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 The History of Stokes' Theorem

 Let us give credit where credit is due:
 Theorems of Green, Gauss and Stokes
 appeared unheralded in earlier work.

 VICTOR J. KATZ

 University of the District of Columbia

 Washington, D.C. 20005

 Most current American textbooks in advanced calculus devote several sections to the
 theorems of Green, Gauss, and Stokes. Unfortunately, the theorems referred to were not original
 to these men. It is the purpose of this paper to present a detailed history of these results from
 their origins to their generalization and unification into what is today called the generalized
 Stokes' theorem.

 Origins of the theorems

 The three theorems in question each relate a k-dimensional integral to a k - 1-dimensional
 integral; since the proof of each depends on the fundamental theorem of calculus, it is clear that
 their origins can be traced back to the late 17th century. Toward the end of the 18th century,
 both Lagrange and Laplace actually used the fundamental theorem and iteration to reduce
 k-dimensional integrals to those of one dimension less. However, the theorems as we know them
 today did not appear explicitly until the 19th century.

 The first of these theorems to be stated and proved in essentially its present form was the one
 known today as Gauss' theorem or the divergence theorem. In three special cases it occurs in an
 1813 paper of Gauss [8]. Gauss considers a surface (superficies) in space bounding a solid body
 (corpus). He denotes by PQ the exterior normal vector to the surface at a point P in an
 infinitesimal element of surface ds and by QX,QY,QZ the angles this vector makes with the
 positive x-axis, y-axis, and z-axis respectively. Gauss then denotes by dl an infinitesimal
 element of the y - z plane and erects a cylinder above it, this cylinder intersecting the surface in
 an even number of infinitesimal surface elements dsl,ds2, .. . ,dS2,. For eachj, d2 = + ds.cos QX
 where the positive sign is used when the angle is acute, the negative when the angle is obtuse.
 Since if the cylinder enters the surface where QX is obtuse, it will exit where QX is acute (see
 FIGURE 1), Gauss obtains dl=- ds cos QX = ds2cos QX2=... and concludes by summation
 that "The integral f ds cos QX extended to the entire surface of the body is 0."

 He notes further that if T, U, V are rational functions of only y, z, only x, z, and only x,y
 respectively, then " f (Tcos QX + Ucos QY + Vcos QZ)ds = O." Gauss then approximates the
 volume of the body by taking cylinders of length x and cross sectional area dY2 and concludes in
 a similar way his next theorem: "The entire volume of the body is expressed by the integral

 f ds x(cos QX) extended to the entire surface." We will see below how these results are special
 cases of the divergence theorem.
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 FIGURE 1

 In 1833 and 1839 Gauss published other special cases of this theorem, but by that time the
 general theorem had already been stated and proved by Michael Ostrogradsky. This Russian

 mathematician, who was in Paris in the late 1820's, presented a paper [15] to the Paris Academy
 of Sciences on February 13, 1826, entitled "Proof of a theorem in Integral Calculus." In this
 paper Ostrogradsky introduces a surface with element of surface area e bounding a solid with
 element of volume w. He denotes by a,/3,y the same angles which Gauss called QX, QY, QZ,
 and by p, q, r three differentiable functions of x,y, z. He states the divergence theorem in the
 form:

 J (a aFx+baqy +c a! )w=f(apcosa+bqcos f+crcosy)e

 where a, b, c are constants and where the left hand integral is taken over a solid, the right hand
 integral over the boundary surface.

 We note that Gauss' results are all special cases of Ostrogradsky's theorem. In each case
 a = b = c 1; Gauss' first result has p = 1, q = r = 0; his second has

 ap aq = ar =0
 ax ay az

 and his third has p = x, q = r =0. We also will see that Gauss' proof is a special case of that of
 Ostrogradsky.

 Ostrogradsky proves his result by first considering a-P w. He integrates this over a "narrow
 cylinder" going through the solid in the x-direction with cross-sectional area F.J, using the

 fundamental theorem of calculus to express this integral as

 ap W Jax =(pi -PO)zj
 where po and Pi are the values of p on the pieces of surface where the cylinder intersects the
 solid. Since - = e Icosa I on one section of surface and - = - c0cos a0 on the other (a1I and a0
 being the appropriate angles made by the normal, c and oo being the respective surface
 elements) we get
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 J aw= fP1l cosa1 + f OpOcosa0 = cos aE

 where the left integral is over the cylinder and the right ones over the two pieces of surface
 (FIGURE 2). Adding up the integrals over all such cylinders gives one third of the final result, the
 other two thirds being done similarly. We note that this proof can easily be modified to suit
 modern standards, and is in fact used today, e.g., in Taylor and Mann [24].

 FIGumU 2

 Though the above proof applies to arbitrary differentiable functions p, q, r, we will note for
 future reference that Ostrogradsky uses the result only in the special case where

 au av au av au av

 P/--- -- q= , uF r=I-

 ax ax VUy z

 with u and v also being differentiable functions of three variables.
 Ostrogradsky presented this theorem again in a paper in Paris on August 6, 1827, and finally

 in St. Petersburg on November 5, 1828. The latter presentation was the only one published by
 Ostrogradsky, appearing in 1831 in [16]. The two earlier presentations have survived only in
 manuscript form, though they have been published in Russian translation.

 In the meantime, the theorem and related ones appeared in publications of three other
 mathematicians. Simeon Denis Poisson, in a paper presented in Paris on April 14,1828,
 (published in 1829) stated and proved an identical result [19]. According to Yushkevich in [28],
 Poisson had refereed Ostrogradsky's 1827 paper and therefore presumably learned of the re-
 sult. Poisson neither claimed it as original nor cited Ostrogradsky, but it must be realized that
 references were not made then with the frequency that they are today.

 Another French mathematician, Frederic Sarrus, published a similar result in 1828 in [21],
 but his notation and ideas are not nearly so clear as those of Ostrogradsky and Poisson. Finally,
 George Green, an English mathematician, in a private publication of the same year [9], stated
 and proved the following:

 fuAvdxdydz+ u d-do= JvAudxdydz+Jv d-du
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 where u, v are functions of three variables in a solid body "of any form whatever," A is the
 symbol for the Laplacian, and d/dw means the normal derivative; the first integrals on each side
 are taken over the solid and the second over the boundary surface. Green proved his theorem

 using the same basic ideas as did Ostrogradsky. In addition, if we use again the special case
 where

 au av au av au av
 p=vx-u x, q=v y-u Y, r=vTaz az'

 we can conclude by a short calculation that the two theorems are equivalent. Nevertheless,
 Green did not so conclude; he was interested in the theorem in the form in which he gave it. It
 would thus be difficult to attribute the divergence theorem to him.

 All of the mathematicians who stated and proved versions of this theorem were interested in
 it for specific physical reasons. Gauss was interested in the theory of magnetic attraction,

 Ostrogradsky in the theory of heat, Green in electricity and magnetism, Poisson in elastic bodies,
 and Sarrus in floating bodies. In nearly all cases, the theorems involved occurred in the middle
 of long papers and were only thought of as tools toward some physical end. In fact, for both
 Green and Ostrogradsky the functions u and v mentioned above were often solutions of
 Laplace-type equations and were used in boundary value problems.

 The theorem generally known as Green's theorem is a two-dimensional result which was also
 not considered by Green. Of course, one can derive this theorem from Green's version by
 reducing it to two dimensions and making a brief calculation. But there is no evidence that
 Green himself ever did this.

 On the other hand, since Green's theorem is crucial in the elementary theory of complex
 variables, it is not surprising that it first occurs, without proof, in an 1846 note of Augustin

 Cauchy [5J, in which he proceeds to use it to prove "Cauchy's theorem" on the integral of a

 complex function around a closed curve. Cauchy presents the result in the form:

 (p 5+q Y ds=-JJa- aq dx dy
 where p and q are functions of x andy, and where the sign of the second integral depends on the
 orientation of the curve which bounds the region over which the integral is taken. Cauchy
 promised a proof in his private journal Exercises d'analyse et de physique mathematique, but he
 apparently never published one.

 Five years later, Bernhard Riemann presented the same theorem in his inaugural dissertation
 [20], this time with proof and in several related versions; again he uses the theorem in
 connection with the theory of complex variables. Riemann's proof is quite similar to the proof

 commonly in use today; essentially he uses the fundamental theorem to integrate aq/ax along
 lines parallel to the x-axis, getting values of q where the lines cross the boundary of the region;
 then he integrates with respect to y to get

 J[J dx dy= -q d=- q ds.

 The other half of the formula is proved similarly.
 The final theorem of our triad, Stokes' theorem, first appeared in print in 1854. George Stokes

 had for several years been setting the Smith's Prize Exam at Cambridge, and in the February,

 1854, examination, question #8 is the following [221 (see FIGURE 3):

 If X, Y, Z be functions of the rectangular coordinates x,y, z, dS an element of any limited

 surface, 1, m, n the cosines of the inclinations of the normal at dS to the axes, ds an element of
 the boundary line, shew that

 ff ay az az - x ) a d d ds
 ... the single integral being taken all around the perimeter of the surface.
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 FIGu1u 3

 It does not seem to be known if any of the students proved the theorem. However, the
 theorem had already appeared in a letter of William Thomson (Lord Kelvin) to Stokes on July 2,
 1850, and the left hand expression of the theorem had appeared in two earlier works of Stokes.
 T'he first published proof of the theorem seems to have been in a monograph of Hermann
 Hankel in 1861 [10]. Hankel gives no credit for the theorem, only a reference to Riemann with
 regard to Green'.s theorem, which theorem he calls well-known and makes use of in his own
 proof of Stokes' result.

 In his proof Hankel considers the integral f X dx + Ydy + Z dz over a curve bounding a
 surface given explicitly by z = z(x,y). Then

 az az
 dz =-dx +ydy;

 ax a
 so the given integral becomes

 / _ z ( a

 f X+ y-Z) dx + Y+- aZzdy.
 ax/ay

 By Green's theorem, this integral in turn becomes

 a +az a Y az
 ax ~~ay ~ dx dy.

 x~ ~~~~~ya

 An explicit evaluation of the derivatives then leads to the result:

 t Xdx Y~ ald a rdz ax le ayt az Wlay az T max az Kv dx dy f(XdX+Ynd Y+Zelftha d )xpressionff{ay ax ay az ax az ax ay

 Since a normal vector to the surface is given by eaz/rax, - az/ay, 1) and since the components
 of the unit normal vector are the cosines of the angles which that vector makes with the
 coordinate axes, it follows that az /ax= I 1/n, az /ay= - r/n, and dS =dx dy /n. Hence by
 substitution, Hankel obtains the desired result.
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 Of course, this proof requires the surface to be given explicitly as z = z(x,y). A somewhat
 different proof, without that requirement, is sketched in Thomson and Tait's Treatise on Natural
 Philosophy (1867) without reference [25]. In 1871 Clerk Maxwell wrote to Stokes asking about
 the history of the theorem [12]. Evidently Stokes answered him, since in Maxwell's 1873 Treatise

 on Electricity and Magnetism there appears the theorem with the reference to the Smith's Prize
 Exam [13]. Maxwell also states and proves the divergence theorem.

 Vector forms of the theorems

 All three theorems first appeared, as we have seen, in their coordinate forms. But since the
 theory of quaternions was being developed in the mid-nineteenth century by Hamilton and later
 by Tait, it was to be expected that the theorems would be translated into their quaternion forms.

 First we must note that Hamilton's product of two quatermions

 p=xO+xli+x2j+ x3k and q=yo +Yi +Y2j +y3k

 may be written as

 pq = (x0y0- x y - X2Y2- x3y3) + (x2y3 -y2x3)i + (x3YI -y3xI)j + (xI Y2- X2Y,)k.
 The scalar part is denoted S pq and the vector part V pq. Secondly, applying Hamilton's

 V-operator ia/ax+ja/ay+ka/az to a vector function a=iX+jY+kZ we get a quaternion

 (ax ay az +i (az ay\+ X axaz \ +kay ax

 Again we denote the scalar part by SVa and the vector part by VVa.
 Tait, then, in an 1870 paper [23] was able to state the divergence theorem in the form

 f|ffs5 Vgd = ffS cUpds

 where dt is an element of volume, ds an element of surface, and Up a unit normal vector to the

 surface. Furthermore, Stokes' theorem took the form

 f Scadp = ffs. VVa Upd

 where dp is an element of length of the curve bounding the surface.
 Maxwell, in his treatise of three years later, repeated Tait's formulas, but also came one step

 closer to our current terminology. He proposed to call SVa the convergence of a and VVa the
 curl of a. Of course, Maxwell's convergence is the negative of what we call the divergence.
 Furthermore, we note that when two quaternions p and q are pure vectors, Hamilton's S pq is
 precisely the negative of the inner product p. q. (This particular idea was first developed by
 Gibbs and Heaviside about twenty years later.)

 Putting these notions together, we get the modem vector form of the divergence theorem

 fil ff(diva)dV= a-ndA

 where a is a vector field Xi+ Yj + Zk, dV is an element of volume, dA is an element of surface
 area of the surface S bounding the solid M and n is the unit outward normal to this surface.
 Stokes' theorem then takes the form

 ||(curlac) n d4 =c | a t) ds

 where ds is the element of length of the boundary curve F of the surface S and t is the unit
 tangent vector to r. Obviously, a similar result can be given for Green's theorem.
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 Generalization and unification

 The generalization and unification of our three theorems took place in several stages. First of

 all, Ostrogradsky himself in an 1836 paper in Crelle [17] generalized his own theorem to the
 following:

 ( aL +QaL +RaL
 ax ay az 2 a 2 t P+ aQ + t+.jdxdYdz... =is____________ aL + _ dS.

 Here Ostrogradsky lets L(x,y,z,...) be "a function of as many quantities as one wants," V-be
 the set of values x,y,z,... with L(x,y,z...)>0 and S be the set of values with L(x,y,z,...)=O.
 In modern terminology, if there are n-values, S would be an n - 1-dimensional hypersurface
 bounding the n-dimensional volume V.

 Ostrogradsky's proof here is similar to his first one. He integrates aP/ax with respect to x

 and after a short manipulation gets

 ( aL
 - |~~~d a~ dxyz...= adydz ...

 ax 2~~ax

 with, of course a similar expression for every other term. Then, putting dS=

 Vddy2dZ2... +dX2d2... +dX24y24 +*** ,he shows that

 dy dz... dx dz ... dS

 At 2W 2v( )(aL2(a2

 and concludes the result by summation.

 (To understand how Ostrogradsky gets his expression for dS, we note that for a parametrized
 surface in three-space,

 dS=Adudv= \ a(y,vZ) 2 + a(u,vx) 2+ a(u,v) 2 dudv
 and

 a(Y z) dudv =dz a(z x) dudv =dzdx, a(x,y) dudv = dxdy.
 a(u, V) a(u, V) a(u, V)

 Hence

 dS= Vdy2dz2+dz2dx2+dx2dy2

 For more details, see [1].)

 If we further note that

 /kaL 2 aL \2+ (aL 2. aL aL aL A
 \ ax V a + az + ax' ay' az' J

 is the unit outward normal n to S and if we let a denote the vector function (P, Q,R ...), then
 Ostrogradsky's result becomes

 f(diva)dV= fr.ndS,
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 a direct generalization of the original divergence theorem.
 The first mathematician to include all three theorems under one general result was Vito

 Volterra in 1889 in [27]. Before quoting the theorem, we need to understand his terminology. An
 r-dimensional hyperspace in n-dimensional space is given parametrically by the n functions

 Xi = Xi(U , U2, U3 .... Ur), i = 1, ... n. Volterra considers the n by r matrix J = (axi/auj) and denotes by
 .\i,,2,, . the determinant of the r by r submatrix of J consisting of the rows numbered iI, i2... ir.
 Letting

 A= ( E Ail,i2...,i,
 il < . . < it

 he calls AduIdu2... dur an "element of hyperspace" and aj...=( ...ir/A) a direction cosine of
 the hyperspace. (The a's are, of course, functions of the u's.) For the case where r= 2 and n = 3

 we have already calculated A above in our discussion of Ostrogradsky's theorem. Since the

 determinants a(xi, x1)/a(U1, u2) are precisely the components of the normal vector to the surface,
 the ap are then the components of the unit normal vector, hence are the cosines of the angles
 which that vector makes with the appropriate coordinate axes.

 We now quote Volterra's theorem, translated from the Italian:

 Let L4i2 i be functions of points in a hyperspace S,, defined and continuous in all their
 first derivatives and such that any transposition of indices changes only the sign. Let the

 forms

 r+I2 i ( -l) -I OL ill2 ..._ 4 + 14+I... *ir+ I

 We denote by Sr the boundary of a hyperspace Sr+ 1 of r+ 1 dimensions open and immersed

 in S.; by a1,i2 .., the direction cosines of Sr+ I and by A,i2 ..., those of Sr. The extension of
 the theorem of Stokes consists of the following formula:

 f Mili2 4ia+laili21..i,+ldSr - fE02L... Ali2 ..idSr- s+1 I~

 Let us check the case where r = 1 and n = 3 to see how this result generalizes Stokes' theorem.
 In that case we have three functions L1,L2,L3 of points in three-dimensional space. The M
 functions are then given as follows:

 aL2 aL MaLI aL3 aL3 aL2
 ___ __ __ __ - ,a ax ax, a2ax3 ax, - _M2__a

 Since r= 1, Sr is a curve given by 3 functions xl(u), x2(u), and X3(U). So

 dx 2 (dX2 2 (dX3\2

 =( du) +( du) +( du)
 and ds =A du. Then

 dxi

 B= du for i=1,2,3 andf3Ads= dids.

 The a12, a31, and a23 are the appropriate cosines as mentioned above. Hence the theorem will
 read:

 ( /aL3 aL2 a { + LM aL3 +1 aL2 aLl S
 S2ax2 aX3)a23+(aX3 ax, ) l+ax, - aX2

 f(LI dxl +L dx2 +L3dX3 )d
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 the result being exactly Stokes' theorem. A similar calculation will show that the case r =2, n = 3
 will give the divergence theorem, the case r = 1, n =2 will give Green's theorem, and the case
 r = n - 1 is precisely Ostrogradsky's own generalization.

 We note further that if we replace a% by (a(xi,xj)/a(u,v))/A, dS2 by Adu dv, and
 (a(x,,xj)/a(u,v))dudv by dx,dxj, and if we set xI = x, x2 =y, X3 =z, we get another familiar form
 of Stokes' theorem:

 fM23dy dz + M3dzdx + M2dxdy=f Lldx+L2dy + L3dz.

 Similarly, the divergence theorem becomes

 |hL23dYudZ+L31dzdx+L2dXdY aL23 + + dx ) Y

 Although Volterra used his theorem in several papers in his study of differential equations, he
 did not give a proof of the result; he only said that it "is obtained without difficulty."

 If one studies Volterra's work, it becomes clear that it would be quite useful to simplify the
 notation. This was done by several mathematicians around the turn of the century. Henri
 Poincare, in his 1899 work Les Methodes Nouvelles de la Mecanique Celeste [18], states the same
 generalization as Volterra, but in a much briefer form:

 fa Adw=f|2 d ? dx,jko.

 Here the left-hand integral is taken over the r-l-dimensional boundary of an r-dimensional
 variety in n-space while the right-hand integral is over the entire variety. Hence A is a function
 of n variables and dw is a product of r -1 of the dx,'s, the sum being taken over all such distinct
 products. Poincare's form of the theorem is more compact than that of Volterra in part because
 the direction cosines are absorbed into the expressions dw. (See [1] for more details.) Poincare,
 like Volterra, in this and other works of the same period, was chiefly interested in integrability
 conditions of what we now call differential forms; i.e., in when a form w is an exact differential.

 The mathematician chiefly responsible for clarifying the idea of a differential form was Elie
 Cartan. In his fundamental paper of 1899 [2], he first defines an "expression differentielle" as a
 symbolic expression given by a finite number of sums and products of the n differentials

 dxl,dx2,.. ,dx, and certain coefficient functions of the variables x1,x2,...,x,,. A differential
 expression of the first degree, A1 dxl + A2dx2 + * + A* dx,, he calls an "expression de Pfaff."

 Cartan states certain rules of calculation with these expressions. In particular, his rule for

 "evaluating" a differential expression requires that the value of A dxm, dxm2. ... dxm be the product
 of A with the determinant laxm./aail where the x's are functions of the parameters ax. The
 standard rules for determinants then require that if any dx, is repeated, the value is 0 and that
 any permutation of the dxi's requires a sign change if the permutation is odd. For instance,
 Cartan concludes that A dxl dx2dx3 =-A dx2dxl dx3, or just that dxI dx2= - dx2dx.

 Cartan further discusses changes of variable; if xl, x2,... , x, are functions of Y 1,Y2. ,Yn, then

 ax. ax. + + ax i=1,2,...,n.

 Then, for instance, in the case n =2, we get

 dxl dx2= a(xlyx) X2 '42.

 One might note, on the other hand, that if one assumes a change of variable formula of this

 type, then one is forced to the general rule dxi dxj =-dxj dx,.
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 Finally, Cartan defines the "derived expression" of a first degree differential expression

 w=Aldxl+A2dx2+*** +A"dx, to be the second degree expression w'=dAIdxI+dA2dx2
 +*** +dAndxn, where, of course,

 aA*
 dA=2: Ej dx.

 For the case n =3 one can calculate by using the above rules that if w = AI dx + A2dy + A3dz,
 then

 (aA3 aA2a)dZ+( aAl - aA3 )dzdx+( + ax aA d ) ad
 ay az az ax ax

 Comparing this with the example we gave in discussing Volterra's work, it is clear that Volterra's
 M23, M31, and M12 are precisely the coefficients of Cartan's w'.

 Cartan in [2] did not discuss the relationship of his differential expressions to Stokes'
 theorem; nevertheless, by the early years of the twentieth century the generalized Stokes'
 theorem in essentially the form given by Poincare was known and used by many authors,
 although proofs seem not to have been published.

 By 1922, Cartan had extended his work on differential expressions in [3]. It is here that he
 first uses the current terminology of "exterior differential form" and "exterior derivative." He
 works out specifically the derivative of a 1-form (as we did above) and notes that for n = 3

 Stokes' theorem states that f w= f W' where C is the boundary curve of the surface S. (This
 is, of course, exactly Volterra's result in the same special case.) Then, defining the exterior

 derivative of any differential form c = MA dx,dxj ... dxl to be co' = MdAx dxj...dxl (with dA as
 above), he works out the derivative of a 2-form 92 in the special case n = 3 and shows that for a

 parallelepiped P with boundary S, fa=ffz'. One can easily calculate that this is the

 divergence theorem, and we must assume that Cartan realized its truth in more general cases. He
 was, however, not yet ready to state the most general result.

 The "d" notation for exterior derivative was used in 1902 by Theodore DeDonder in [6], but
 not again until Erich Kahler reintroduced it in his 1934 book Einfiihrung in die Theorie der
 Systeme von Differentialgleichungen [11]. His notation is slightly different from ours, but in a
 form closer to ours it was adopted by Cartan for a course he gave in Paris in 1936-37 (published
 as Les Systemes Differentiels Exterieurs et leurs Applications Geometriques [4] in 1945). Here, after
 discussing the definitions of the differential form w and its derivative dw, Cartan notes that all of
 our three theorems (which he attributes to Ostrogradsky, Cauchy-Green, and Stokes, respec-

 tively) are special cases of | =f dw where C is the boundary of A. To be more specific,

 Green's theorem is the special case where w is a 1-form in 2-space; Stokes' theorem is the special
 case where w is a 1-form in 3-space; and the divergence theorem is the special case where w is a
 2-form in 3-space. Finally, Cartan states that for any p + 1-dimensional domain A with
 p-dimensional boundary C one could demonstrate the general Stokes' formula:

 fw=fJdw

 (For examples of the use of these theorems, see any advanced calculus text, e.g., [1] or [24]. For
 more information on differential forms, one can consult [7].)

 Appearance in texts

 A final interesting point about these theorems is their appearance in textbooks. By the 1890's
 all three theorems were appearing in the analysis texts of many different authors. The third of
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 our theorems was always attributed to Stokes. The French and Russian authors tended to
 attribute the first theorem to Ostrogradsky, while others generally attributed it to Green or
 Gauss; this is stilU the case today. Similarly, Riemann is generally credited with the second
 theorem by the French, while Green is named by most others. Before Cartan's 1945 book, about

 the only author to attribute that result to Cauchy was H. Vogt in [26].
 The generalized Stokes' theorem, first published, as we have seen, in 1945, has only been

 appearing in textbooks in the past twenty years, the first occurrence probably being in the 1959
 volume of Nickerson, Spencer, and Steenrod [14].

 References

 [1] R. C. Buck, Advanced Calculus, 2nd ed., McGraw-Hill, New York, 1965.

 [2] E. Cartan, Sur certaines expressions differentielles et sur le probleme de Pfaff, Annales Ecole Normale, v.

 16, 1899, pp. 239-332; Oeuvres, Part II, Vol. I, pp. 303-397.

 [3] E. Cartan, Lecons sur les invariants integraux, Chap. VII, Hermann, Paris, 1922.

 [4] E. Cartan, Les Systemes Differentiels Exterieurs et leurs Applications Geometriques, Hermann, Paris, 1945.

 [5] A Cauchy, Sur les integrales qui s'etendent a tous les points d'une courbe fermee, Comptes Rendus, v. 23,

 1846, pp. 251-55; Oeuvres, Ire Serie, Tome X, pp. 70-74.

 [6] T. DeDonder, Etude sur les invariants integraux, Rendiconti del Circolo Matematico di Palermo, v. 16,
 1902, pp. 155-179.

 [7] H. Flanders, Differential Forms, Academic Press, New York, 1963.

 [8] C. F. Gauss, Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo nova
 tractata, Commentationes societatis regiae scientiarium Gottingensis recentiores, v. II, 1813; Werke, v. 5,
 pp. 1-22.

 [9] G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
 Magnetism, London, 1828; Green's Mathematical Papers, pp. 3-115.

 [10] H. Hankel, Zur allgemeinen Theorie der Bewegung der Flussigkeiten, Dieterische Univ. Buchdruckerei,
 Gottingen, 1861.

 [11] E. Kahler, Einfuhrung in die Theorie der Systeme von Differentialgleichungen, Leipzig, 1934.
 [12] C. Maxwell, Letter to Stokes in G. Stokes, Memoir and Scientific Correspondence, ed. by J. Larmor,

 Cambridge, 1907, v. II, p. 31.
 [13] C. Maxwell, A Treatise on Electricity and Magnetism, Oxford, 1873, v. I.

 [14] H. Nickerson, D. Spencer, N. Steenrod, Advanced Calculus, Van Nostrand, Princeton, 1959.

 [15] M. Ostrogradsky, Demonstration d'un theoreme du calcul integral, pub. in Russian in Istoriko-Mate-
 maticheskie Issledovania, v. XVI, 1965, pp. 49-96.

 [16] M. Ostrogradsky, Note sur la Theorie de la Chaleur, Memoires de L'Acad. Imp. des Sciences de St.

 Petersburg, ser. 6, v. 1, 1831, pp. 129-133.

 [17] M. Ostrogradsky, Sur le calcul des variations des integrales multiples, Journal fur die Reine und ange-
 wandte Mathematik, v. XV, 1836, pp. 332-354.

 [18] H. Poincare, Les Methodes Nouvelles de la Mcaniques Celeste, v. III, p. 10, Gauthier-Villars, Paris, 1899,
 Dover, N.Y. 1957.

 [19] S. Poisson, Memoire sur l'Equilibre et le Mouvement des Corps Elastiques, Memoires de l'Academie
 Royale des Sciences de l'Institut de France, v. VIII, 1829, pp. 357-571.

 [20] B Riemann, Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen
 Gr6sse, Gottingen, 1851; Werke, pp. 3-48.

 [21] F. Sarrus, Memoire sur les oscillations des corps flottans, Annales de mathematiques pures et appliquees
 (Nismes), v. XIX, 1828, pp. 185-211.

 [22] G. Stokes, Mathematical and Physical Papers, v. 5, p. 320, Cambridge Univ. Press, Cambridge, 1905.
 [23] P. Tait, On Green's and other allied Theorems, Transactions of the Royal Society of Edinburgh, 1869-70,

 pp. 69-84.

 [24] A. Taylor, W. Mann, Advanced Calculus, 2nd. ed., Xerox, Lexington, 1972.
 [25] W. Thomson, P. Tait, Treatise on Natural Philosophy, Vol. 1, Oxford, 1867.
 [26] H. Vogt, Elements de Mathematiques Superieures, Paris, 1925.
 [27] V. Volterra, Delle Variabili Complesse Negli Iperspazi, Rendiconti della R. Accad. der Lincei, ser. IV, v. V,

 1889, pp. 158-165; Opere, v. I, pp. 403-411.
 [28] A. Yushkevich, Istoriya Matematiki v Rossii do 1917 goda, Moscow, 1968, p. 290.

 156 MATHEMATICS MAGAZINE

This content downloaded from 128.196.130.121 on Tue, 15 May 2018 21:35:50 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 146
	p. 147
	p. 148
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156

	Issue Table of Contents
	Mathematics Magazine, Vol. 52, No. 3 (May, 1979) pp. i+130-192
	Front Matter [pp. ]
	Some Unsolved Problems in Plane Geometry [pp. 131-145]
	The History of Stokes' Theorem [pp. 146-156]
	Notes
	The Mean Value Theorem for Vector Valued Functions: A Simple Proof [pp. 157-158]
	An Unusual Example of a Sphere [pp. 158-162]
	Finite Vector Spaces from Rotating Triangles [pp. 163-168]
	Locks, Keys and Majority Voting [pp. 168-171]
	A Useful Characterization of a Normal Subgroup [pp. 171-173]
	The Inverse of a Sum Can Be the Sum of the Inverses [pp. 173-174]
	Circular Coordinates and Computer Drawn Designs [pp. 175-178]
	䍯湶敲来湣攠慮搠䑩癥牧敮捥⁯映∑㱳異㸢Ḽ⽳異㸼獵戾渽ㄼ⽳畢㸠ㄯ渼獵瀾瀼⽳異㸠孰瀮‱㜸�

	Problems [pp. 179-184]
	Reviews [pp. 185-188]
	News and Letters [pp. 189-192]
	Back Matter [pp. ]



