0.88 
0.50 
0.34 
1-14 
0.98 
1.11 

1.64 
1.58 
1.46 
1.51 

2.39 
2.34 
2.04 

(2.00) 

(3.08) 
2-66 
2.58 

(3.77) 
3.32 

Parameters for screened model potential 

0.455 
0.402 
0.368 
0.384 
0.366 

1.48 
0.99 
1.49 
1.07 
0.98 
1.11 
0.85 

1.92 
1.41 
1.10 
0.98 

2.44 
2.09 
1.62 
0.90 

:2.0) 
[1*8) 

(3.0) 

0.25 

(2.80) 

2.8 
3.4 
4.2 
4.4 
4.8 

2.0 
2.6 
2.6 
3.4 
2.2 
2.6 
2.6 

2.0 
2.4 
2.4 
2.4 

2.0 
2.0 
2.0 
2.1 

2.0 
2.0 
2.0 

2.0 
2.0 
- 

n 

144.9 
254.5 
481.4 
587.9 
745.5 

54.4 
155.9 
293.5 
424.1 
102.0 
144.8 
157.8 

111.3 
131.4 
175.3 
191.7 

134.3 
151.8 
181.5 
203.4 

145.2 
204.0 
239-4 

181.6 
227.5 

- 
z 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 

5 
5 
5 

6 
6 

- 

- 

1.33 
1.096 
0.884 
0.827 
0.775 

1.0 
1 .o 
1.0 
1.0 
1.1 
1 *o 
1.0 

1 *o 
1.0 
1 .o 
1.0 

1 *o 
1 .o 
1 .o 
1.0 

1.0 
1.0 
1.0 

1.0 
1 *o 

1.47 
1.85 
2.51 
2.82 
3.12 

0.64 
1.47 
2.00 
2.70 
1.57 
1.95 
2-12 

1.08 
1.17 
1.74 
1.98 

0.74 
0.83 
1 *40 
1.59 

0.89 
1.17 
1.40 

0.66 
1.04 
- 

0.046 
0.052 
0.069 
0.080 
0.085 

0.010 
0.043 
0.057 
0.0'37 
0.079 
0.107 
0.126 

0.024 
0.026 
0.063 
0.085 

0.006 
0.008 
0.032 
0.04 1 

0.010 
0.017 
0.024 

0.003 
0.010 

I E C I  

0-078 
0.072 
0.065 
0.063 
0.060 

0.097 
0.086 
0.078 
0-074 
0.091 
0.087 
0.086 

0.094 
0.092 
0.090 
0.089 

0.095 
0.094 
0.092 
0.091 

0.096 
0.093 
0.0'3 1 

0.096 
0.094 

-- 

Note: All quantities are in atomic units except Ec which is in rydbergs. 
The numbers in brackets had to be determined by extrapolation from a single 
point as described in f 6. 

The value of SZ in table 4 corresponds to the solid state at the lowest 
temperature tabulated by Pearson (1968). V(q) is not very sensitive to 
change of SZ for q at and beyond the first reciprocal lattice vector since 
the dielectric screening factor e(q)  of I is already down to 1.1 to  1.2 there 
and SZ only really comes into the screening. In  order to apply the present 
results at slightly different R one must remember the matrix elements 
are for wave functions normalized to unity over SZ, and V(q)  is insensitive 
to The screening theory of I11 has been for fixed q, not fixed q/2k,. 
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used, as if all the elements were free-electron metals. Thus for the semi- 
conducting elements the V(q)  a t  low q are meaningless, but certainly for 
q /2k ,  2 the present screening theory should be as good as for a metal. 
It should be emphasized that we are only calculating the screening in 
linear perturbation theory, and that further hybridization effects which 
are certainly very important in group IV semiconductors have to be 
calculated in the manner of Bennemann (1964) using our linear theory as 
starting point. The m* for the alkalis are taken from Ham (1962) and 
the remainder set equal to unity in ignorance. This should be quite a 
good guess, since the usual large electron-phonon contribution to the 
electronic specific heat mass does not enter into our screening m* as 
discussed in I1 and IV : also the electron-electron contribution, which 
does enter ourm*, israther small (Rice 1965). We could have re-calculated 
all the V(q)  using the somewhat uncertain estimated band masses of $6, 
but it does not seem worth re-calculating all the V(q)  just with this modifi- 
cation. R, has been taken from Winkler (1955, table 11), and aeff in 
table 4 corresponds to (19). The lEcl was used by mistake instead of 
-p, in (14) for the correlation correction, but the error is negligible as 
already remarked in $ 2 .  

The final results for V(q)  shown in fig. 2 include the factor D(q) from 
eqn. (4). As mentioned in $ 1, detailed numerical tables, with and without 
the factor D(q),  are available on request. They will also be included 
without D(q) by Harrison (1966). Finally table 5 shows the comparison 
with values of V ( q )  a t  the first few reciprocal lattice vectors, determined 
from the observed shape of the Fermi surface in the metals and from the 
optical spectra in the case of the semiconductors. As discussed in $ 5  1 
and 4 and in 11, one is not exactly comparing like with like because the 
experimental values of V ( q )  are determined from truncated secular equations 
so that they include some higher-order corrections which are calculated 
to  be about 0.01ryd or less even for a metal with relatively large V(q)  
like lead. I n  the case of Si and Ge, the analysis of the optical spectra did 
not take into account any variation of V(q = 0) with position in the band : 
this effect is appreciable and thus the ' experimental ' V ( q )  will be distorted 
to some extent. 

The agreement in table 5 between calculation and experiment is on the 
whole most gratifying, and shows that we have basically arrived a t  our 
objective of setting up the potential in a solid to about 0.01ryd. I n  
some cases the error is a bit greater : in the group IV semiconductors, as 
is well known, the linear screening theory is inadequate because of the 
large magnitude of V,,, and the presence of many reciprocal lattice vectors 
of magnitude less than or comparable with Zk,. There is also some 
doubt about many-body effects in the screening, as discussed in IV. 
However, the calculations show that we have more or less arrived a t  the 
end of the line. Perhaps the treatment of correlation and exchange in 
the screening theory could be improved somewhat along the lines of Kohn 
and Sham (1965), but otherwise i t  is clear that improving significantly on 
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the accuracy of 0.01 ryd would raise a whole host of difficult many-body 
problems and self-consistency problems. The correlation and ortho- 
gonality corrections, including the orthogonality correction to the valence- 
valence exchange and correction, are all of this magnitude, and our 
approximations to them are rather crude. Furthermore, the treatment of 
the conduction electrons as a free-electron gasin the screening theory while 
satisfactory to 0.01 ryd, would probably not do at  the level of 0.001 ryd. 
The importance of non-linearity in screening has already been mentioned. 
Finally there is the question of the additivity of the model potential and 
the Vrest in ( Z O ) ,  which we could only deal with by taking quite arbitrarily 
some weighted mean of (26) : this is an inherent limitation of the model 

Table 5. Comparison between calculated V ( q )  and experiment 
Recip. 
lattice 
vector 

Q - 
2kF 

0.55 
0.90 
1-07 

0.55 
0.90 
1.07 

0.78 
0.88 

0.69 
0.81 

V(Q)  

rYd 
calc. 

-0.18 
+ 0.05 
+ 0.08 

-0.19 
+ 0.03 
+ 0.07 

+ 0.020 
+ 0.057 

- 0.085 
- 0.032 

V(P) 

rYd 
expt. 

- 0.21 + 0.04 + 0.08 

- 0.23 + 0.01 + 0.06 

+ 0.0179 
+ 0.0562 

- 0.084 
- 0.039 

Refce. 

Brust 
(1964) 

Brust 
(1964) 

} tkiyft 
Anderson 
and Gold 
(1965) 

potential, as is the need to extrapolate the A,(E) from the atomic values. 
Thus it seems doubtful if anyone will ever wish to compute the potentials 
to much higher accuracy. 

$ 6 .  APPLICATION TO EFFECTIVE MASS 

In this section we calculate an average Hartree effective band mass at  
the Fermi level. By this we mean that the pseudo-wave functions are 
taken as single plane waves with no mixing of waves by the periodic 
potential, and we calculate their energy expectation value : 

The effective mass m* is defined by : 

(31) +-, . . . . . . . tik d e  Rk dW 
m* dk m dk 

- -  - - - - -  

where 
W ( k , E ) =  (klUlk). . . . . . . . (32) 
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The second term in (31) contributes in two ways : firstly the parameters 
A,  in the model potential depend on the energy E and hence on E ; secondly 
the projection operators in (1 )  mean that the potential is not simply a 
local one, so that (klUlk) is not independent of k .  We have: 

. . (33) 

(34) 

d w  aw a w d r  

1 - a wlaE 
1 - (m/h2k)a w / a k  

+- -  - 
dk ak aEdk'  * ' a ' * 

whence 

. . . . . .  - - -  m* 
m 

The model potential at r > R, is purely local and independent of E ,  
as are the screening potential of the electrons and the orthogonality and 
correlation correction. They therefore contribute only a constant to W 
and nothing to (34). The only contribution comes from the model potential 
of the bare ion at  r < R,, which we again take in the form (9) of 11. 

K 

4.2 
0.90 
0.88 

-~ 

-- 
Al 
-- 
2.0 
1.10 

Pb 

2.1 
0.67 

~ - _ _  

Table 6. Effective masses 

Rb 

4.4 
0.88 
0.83 

Ga 

2.4 
0-87 

Bi 

2.0 
0.61 

Element Li 
-- 

2.8 
1.36 
1.33 
-- 

Cs 
-- 
4.8 
0-75 
0.78 

In 

2.4 
0.74 

-- 

-- 

R M  
m*/m 
m*/m (Ham 1962) 

Element 

Na 

2.2 
0.57 
- 

Be 

2-0 
1.80 

T1 

2 4  
0.66 

R 1\f 
m*/m 
m*/m (Ham 1962) 

Na 

3.4 
1.13 
1.10 

Zn 

2.2 
0.89 

Ge 

2.0 
0.91 

I Element 

Na 
-~ 

4.0 
1.13 
- 

-- 

Hg 
-~ 

2.6 
0.69 

-- 
Sn 

2.0 
0.88 

-- 

2.6 
1.09 

Si 

2.0 
1.00 

The results of evaluating (34) are shown in table 6. They are compared 
for the alkalis with the masses fitted by Ham (1962) to the results of his 
detailed band structure calculations. The values of A ,  used were the 
same as in table 4, and the derivatives dA,/dE taken from the A,(E) in 
Technical Report No. 4. In  the case of sodium we have used four different 
R,. As in fig. 1, two are extreme values, and the difference between 
RM = 3.0 and 3.4 is probably a good measure of the reliability of the m*. 
When the A,  are not nearly equal to Z/RM it is not a good approximation 
to take the pseudo-wave functions as single plane waves: as one would 
expect, the effective mass, being a derivative with respect to energy, 
is much more sensitive to such an approximation than the absolute 
position of the Fermi level in table 3. The comparison for the alkalis 
with the effective masses of Ham (1962) is quite good, but it is not clear 
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how reliable the results are for the polyvalent metals. At least they 
show the qualitative trend with row in the periodic table expected from 
the theory of Cohen and Heine (1958). 
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A P P E N D I X  
I n  (2), V(q)  depends not only on q, but also to some extent on k and 

k'= )k+ q), while our calculations refer to a particular choice of k and k' 
as discussed in Q 5. Since for many purposes matrix elements are required 
for other values of k ,  k', we give here the complete formulae derived on 
the basis of I1 and I11 : 

(34) 
G(q) 
4 q )  

V ( q ;  k ,k ' )=  - +F(q,k,k')+I(q) .  . . . . 
Here G(q) is the local part of the unscreened potential and e(q) the screening 
factor defined in (23)-(25) of 11. We use the approximation (8) of 11, 
and obtain : 

&A2 
G(q)  = - - [sin (qRM) - qRM cos ( q R M ) ]  

Qq3 

Here the last term comes from the correlation and orthogonality corrections 
defined by (14), (15), (19). The same aeff is also to be used in the formula 
(23) of I1 for r (q) .  Note that in these formulae the A, must be in atomic 
units (Le. double rydbergs) and pc  in rydbergs, as given in the tables. All 
other quantities are in atomic units. In  (34) F 
comes from the non-local part of the bare ion model potential. For 
k = k' we have 

V(q)  is then in rydbergs. 

F(q, k ,  k') 
= - A,) { [ jo (kR~) ] '  - [ k R ~ ] - l  COS (kR&il(kRM)} 

- 12'rrR-'R&f3(A1-A2) { ~ l ( k R M ) 1 2  -j0(kR&f)j2(kRM)]7 (36) 
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where 

j,(x) = x-l sinz, 
j , ( z )  = x-, sinx - x-1 cos x, 
j,(x) = ( 3 r 3  - x - l )  sin x - 3x-, cos x. 

For k # k‘ we have : 

- k 5 ’ 2 ( k ’ R E d ) j l ( k R b I ) l .  (37) 

This formula is the same as eqn. (4.5) of 111 except for correcting an  error 
of a factor RM2. Finally in (34) the I (q)  is the potential produced by the 
electrons screening the non-local part of the model potential and is defined 
by : 

4 = 1 ( x2 - x’2)-2[Kjt+l(KRbI)jt(K’Rbl) - K ’ j , , l ( K ’ ~ M n ) ~ t ( K ~ , ) l  
K < k p  

x p,(cOs ex,,) a 3  %, 

where K‘= x + q  and f(q) is given by (2.3) of 111. There is no simple 
correct way of including in this the effect of the orthogonality correction 
in the screening electrons, but since the whole term is small this effect 
can be ignored. The E ’ ( q )  in (38) is therefore the same as (23) of I1 except 
for omitting the factor (1  + aeii). 
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