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Abstract Some historical documents, especially the Einstein–Besso manuscript
from 1913, an extensive notebook by H. Thirring from 1917, and the correspondence
between Thirring and Einstein in the year 1917 reveal that most of the merit for the
so-called Lense-Thirring effect of general relativity belongs to Einstein. Besides tel-
ling this “central story” of the effect, we give a short “prehistory”, with contributions
by E. Mach, B. and I. Friedlaender, and A. Föppl, followed by the later history of the
problem of a correct centrifugal force inside a rotating mass shell, which was resolved
only relatively recently.

Keywords Lense-Thirring effect · Dragging · Coriolis force · Centrifugal force ·
Mach’s principle

1 Introduction

The experiment with the rotating bucket was the decisive reason for I. Newton to intro-
duce the concept of an absolute space. In contrast, E. Mach argued that this experiment
might also fit under the postulate of relativity of rotation if one assumed appropriate
influences of (rotating) cosmic masses on local systems. At the end of the nineteenth
century, the brothers B. and I. Friedlaender considered such non-Newtonian “gravita-
tional forces” in more detail; they, as well as A. Föppl, even performed (unsuccessful)
experiments to detect such forces.

A more systematic analysis of such additional forces began when A. Einstein tried
to generalize the Newtonian theory of gravity so as to obey (at least locally) the
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principle of special relativity. To do so, he first considered a scalar, relativistic theory
of gravity, and found therein the phenomenon of linear dragging (of test masses and
inertial systems) inside a linearly accelerated mass shell. Soon afterwards he developed
(with M. Grossmann) the tensorial Entwurf theory, and then derived (with M. Besso)
a Coriolis-type force within a rotating, spherical mass shell (a force of one half the
value in the final version of the theory of general relativity), and a motion of the nodes
of planets due to the sun’s rotation (one fourth of the value in the theory of general
relativity).

In 1917, on the basis of general relativity, H. Thirring started an extensive notebook,
“Wirkung rotierender Massen” (the effect of rotating masses). The first third of this
notebook considers mainly “centrifugal effects” of second order in the angular velocity
ω, and is of little lasting value. Only after a letter from Einstein (dated 2 August 1917)
did he also consider Coriolis effects (of first order in ω), calculating such effects near
the center of a rotating mass shell and in the far field of a rotating spherical body.
Astronomical applications of these results were performed by J. Lense. In today’s
literature they are referred to by the somewhat misleading name, “Lense-Thirring
effects”, whereas Einstein deserves most of the credit for his discovery and insight
into this new “gravitational force”.

Thirring’s notebook and his well-known publication [1] focus primarily on a
so-called centrifugal force. However, this force (as induced by rotating bodies in a
laboratory or by the rotating earth) is, on the one hand, far below any measurability
even with present technology; on the other hand, it also has, besides the structurally
correct components, an incorrect axial component. Later corrections of Thirring’s
work by Lanczos [2] and Bass and Pirani [3] could not cure this defect. A solution
of this “centrifugal force problem” in a rotating mass shell (of mass M) requires an
aspherical deformation of the shell, a flat space-time in its interior, and a treatment in
orders M2 and higher. These requirements were not fulfilled until 1985 by Pfister and
Braun [4]. Herewith, the postulate of relativity of rotation was realized—within the
model class of rotating mass shells—as completely as one can wish.

In recent years the so-called Lense-Thirring effect (of first order in ω) has received
new interest and importance because—more than 85 years after the theoretical pre-
dictions of Einstein, Thirring, and Lense— it has become possible to directly measure
this tiny effect. (Indirect confirmations are contained in some earlier precision tests of
general relativity, like Lunar Laser Ranging, and the analysis of double pulsar systems.)
On the one hand it has been possible to follow the orbits of the geophysical LAGEOS
satellites so precisely that the motion of their nodes due to the earth’s rotation showed
agreement with the predictions of general relativity within 10% [5]. On the other hand,
in 1959–1960 Pugh [6] and Schiff [7,8] already discovered that the gravitomagnetic
dragging phenomenon of general relativity leads to another effect—sometimes called
the Schiff effect—which might be suited for experimental confirmation: the rotation
axis of a gyroscope, orbiting (inside a satellite) the earth at a height of, e.g., 650 km,
undergoes, besides other, more dominant effects, a precession of 42 milliarcseconds
per year, due to the earth’s rotation. (For more details on this effect see, e.g., [9],
Chap. 6) At the Hansen Laboratory of Stanford University a corresponding satellite
mission, Gravity Probe B, was in preparation for more than 35 years, pushing techno-
logy to an extreme in many places [10]. On 20 April 2004 the satellite was successfully
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launched. The period of data-taking is now finished, and hopefully in 2007 the results
(with a predicted accuracy of 1% or better) will be communicated.

2 The “prehistory” (Mach, Friedlaender, Föppl)

This section is relatively brief because this “prehistory” is treated extensively in [11],
with longer (translated) quotations from Mach, Friedlaender, and Föppl. The idea that
rotating bodies may exert not only the static (Newtonian) gravitational force but an
additional “dragging force” on test particles, deflecting them in the direction of the
rotation, was presumably first formulated by Mach in 1872 [12]: “Obviously it does
not matter whether we think of the earth rotating around its axis, or if we imagine a
static earth with the celestial bodies rotating around it.” (This quotation can be seen as
a type of definition for the “postulate of relativity of rotation”, frequently appearing in
this paper.) As is well known, Mach elaborated on these questions in his famous book
on mechanics [13]: “The principles of mechanics can, presumably, be so conceived
that even for relative rotations centrifugal forces arise. Newton’s experiment with the
rotating vessel of water simply informs us that the relative rotation of the water with
respect to the sides of the vessel produces no noticeable centrifugal forces, but that
such forces are produced by its relative rotation with respect to the mass of the earth
and other celestial bodies. No one is competent to say how the experiment would turn
out if the sides of the vessel increased in thickness and mass till they were ultimately
several leagues thick.” And although Mach did not provide a concrete extension of
Newton’s laws of inertia and gravitation, e.g., by adding velocity-dependent forces,
and although he did not perform any “dragging experiments”, Mach’s mechanics was
a decisive stimulus for other physicists (like Friedlaender, and Föppl; see below) to
do such things. Conversely, Mach reacted, in later editions of his mechanics (e.g., in
the third edition of 1897, and in the sixth edition of 1908) quite positively to these
attempts.

In 1896 the Friedlaender brothers published a very interesting booklet [14]. On the
one hand they formulated, in extension of Mach’s work, interesting, in some cases
even prophetic theoretical ideas: “It seems to me that the correct form of the law of
inertia will only then have been found when relative inertia as an effect of masses on
each other and gravitation, which is also an effect of masses on each other, have been
derived on the basis of a unified law” (already a hint at an equivalence principle!). At the
end of the booklet, B. Friedlaender even vaguely anticipates Einstein’s incorporation
of inertia and gravity into the properties of space and time: “It is also readily seen that
in accordance with our conception the motions of the bodies of the solar system can
be regarded as pure inertial motions, whereas in accordance with the usual conception
the inertial motion, or rather its gravitationally continually modified tendency, strives
to produce a rectilinear tangential motion.” I. Friedlaender’s concrete—but of course
unsuccessful—experiment searched for the possible influence of a rapidly rotating,
heavy fly wheel on a torsion balance mounted above the fly wheel, in line with its axis.

A quite different, and, in principle, more promising experiment was performed by
Föppl [15]. Here the rotating source was the whole earth, and the test system was a
gyroscope, consisting of two heavy fly wheels, rotating with angular velocity of up to
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2,300 rpm. Föppl tested whether the rotating earth induced a Coriolis-type “dragging
force” (of first order in its angular velocity ω, in contrast to the ω2-type effects due to
a centrifugal force) on the gyroscope axis, and he found that such an effect was less
than 2% of ω.

3 The central story (Einstein, Thirring, Lense)

As is well known, Einstein started his search for a relativistic theory of gravitation
in 1907 [16], where he introduced the equivalence principle, and derived therefrom
a gravitational redshift and a light deflection. In 1912, Einstein formulated a scalar,
relativistic gravitation theory [17], and showed that such a theory necessarily has to
be nonlinear, in order to obey the equivalence principle. Within this theory, Einstein
performed the first concrete calculation of a Machian dragging effect [18]:1 first he
introduced the model of an infinitely thin, spherical mass shell (mass M , radius R), a
model which is very useful still today in general relativity, because (a) it represents the
optimal substitute for the Newtonian mass point which is forbidden in general relativity
due to the collapse phenomenon; (b) it allows the study of mass effects by solving
only the vacuum Einstein field equations (in the interior and exterior of the mass
shell). Einstein then considered a test mass m at the center of this shell and concluded
(within his scalar theory) that the presence of the mass shell M induces (in units with
G = c = 1) an increase of m by a factor (1 + M/R). On the basis of this result he
calculated that if an external force exerts a linear acceleration � on the mass shell,
the test mass m is dragged along with the acceleration γ = (3M/2R)�. Although
these results surely encouraged Einstein in his Machian approach toward a consistent
relativistic theory of gravity, it has to be said that the above results are obsolete from
a modern point of view. It should have been doubtful already in 1912 that a mass
increase due to a gravitational field could be experimentally confirmed because such
a field acts universally on all physical systems and measuring instruments. Indeed, in
general relativity it was, after numerous controversial claims, shown by Brans [19]
that such a mass increase is only an untestable coordinate effect. Furthermore, the title,
“Is there a gravitational effect in analogy to the electrodynamic induction?” of [18] is
somewhat misleading because a scalar theory can hardly produce an effect analogous
to the (vectorial!) electrodynamic induction.

Very soon after the publication of paper [18], partly still in Prague but mostly
after his move to Zürich in August 1912, Einstein reached decisive new conclusions
regarding a relativistic theory of gravitation (compare [20] for a more extensive dis-
cussion of these issues.): it should be based on a non-Euclidean (pseudo-Riemannian)
geometry with metric tensor gµν ; it should be a tensorial theory with the whole energy-
momentum tensor Tµν as source of the gravitational field; and it should, if possible, be
covariant with respect to general coordinate transformations. The Zürich notebook of
this time (see [21]) reveals that Einstein and the mathematician M. Grossmann were

1 The reason why this article is “hidden” in a very unusual journal is that Einstein was on very friendly
terms with H. Zangger, a professor for forensic medicine in Zürich, and the quoted volume was a birthday
present to Prof. Zangger.
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even considering the Ricci tensor for the “left-hand side” of the field equations, and
were within a hair’s breadth of finding the final Einstein equations of general relati-
vity of November 1915. But the erroneous conclusion that such a theory would not
lead to the correct Newtonian limit urged them to discard general covariance, and to
propose in the so-called Entwurf theory [22] for the left-hand side of the field equa-
tions a “tensor” which is covariant only with respect to a reduced class of coordinate
transformations.

Whereas the Entwurf paper contains no direct applications of the new gravitatio-
nal theory, such applications were performed, immediately after finishing this paper,
by Einstein with his friend M. Besso in June 1913, in the 53 pages of the so-called
Einstein–Besso manuscript. (See [23], pp. 344–473, where this important manuscript
is reprinted, together with extensive comments.) The main objective of this manuscript
was the perihelion advance of Mercury, which at that time was the only observation in
conflict with Newton’s theory of gravitation. However, within a weak-field approxi-
mation of the Entwurf theory, Einstein and Besso got a value of 18 arcseconds per
century for Mercury’s perihelion advance, instead of the experimental value of 43
arcseconds per century (more precisely, the value was 5/12 of the value in general
relativity). This must be the reason why Einstein never published these calculations,
and it surely was one of the decisive reasons for later discarding the Entwurf theory.
(It may be remarked that Droste [24] calculated, independently of Einstein and Besso,
the same “wrong” result for the perihelion shift in the Entwurf theory.) But besides this
incorrect result for the perihelion shift, the Einstein–Besso manuscript contains some
other interesting and future-oriented results. On pp. 36–37 they derive a Coriolis force
inside a spherical, rotating mass shell (mass M , radius R), and calculate the resulting
“dragging” of test particles: for the ratio f between the induced angular velocity of
the test particles and the angular velocity of the mass shell they get f = 4M/3R,
half the value which Thirring derived in 1918 in general relativity [1]. This is the only
part of the manuscript entering Einstein’s great talk in September 1913 at the Natur-
forscherversammlung in Vienna [25], where he also remarks that “unfortunately the
expected effect is so small that we cannot hope to verify it in terrestrial experiments
or in astronomy.” On p. 38 of the manuscript, Einstein and Besso derive the dragging
of test particles inside a linearly accelerated mass shell: γ = (2M/R)�, a factor 4/3
bigger than in the scalar theory of 1912 [18], and now derived without the dubious
detour of a mass increase due to a gravitational field. On pp. 45–49 of the manuscript,
Einstein and Besso calculate the motion of the nodes of planets in the field of the
rotating sun. If one compares their result ([eq. 331] on p. 49) with the later calculation
by Lense and Thirring [26] in general relativity (eq. 17 on p. 161), and adjusts the
different notations, it can be seen that the effect in the Entwurf theory is only 1/4 of
the effect in general relativity. (When Einstein and Besso calculate the effect for the
planets Mercury and Venus, they get, however, much too large values because they
insert a wrong value for the solar mass.)

As far as we know, in the years 1915–1916 neither Einstein nor anybody else cal-
culated any gravitomagnetic or dragging effect in the Entwurf theory or in general
relativity. In 1917 Thirring started to calculate such effects within general relativity,
effects which had already been calculated—at least partly—by Einstein (and Besso)
in 1912–1913, with very similar methods and results in the scalar and/or Entwurf
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theory. Papers [1] and [26] do not clearly reveal how familiar Thirring was with these
results; but he must have known about Einstein’s speech held at the Vienna congress
in 1913 [25], since Thirring himself gave a talk there (on the specific heat of crys-
tals), and Einstein’s speech was the main attraction of the congress. Furthermore, at
this time Thirring frequently published in the same journal [Physikalische Zeitschrift,
e.g., vol. 13(1912)266, vol. 14(1913)406 and 867, vol. 15(1914)127 and 180] in which
Einstein’s speech appeared, and in the short article [27] on the formal analogies bet-
ween the Maxwell equations and the linearized Einstein equations, Thirring explicitly
quotes [25]. Of course, Thirring did not know all the details of the Einstein–Besso
manuscript. However, in a letter of 2 August 1917 (see [28]), Einstein told Thirring
that he had calculated the Coriolis field of the rotating earth and sun, and its influence
on the orbit elements of planets (and moons).

A later article by Thirring [29], a tribute on the 50th anniversary of Mach’s death,
reveals that Thirring originally tried to set up an experiment for measuring centrifugal-
type forces inside a heavy, rotating hollow cylinder. This is somewhat strange: whereas
Friedlaender [14] and Föppl [15] can be pardoned for not having estimated—or not
having been able to estimate—the order of magnitude of the effect searched for (com-
pare the remarks by W. Rindler, J. Norton, and J. Renn in the discussion in [11],
pp. 56–57), in the year 1917, 12 years after the publication of Einstein’s special relati-
vity, it should have been clear that such a relativistic correction to Newton’s theory of
gravitation can be at most of the order of M/R, i.e., below the ridiculously small value
of 10−24 for all conceivable laboratory systems (M ≤ 100 kg, R ≥ 10 cm). Further-
more, the quantity M/R was explicitly contained in [25], and, e.g., in the Schwarz-
schild solution of 1916. Thirring [29], however, reports that he turned from the intended
experiment to a theoretical calculation of the expected effect because, in the turmoil
of the First World War, he could not organize the equipment for the experiment.

The history of the origin and development of the two central papers [1] and [26] is
well documented because the estate of Hans Thirring, stored at the “Österr. Zentralbib.
für Physik” in Vienna, contains the already mentioned 156-page notebook, “Wirkung
rotierender Massen” [30]. This notebook is a remarkable document, and it allows a
detailed view into the workshop of a theoretical physicist of that time. In Thirring’s
original numbering the notebook has only 107 pages, and covers mainly the year 1917,
the first explicit date, 24 April 1917, appearing on Thirring’s page 17. However, the
notebook also contains numerous later additions, partly on the reverse sides (pages
59R, 61R, . . .), the last entry dating from 2 July 1922. In the following we try to
analyze, as far as possible, Thirring’s notebook in chronological order and according
to Thirring’s page numbering. The pages 1–18 can be considered a type of “warm
up”, with detailed calculations of metric components and Christoffel symbols, partly
(e.g., pp. 8–12) crossed out by Thirring himself. On some pages Thirring speaks of
the energy-momentum tensor and of the metric tensor of a rotating sphere but the
relevant formulas are obviously wrong because they contain the factors sin ωt and
cos ωt , forbidden for a stationary system. The pages 15–16 treat (again wrongly)
the field of a thin ring; pages 17–18 contain calculations in connection with Einstein’s
cosmological paper [31]. On p. 19 Thirring begins a calculation of the field of a rotating
spherical mass shell, first for points near the origin in the equatorial plane, and from
p. 23 on, also for points outside this plane. But he confines himself to the diagonal

123



On the history of the so-called Lense-Thirring effect 1741

components gii which are of order ω2. On p. 24, dated 26 April 1917, he states “The
appearance of the axial force component is unintelligible to me”, and then “After a
discussion with Flamm I realize that the hitherto existing contradictions presumably
are solved if, in the integration, the volume contraction due to the motion is taken into
consideration”. (From today’s perspective it has to be said that the mass increase of
the equatorial parts of the mass shell due to their motion is, as also discussed in [1],
one reason for the appearance of the axial component of the “centrifugal force”. But,
as will be analyzed in more detail in Sect. 4, there are other “centrifugal effects” in a
rotating mass shell, overlooked by Thirring and other authors, which together allow for
a correct centrifugal force field, without an axial component.) From p. 25 on, Thirring
comes back to the rotating sphere of constant density, and calculates the field (but
again only the diagonal components gµµ) for points far off the sphere. Pages 32–44
treat the “field of the rotating spherical space”. Presumably, Thirring has realized that
the rotating sphere and the rotating mass shell with their asymptotically Minkowskian
boundary conditions do not answer the Machian question concerning a static Newton
bucket inside a rotating celestial sphere, and that a cosmological treatment (possibly
with a cosmological constant) is necessary. (Compare the introduction to [1].) On
p. 45 Thirring says: “One should publish: I. The field of the rotating sphere and of
the spherical shell. II. The transformation from Einstein to de Sitter coordinates. III.
The cosmological solution in orthogonal Einstein coordinates.” Pages 49–51 contain
the draft of a letter to Einstein, dated 11 July (corrected to 17), 1917, reprinted as
document 361 in [28]. Thirring writes, e.g.: “Before I publish my results, I should like
to send you a short report, in the hope of receiving a further impulse directly from
you”. He tells about his calculations for the rotating mass shell and for the rotating
sphere, but he gives only the g44 components, with their contributions of order ω2,
and he discusses these under the aspect of a centrifugal force, also mentioning the
surprising axial component of the force. At the end of the letter, Thirring asks Einstein
whether he could think of an experimental confirmation of such a centrifugal effect
on the innermost moon of Jupiter. Einstein’s answer of 2 August 1917 (document 369
in [28]) is quite short, but it exposes the weak points in Thirring’s work (up to this
time) in an admirably clear and concise way: “To your example of the hollow sphere
it is only to be added that, besides the centrifugal field whose axial component you
interpret so nicely, also a Coriolis field results which corresponds to the components
g41, g42, g43 of the potential, and which is proportional to the first power of ω. This
field acts orthogonally deflecting on moving masses, and produces, e.g., a rotation of
the pendulum plane in the Foucault experiment. I have calculated this dragging for
the earth; it stays far below any measurable amount. Such a Coriolis field is produced
also by the rotation of the sun and of Jupiter, and it causes secular changes of the
orbital elements of the planets (respectively, the moons) which, however, stay far
below the measurement error. . .Nevertheless, the Coriolis fields seem to be accessible
to measurement more easily than your correction terms to g44 because the latter have
the same symmetry properties as the field distortion due to oblateness.”

The first entries in Thirring’s notebook after the receipt of Einstein’s letter (pages
54 and 55, dated 5 and 11 September 1917) deal with topics he has never conside-
red before: “Calculation of g14, g24, and g34 for the rotating spherical shell”, and
“Determination of the Coriolis force from g24.” The notebook then has a time-gap
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of 2 months, where Thirring had to do practical work, presumably for the military
authorities, as Thirring’s second letter to Einstein of 3 December 1917 (document
401 in [28]) indicates. Pages 56–83, covering the period 14–29 November 1917, take
up the calculations for the rotating shell and the rotating sphere, but now adding to
the centrifugal-force-type terms of order ω2 the Coriolis-force-type terms of order
ω, requested by Einstein. Interspersed here are comments on a comparison with the
Maxwell equations (later published in [27]), and on the field of a uniformly moving
mass point. Pages 84–92, dating from 29 November to 14 December 1917, contain a
first draft (mostly in shorthand) of article [1], but here under the title, “On the question
of the relativity of rotational motions in Einstein’s theory of gravitation”. As already
mentioned, on 3 December 1917, Thirring writes a second letter to Einstein, the draft
of which is also contained in the notebook. He says that he is preparing two articles
([1] and [26]) for publication. He then addresses a problem, also appearing at the
end of [1]: by transforming the interior of the rotating mass shell to a coordinate sys-
tem rotating with an appropriate angular velocity ω′, one can eliminate the Coriolis
force. But, according to Thirring’s results, the centrifugal force does not vanish in
the same rotating system. Thirring also mentions some supposed problem with the
energy balance. In his immediate answer of 7 December 1917 (document 405 in [28]),
Einstein, on the one hand, reveals the error leading to the suspected violation of the
energy balance. Einstein also tries to answer Thirring’s first question on the “relativity
of rotation”, but here he is not really successful, in particular when he says that this is
already guaranteed by the general covariance of the equations of the theory. Pages 93–
99 of Thirring’s notebook, covering the period 7–15 December 1917, mainly contain
further calculations on the rotating mass shell and on the rotating sphere, and conside-
rations about the reference system rotating with angular velocity ω′. The final paper
[1] was then received by the publishers on 21 December 1917. (Another paper [32]
also exists—the write-up of a lecture of 6 November 1917, at the chemical–physical
society of Vienna—which summarizes the contents of [1] but has a more general and
qualitative character. In the estate of Hans Thirring at the “Österreichische Zentralbi-
bliothek für Physik” in Vienna there is also a typescript [33] which partly agrees with
[32] but is even more qualitative.)

Pages 101–105, dated 25–28 January 1918, contain the draft (again mostly in shor-
thand) of Sect. 1–2 of paper [26]. Here, Thirring omits the—partly very involved—
expressions of order ω2, worked out in the notebook, and confines himself to the terms
of first order in ω. Since Thirring’s notebook contains no details of Sect. 3: “Calcula-
tion of the perturbations due to the proper rotation of the central body” (transformation
of the equations of motion in Cartesian coordinates in Sect. 2 to the orbital elements
used in astronomy), nor of Sect. 4: “Numerical results” of the paper [26], it is plau-
sible that these (and only these) parts were calculated and formulated by J. Lense.
This supposition is supported by the sentence, “My colleague, Prof. Lense,. . . has
then taken over the task of comparing the results with observations on stars” in Thir-
ring’s later article [29], and by the short article [34]. Paper [26] was received by the
publishers on 21 February 1918. As already mentioned, the calculations in [26] are
only performed for the far field, i.e., for distances r from the center of the rotating
body (radius R) with r/R � 1. Therefore, the calculations as such apply neither to the
Gravity Probe B experiment [10] with r/R ≈ 1.10, nor to the measurements with the
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LAGEOS satellites [5] with r/R ≈ 1.92. However, a continuation of the calculations
of [26] to higher orders of R/r would reveal that for the exterior gravitational field
of a slowly rotating, spherical body all these higher order terms vanish, and that the
Coriolis acceleration �b for a test mass of velocity �v reads for all values r/R > 1

�b = 2�v × �H , with �H = 2M R2

5r3

[
�ω − 3

( �ω�r)�r
r2

]
. (1)

(More elegantly, it is already clear from symmetry considerations that a first-order
rotational perturbation of a spherical system can only produce a pure dipole field
proportional to r−3.)

For completeness, we add some remarks on the rest of Thirring’s notebook: pages
106–107, and some additional (unnumbered) pages contain the draft and a reprint of
paper [27]; on the reverse of pages 21 and 24, and on pages 59R, 61R, 62R, 95R,
and 96R Thirring treats (in the period 11–14 October 1920) the “correction after
Pauli” (an error in the integration volume), which was then published as an erratum in
Physikalische Zeitschrift 22 (1921), pp. 29–30; pages 63R–72R (from the period 30
June to 2 July 1922) contain a “correction after Jaffé”, and a “letter to Jaffé” (in short
hand); this is a reaction to paper [35] that compares different formulas for the “mass
change” in a gravitational field, and criticizes Thirring’s formula at the end of paper
[1]. As already mentioned in the beginning of Sect. 3, according to [19] all such “mass
changes” are solely coordinate effects in general relativity, and therefore are obsolete
from today’s perspective.

From our analysis in this section we come to the following conclusion concerning
the respective merits of Einstein, Thirring, and Lense for the so-called Lense-Thirring
effect: Einstein surely was the first to have the idea that such a dragging effect should
result from a relativistic, tensorial theory of gravity. He introduced the extremely
useful model of a rotating mass shell into the game, and calculated (in the Entwurf
theory) the Coriolis force field inside a rotating shell [25], and the motion of the
nodes of planets due to the sun’s rotation [23]. Herein he achieved with a minimum
of calculational expense (of only first order in the angular velocity ω) a maximum
of physical insight and practical results. Since the calculated effects were, however,
below measurability at that time, and because Einstein presumably realized that the
effects in general relativity would not differ qualitatively from his results in the Entwurf
theory, he did not repeat the calculations after November 1915. But it was Einstein
who, through his letter of 2 August 1917, put Thirring on the track of the dragging
effects (of first order in ω) in general relativity, known today as “Lense-Thirring
effects”. Moreover, Lense and Thirring did not realize that their result (1) is also valid
in the range 1 < r/R < 2, and is therefore applicable to “low-orbit” satellites like
Gravity Probe B and LAGEOS. Thirring’s notebook [30] surely is a document of high
calculational power and endurance, but it is somewhat deficient in physical insight
and a sense for reality or measurability. (In Thirring’s own memoirs he admits that
“in contrast to my fruitfulness as a teacher, my achievements as researcher are rather
meagre although not devoid of interest”. See [36], p. 21.) Possibly due to the fact that
Mach’s discussion of Newton’s bucket is centered on centrifugal effects, and that also in
daily life centrifugal effects usually dominate over Coriolis effects, Thirring is so fixed

123



1744 H. Pfister

on these centrifugal effects that, until Einstein’s intervention, he never considers the
Coriolis terms of order ω. Obviously, Thirring never estimated the order of magnitude
of the calculated centrifugal effects, which are far below measurability under realistic
circumstances, even with today’s technology. Furthermore, Thirring overlooked many
centrifugal effects active in a rotating mass shell, and therefore never got a correct
centrifugal force field. (See Sect. 4 for more details.) Nevertheless, even Thirring’s
published article [1] puts more weight on the centrifugal effects than on the Coriolis
effects, notwithstanding Einstein’s suggestion to the contrary. And even if one bears
in mind that at the time Einstein’s and Thirring’s papers were published, the standards
of quoting references and acknowledging contributions by colleagues, differed from
today’s, it appears very strange that in papers [1] and [26] neither is Einstein’s paper
[25] quoted, nor are the decisive stimuli provided by his letter acknowledged. As
already mentioned, the contributions made by Lense obviously consist (only) of the
astronomical evaluations of Thirring’s formulas. Therefore, we argue that the so-called
Lense-Thirring effect should, in order to be historically correct and fair, be called the
Einstein-Thirring-Lense effect. We are aware, however, that it would be futile to try
to change this designation, which has long since found its way into textbooks.

4 The aftermath (the problem of a correct centrifugal force field)

The essential results for the acceleration field �a inside a slowly rotating, spherical
mass shell in [1] were

�a = −2d1( �ω × �v) − d2
[ �ω × ( �ω × �r) + 2( �ω�r) �ω]

, (2)

with d1 = 4M/3R, and d2 = 4M/15R (after the Pauli correction). However, as
already mentioned in Sect. 3, Thirring confined his calculations to points �r near the
origin, i.e., with r/R � 1. He did not realize that the first (Coriolis-)term in (2)
is valid for all points with r/R < 1, according to the same symmetry arguments
mentioned in connection with the Lense-Thirring field (1) outside a rotating spherical
body. In contrast, the second (“centrifugal”) term in (2) would receive contributions
from higher order terms in r/R, but, as already indicated, the derivation of this term
suffers anyhow from many physical deficiencies which were realized and corrected
only very gradually, some of them not earlier than 67 years after Thirring’s paper.

The first essential deficiency of Thirring’s result (2) was found by Lanczos [2]:
Thirring explicitly says that he disregards any stresses in the shell material, and he
starts from a dust-like energy-momentum tensor T µν . But this energy-momentum
tensor (in the space-time calculated by Thirring) does not fulfil the “conservation law”
T µν;ν = 0, so that the calculated gravity field does not really solve Einstein’s field
equations everywhere. In order for the mass elements of the shell to be able to rotate
on spherical orbits, the centrifugal forces have to be compensated for by appropriate
stresses in the shell material. This has, according to Lanczos, the consequence that the
spatial components T ik of the energy-momentum tensor have to vanish, and that the
factor d2 in equation (2), again only calculated for r � R, is reduced to half its value.
But the problem with the axial component 2( �ω�r) �ω of the “centrifugal force” persists.
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More than three decades later, Bass and Pirani [3] partly repeat Lanczos’ arguments
but present them in more mathematical detail, and generalize Thirring’s model to
a latitude-dependent mass density ρ(θ) = ρo(1 + N ω2 R2

c2 sin2 θ) of the shell, with
constants ρo and N . (At the same time, and obviously independently, Hönl and Maue
[37] derive similar but less complete results.) Bass and Pirani call the choice N =
−1 “the most interesting case”: “This corresponds to a mass distribution which just
compensates for the special-relativistic increase in density, and represents a uniform
mass distribution in the reference frame in which the shell is rotating. This choice
leads to the annihilation of both the radial and the axial ‘centrifugal’ forces, leaving
the ‘Coriolis’ force intact.” In the introduction of [3] it is mentioned that in Thirring’s
model the self-interaction of the shell (being proportional to M2) is neglected, but no
attempt is made to extend the model beyond the weak-field approximation of first order
in M . Another argument, calling for a treatment of the rotating mass shell at least up
to order M2, was presented by C. Soergel-Fabricius [38]: as already discussed in [1],
it is possible to eliminate the Coriolis acceleration inside the rotating mass shell by a
transformation to an appropriately rotating reference system. However, the centrifugal
acceleration can vanish in the same reference system, as it should according to Mach’s
demand for relativity of rotation, at best if it is of order (Mω/R)2r , instead of the order
(Mω/R)ωr in [1].

A treatment of the rotating mass shell even exactly in M was then started by Brill
and Cohen [39], by considering a rotational perturbation not of Minkowski spacetime
but of the Schwarzschild solution. However, they confined themselves to the first
order in the angular velocity ω, and derived (for the whole, flat interior of the shell) a
Coriolis-type acceleration, with dragging factor [compare equation (2)]

d1 = 4α(2 − α)

(1 + α)(3 − α)
, (3)

with α = M/2R, and where R denotes the shell radius in isotropic coordinates. (In
Schwarzschild coordinates the expression would be somewhat more involved.) In the
weak-field limit M � R, this dragging factor coincides of course with Thirring’s result
d1 = 4M/3R. But the central new result of Brill and Cohen is that in the collapse limit
R → M/2 the dragging factor attains the value d1 = 1. This signifies—within the
model class of rotating mass shells, and up to first order in ω—a complete realization
of the Machian postulate of relativity of rotation: in the collapse limit the interior of
the shell ties off (as a type of separate universe) from the exterior space-time, and
interior test bodies and inertial frames are dragged along with the full angular velocity
ω of the shell. It has to be admitted, however, that near the collapse limit the shell
material attains somewhat unphysical properties: for R < 3M/4, the dominant energy
condition (see [40]) is violated, and in the final collapse limit the stresses in the shell
diverge.

An extension of the Brill and Cohen results to higher orders in ω, and in particular
the long-standing problem of the induction of a correct centrifugal force by rotating
masses had to wait for another 19 years to be solved [4]. The solution is based on
two “new” observations which could and should have been made already in Thirring’s
time, but which, for inexplicable reasons, were overlooked by all authors before 1985:
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(a) Any physically realistic, rotating body will suffer a centrifugal deformation in
orders ω2 and higher, and cannot be expected to keep its spherical shape.

(b) If we aim and expect to realize in the interior of the rotating mass shell quasi-
Newtonian conditions with the “correct” Coriolis and centrifugal forces—and
no other forces!—, the interior of the mass shell obviously has to be a flat piece
of space-time. In first order of ω, this flatness is more or less trivial because
the only non-Minkowskian metric component gtφ is constant there, i.e., we
have a constantly rotating Minkowski metric, and therefore a structurally cor-
rect Coriolis force. In contrast, in order ω2 this flatness is by no means trivial,
and it is indeed violated for Thirring’s solution, due to the axial component of his
“centrifugal force”. Moreover, if Thirring would have extended his calculations
to orders ω3, ω4, . . . he would have obtained additional forces in the interior of
the rotating mass shell, in conflict with Newtonian physics in a rotating reference
system.

With these observations, the problem of a correct centrifugal force inside a rotating
mass shell boils down to the question of whether it is possible to connect a “rotating”
flat interior metric through a mass shell (with, to begin with, unknown geometrical
and material properties) to the non-flat but asymptotically flat exterior metric of a
rotating body. In full generality, this would represent a mathematically quite intricate
free-boundary-value problem for the stationary and axisymmetric Einstein equations.
However, if we confine ourselves to a perturbation expansion in the angular velocity
ω, all metric functions can be expanded in spherical harmonics, i.e., due to the axial
symmetry, just in Legendre polynomials Pl(cos θ), where in order ωn the index l is
limited by l ≤ n. In this way, the Einstein equations reduce to a system of ordinary
differential equations for the functions f (i)

l (r) multiplying Pl(cos θ)(i = 1, . . . , 4, for
the 4 different metric coefficients describing the stationary, axisymmetric space-time
in the exterior of the mass shell).

According to [4], in order ω2 the shell geometry is given by rS = R(1 +
ω2c2 P2(cos θ)), with a constant c2, and with corresponding corrections in higher
(even) orders ω2n . Furthermore, it turns out ([41]) that in order ω3 the flatness of the
interior space-time can only be maintained if the shell material rotates differentially,
ωS = ω(1 + ω2e2 P2(cos θ)), with a constant e2, and with corresponding corrections
in higher (odd) orders ω2n+1. Surprisingly, the flatness condition enforces a prolate
form of the shell: invariant equatorial circumference smaller than the invariant polar
circumference. The conditions that the exterior metric (written, e.g., in the isotropic
coordinate r ) is asymptotically flat, and joins, at r = rS , continuously to the interior
flat metric, lead (for given M and R) to a unique determination of the constants c2n and
e2n , and of the functions f (i)

l (r). The energy-momentum tensor Tµν of the shell ma-

terial results then uniquely from the discontinuities of the radial derivatives of f (i)
l (r)

at r = rS , and Tµν is θ -dependent in orders ω2 and higher. Only in the collapse limit,
the rotating shell with flat interior is spherical and rigidly rotating, and it produces
the Kerr geometry in the exterior, as was already deduced in [42]. For a mass shell
which deviates from sphericity already in zeroth order of ω, there is no solution with
flat interior [43].
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Finally, we should like to comment on the cosmological relevance of the work
of Einstein, Thirring, and later authors, concerning dragging of inertial frames. It is
clear that Mach envisaged a realization of his ideas about relativity of rotation, if
any, only in a cosmological context. Therefore, the work of Einstein, Thirring, and
others, which confirmed some aspects of this ‘relativity of rotation’ in the model
class of rotating mass shells, was often criticized for the asymptotic flatness of the
exterior solution, instead of using cosmological boundary conditions. And Thirring
himself seems to have felt an uneasiness about this ‘defect’ when on pages 32–44
of his notebook [30] he considered the cosmological “field of the rotating spherical
space”. On the basis of today’s knowledge it can be said that the essential dragging
results for rotating bodies and mass shells in an asymptotically flat background carry
over with only minor changes to cosmological boundary conditions. As shown by
C. Klein [44], it is also possible to embed a slowly rotating mass shell with flat in-
terior in a (rotationally perturbed) Friedmann universe, and the resulting dragging
factor compares reasonably with the results of [1] and [39], but also depends of course
on the type of Friedmann cosmos (k = 0,±1), and on its mass density. More re-
cently, analyses of rotational perturbations of pure FRW cosmologies have appeared
(without the somewhat unrealistic mass shell), and of their Machian impact, by Bičák,
Lynden-Bell, and Katz [45], and by C. Schmid [46].
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