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Introduction 

Since the entropy of a body isolated from all external influences tends to in- 
crease in time, it seemed natural to GIBBS* to assert that an equilibrium state of 
such a body is stable if and only if the entropy of the body decreases in all variations 
of state compatible with isolation of the body. Out of this simple idea grew the 
rich science of thermostatics. In spite of the success of thermostatics in rationaliz- 
ing many aspects of chemistry and physics, today, ninety years after the appear- 
ance of GIBBS' treatise, we may still ask: What is the dynamical significance of 
Gibbs' concept of stability under isolation ? 

If an equilibrium state of an isolated body is stable according to GIBBS' defin- 
ition, is it then true that thermodynamic processes in the body which pass near 
(in some sense) to the equilibrium state at one time must remain near (in perhaps 
some other sense) to that state at all future times ? 

Consider the case of a fluid body free from variations in chemical composition. 
In GIBBS' theory, the variations "compatible with isolation" are taken to be those 
which preserve the volume and internal energy of the body. Thus, the kinetic 
energy which should occur in the variations appears to be ignored. Furthermore, 
in the calculation of the entropy of the varied states, one uses constitutive assump- 
tions which, in general, can be expected to hold only in equilibrium, i.e. only 
when the body is at rest at present and may be presumed to have been at rest with 
its present energy field and in its present configuration at all times in the past, 
a presumption which is clearly violated in dynamical processes. While these criti- 
cisms of thermostatics are relatively easy to overcome,** there remains another 
which goes deeper: Even if we grant that, in actual thermodynamic processes, 
the total entropy H does tend to approach its value H o in a Gibbs stable equilibrium 
state, to claim any sort of dynamical stability we must prove that proximity of H 
to Ho implies that the distribution of mass, energy, and velocity in the body is, 
in some sense, close to the equilibrium distribution. 

* [1873, 1, 2], [1875, 1]. 
** See our Theorem 2. 
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In this essay we attempt to imbed classical thermostatics in the general frame- 
work of modern thermodynamics and in so doing find dynamical consequences 
of the thermostatic concept of stability. For  simplicity we consider materially 
homogeneous fluids. Our theory is not, however, restricted to fluids that are 
"perfect" or "elastic". The materials we consider, called regular fluids, need obey 
the constitutive equations of thermostatics only in states of permanent equilibrium; 
in general thermodynamic processes a regular fluid can exhibit nonlinear viscosity, 
heat conduction, and stress relaxation. The class of regular fluids includes simple 
fluids with fading memory*, linearly viscous fluids (with or without heat conduc- 
tion)**, and gases with relaxing internal degrees of freedom. 

In Section 1 we briefly review some basic results from the classical thermo- 
statics of chemically uniform fluids. The emphasis is laid on materials for which 
the Gibbs-stable equilibrium state is uniform, i.e. contains a single homogeneous 
phase. In Section 2 we give a mathematical meaning, suitable for fluid bodies, 
to the concept of a thermodynamic process. After a brief discussion of the limi- 
tations which the second law places on the constitutive equations of elastic fluids, 
linearly viscous fluids, and simple fluids with fading memory, we introduce there 
the more general concept of a regular fluid. The class of processes possible in an 
isolated body is also defined in Section 2. Basic properties of these processes are 
treated in Sections 3 and 4. Our Theorem 2 shows, in effect, that when states of 
uniform equilibrium maximize the entropy in the class of variations of state con- 
sidered by GraBs, they also maximize the entropy achievable in the dynamical 
processes compatible with isolation***. Our main result is Theorem 3, which asserts 
that if the uniform states of a regular fluid body 9~ are stable in the thermostatic 
sense, then in the thermodynamic processes compatible with isolation of ~ the 
fields giving the spatial distributions of specific volume, internal energy, and 
kinetic energy will remain close, in s to the corresponding uniform equilibrium 
fields, provided that the initial total entropy of & is set sufficiently close to its 
value at uniform equilibrium. It is a corollary to Theorem 3 that if the uniform 
states of a regular fluid body ~ are Gibbs stable, then when 9~ is isolated in every 
process for which the initial total entropy is close to its equilibrium value, the total 
volume, internal energy, and the kinetic energy of all the parts of ~ remain close 
to their equilibrium values. Although the concept of a thermodynamic process 
used in Sections 2 - 4  presupposes that the entropy of a body is the integral of the 
entropy of its parts and that multipolar interactions are absent, in Section 5 we 
show that it is easy to extend our results beyond such a framework. 

We believe that our Theorem 3 supplies, at least for fluids with Gibbs stable 
uniform equilibrium states, one answer to the questions which have been raised 
about the dynamical significance of the concepts used in thermostatics. Other 
anwers are possible; indeed in some subjects, such as the theory of heat conduction 
in immobile bodies, thermodynamic inequalities imply a much stronger type of 

* For the foundations of the theory of fading memory see COLEMAN & NOLL [1960, 1], 
[1961, 1]. The thermodynamics of materials with fading memory was developed by COLEMAN 
[1964, 2]. 

** And also the more general viscous fluids discussed by COLEMAN d~ MIZEL [1964, 2l. 
*** Actually, the proof of Theorem 2 is easily generalized to show that the entropy of any Gibbs 

stable state of an isolated body, even if the state contains more than one phase, maximizes the 
entropy achievable in dynamical processes. 
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stability than our present statement about entropies and Ar norms. Our goal here, 
however, has not been to obtain strong results for a small class of systems, but 
rather to obtain results which, because they cover a broad class of materials, are 
necessarily weak but yet may yield some insight into the meaning of the postulates 
of thermodynamics. 

Our present study indicates that although regular fluids need obey the consti- 
tutive relations of classical thermostatics only in states of permanent rest, the 
stability of dynamical processes in regular fluids is governed mainly by the properties 
of the equilibrium caloric equation of state. For those who believe that the entire 
content of the second law of thermodynamics may someday be deduced from an 
as yet obscure postulate of stability,* the observation just made may suggest a 
new interpretation for the opening lines of GIaBs' second paper on geometric 
methods in thermodynamics: 

"The leading thermodynamic properties of a fluid are determined by the rela- 
tions which exist between the volume, pressure, temperature, energy, and entropy 
of a given mass of the fluid in a state of thermodynamic equilibrium."** 

1. Rudiments of Thermostaties 

In the thermostatics of simple fluids it is assumed that the specific*** entropy r/, 
the pressure p, and the temperature ~9, at a material point X, are determined when 
the specific volume o and the specific internal energy e are specified at X: 

= ~ ( v ,  ~), 

p =/7(0, e), (1.1) 

~ = ~ ( o , ~ ) > 0 .  

The functions r/, p, 5, which have (0, oo) x (0, m) for their domain of definition, 
are the equilibrium response functions for the fluid under consideration *. In 
particular, we call ~ the equilibrium entropy function. The partial derivatives ~o 
and ~ of ~ determine ff and ~ through the relations 

= _ - - ,  . (1 .2)  

Of course, a fluid body ~ is a bounded smooth manifold, of material points X, 
imbedded in a fixed three-dimensional Euclidean space r A body is called materi- 
ally homogeneous if its response functions, such as ~, do not vary with X. Each 
fluid body N has a finite, positive, mass measure ~ ' ,  which is defined on all Borel 
subsets of ~ .  A static state {0, e} of ~ is a pair of ~'-measurable fields v and e 
over N with the property that the following three integrals are finite: 

So(X)dm, Se(X)dm, and ~(o(X), t (X))dm; 

here dm is the element of mass. These integrals are called the total volume, the 
total internal energy, and the total equilibrium entropy of N for the state {o, e}. 

~t Cf.  COLEMAN ~: MIZEL [1967, 2]. 
** GIaas [1873, 2], the italics are ours. 

*** "Specific" here means "per unit mass". 
# The bar ..... in the notation ~, ,~, ~ serves to distinguish these functions from their values. 

22* 
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Two arbitrary states {o, e} and {o', e'} are said to be equivalent if there exists a 
measure-preserving transformation* f of ~ onto ~ such that o ' (X)= o(f(X)), 
and e'=e(f(X)) for all X i n  ~ .  A state of & not equivalent to {o, e} is said to be 
distinct from {o, e). 

Basic to thermostatics is GIBBS' [1873, 2], [1875, 1] concept of stable equi- 
librium of an isolated system, which in our present context may be rendered mathe- 
matical as follows. 

Definition 1.1. A static state {o, e} of a fluid body ~ is Gibbs stable if every 
static state {v', d} of ~ which is distinct from {o, e} and for which 

So'(X)dm= Sv(X)dm and ~e ' (X)dm= ~e(X)dm (1.3) 

has the property that 

~(o'(X), d(X)) d m < ~ ~(o(X), e(X)) d m. (1.4) 

Thus, a static state is Gibbs stable if and only if every distinct state with the 
same total volume and the same total internal energy gives rise to a smaller total 
equilibrium entropy. 

Using brilliant geometrical analogies, GIBBS [1873, 2] showed how to determine 
the stable states of arbitrary materially homogeneous fluid bodies. Our goal is not 
to develop further GIBBS' theory, but rather to find a dynamical interpretation 
for his concept of stability. Although thermostatics, as a discipline divorced from 
dynamical interpretations, becomes a mathematically rich subject only when some 
of the stable states of a body are non-uniform, we shall here focus our attention 
on the stability of uniform states. 

A static state (v0, Co} of ~ is called uniform if its component fields o o and e o 
are constant over ~ ,  i.e. if 

oo(X)-oo=COnst, eo(X)=eo=COnst. (1.5) 

Let us introduce the abbreviation 

ca = (o, r/) (1.6) 

and review some properties of concave functions. If a real-valued function 
obeys the inequality 

~(~ Ol +/~ o2) > ~ ~(ol)  +/~ ~(o~) (1.7) 

for all pairs tol, 02 with to14:to2 and all numbers g, fl with ct > O, fl > O, and g + fl = 1, 
then ~ is said to be strictly concave. If ~ is differentiable, then ~ is strictly concave 
if and only if the inequality 

~(to2) < ~(~ + ( o 2 -  o l )" ~o,(tol), (1.8) 
i.e. 

~(02,~2)~(01,e1)-~-( I )2--Ol)~o(O1,e l )+(e2--e l )~8(v1 , e l )  , (1.9) 

"~ A measure-preserving transformation f of ~ is a one-to-one mapping of & into itself such 
that measurable subsets 6e correspond to measurable subsets and the mass is preserved u n d e r f  
in the sense that Jr' (f(Se)) = Jr' ( SO. 
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holds  wheneve r  to 2 4= o h .  The  graph ica l  cons ide ra t i ons  of GIBBS m a k e  the fo l lowing  

t h e o r e m  obvious .  

Theorem 1. Let q be the equilibrium entropy function for  a materially homo- 
geneous f luid body. In order that every uniform static state of ~ be Gibbs stable, 
it is necessary and sufficient that ~ be strictly concave over its entire domain 
(o, oo) x(O, 

Proof*. To prove sufficiency, let ~ be strictly concave, let {o o, %} be a given uniform state 
of ~', and let {o', e'} be a state of ~ distinct from {o 0, e0) with 

~o'(X)dm= ~oodm=Mo o, ~e'(X)dm= ~eodm=Meo, (1.10) 

where M = d t ( ~ )  is the total mass of ~'. It follows from (1.9) that at each X ~ '  

8(v'(X),~'(X))<=8(Vo,eo)+(v'(X)-vo)8o(Vo,~o)+(~'(X)-eo)~(Vo,~o).  (1.11) 

Since {o', g} is distinct from {%, %}, (1.11) is a strict inequality on some set ~ ' ~ '  with d t  (~') > O. 
Integrating (1.11) over ~' and using (1.10), we obtain 

S ~(v ' (X) ,  e ' (X))  d m  < ~ ~(Vo, %) d m = M S ( v o ,  ~o), (1.12) 

which shows that {oo, %) is Gibbs stable. 
To prove necessity, we assume that every uniform state of .~ is Gibbs stable, we let to1 and to2 

be distinct arbitrary points in (0, o0) • (0, c~), and we let ~ and fl be arbitrary numbers obeying 
> 0, 1~ > 0, and ct-I- f l=  1. If we put 

(Vo, Co) = too =ct to 1 + f l  to2, (1.13) 

then the uniform state {Oo, Co} is Gibbs stable. We now let ~1 and '~2 be two disjoint measurable 
subsets of ~' with 

d C ' ( ~ l ) = T M ,  J / / ( ~ 2 ) = f l M ,  a n d  hence  J / / ( ~ - [ t ~ l W ~ 2 ] ) = 0 .  (1.14) 

For the state (o', r/') obeying 

(v'(X), e'(X)) = t~ '(X) = I to1 '  for  X E ~1 
to 2, for  X e ~ 2 ,  (1.15) 

K 

we have, by (1.13) and (1.14), 

to'(X) d m  = M  ~ to 1 + M fl to 2 = M  too ; (1.16) 

i.e. (1.10) holds, and since {o0, co) is stable it follows that 

d , ,  < $ d m. (1.17) 

Since to o is a constant, the right side of (1.17) is just M~(too), and using (1.14) and (1.15) to 
evaluate the left side of (1.17) we find that 

M ~  q(taa)+Mfl  ~(to2) < M  ~(to0).  (1.18) 

In view of (1.13) and the fact that M is strictly positive, (1.18) tells us that (1.7) holds, and by the 
arbitrariness in our choice of to~, to2, ~, and fl, this means that the function ~ is strictly concave 
throughout its domain; q.e.d. 

* This proof, which we quote from unpublished notes prepared by B.D. COLEMAN & W. NOLL 
in 1958, does no more than give an obvious, but analytical interpretation to geometric ideas 
found in GraBS' second paper [1873, 2]. 
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2. Thermodynamics, Regular Fluids, and Isolated Bodies 

In continuum physics a thermodynamic process ~s in a body ~ is a collection 
of time dependent fields over ~ that are compatible with the law of balance of 
momentum and the law of balance of energy. When dealing with fluids, we can 
consider c~ to be composed of eight fields whose values have the following 
physical interpretations: 

(1) the velocity v=v(X, t), 

(2) the symmetric Cauchy stress tensor T= T(X, t), 

(3) the specific body.force b = b(X, t) exerted on ~ at X by the external world, 
i.e. by other bodies which do not intersect ~ ,  

(4) the specific internal energy e=e(X, t), 

(5) the heat f lux vector q = q (X, t), 

(6) the heat supply r=r(X,  t) absorbed by ~ at X and furnished by radiation 
f rom the external world, 

(7) the specific entropy q=q(X,  t), 

(8) the absolute temperature 0 = 0 (X, t) > O. 

When these eight fields suffice to describe a thermodynamic process, the laws 
of balance of momentum and balance of energy take the forms 

d S v d m = S b d m +  S r n d a ,  (2.1) 
dt ~ e, e~ 

d ~ ( e + � 8 9  S(v.  T n _ q . n ) d a .  (2.2) 
d t ~, ~, ~, 

These integral relations must hold at all times t, - ~  < t <  oo, and in all parts* 
of g ;  here n is the exterior unit normal vector to the surface a ~  of ~ in the 

configuration at time t, da is the element of surface area in the configuration at 
time t, and v = l/b--7--~ is the magnitude of v. 

A material is defined by constitutive assumptions which place limitations on the 
processes that are admissible in a body consisting of the material. For  example, 
a materially homogeneous elastic fluid (with heat conduction) is characterized by 
four response functions ~/, ~, ~,  and 3. A process is said to be admissible in such a 
fluid if the following constitutive equations hold at each material point X and at 
all times t: 

= ~(o ,  8) ,  

T= - p l ,  p=p(o ,e ) ,  
0 = ~ (v, ~), (2.3) 

q =  - - x g ,  tr = ~(0, e, g). 

Here 1 is the unit tensor, g = grad 0, and g = ]//g- �9 g is the magnitude of grad ~. ** 

�9 A part ~ of & is a subset of the closure of ~ with certain properties of regularity which we 
need not enumerate here; cf. NOEL [1959, 1], [1966, 2]. Of course, ~ itself is a member of the set 
of parts of ar 

�9 * It is usually assumed that x is independent of g, but there is no need to do so here. Of course, 
our present theory remains valid when q= 0, i.e. when the fluid does not conduct heat. 
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The second law of thermodynamics is the assertion that .]:or every admissible 
process in a body ~ consisting of a given material, the Clausius-Duhem inequality* 

d i~Idm> d i n -  ~ N q . n d a  (2.4) 
dt a, 

must hold at all times t and in all parts ~ of ~.  

The second law places restrictions on constitutive assumptions. For  example, 
the equations (2.3), defining an elastic fluid, are compatible with the second law 
if and only if 

~ = [ ~ ( o , 5 ) ]  -1, p=~o(o,5), ~(o,5, g)>O (2.5) 

for all o, 5, and g. Of course, the first two of these relations are the equations (1.2) 
assumed in thermostatics. 

If & is composed of a linearly viscous fluid, all the constitutive equations listed 
in (2.3) still hold at each X in ~ with the exception of (2.3)2, which is replaced 
by the more general equation 

T= - p l + 2 # D + 2 ( t r D ) l ,  #=fi(v, 5), 2=2(0 ,  5), (2.6) 

where p is still given by (2.3)3 and D is the stretching tensor (i. e. the symmetric 
part  �89 r) of the velocity gradient L = g r a d  v). The constitutive equations 
(2.3)1,3,4,5&6 and (2.6) defining a linearly viscous fluid are compatible with the 
second law if and only if the relations (2.5) hold and, in addition, 

if(o, 5 )>0 ,  2(o, 5)+ 2 g(o, 5 )>0  (2.7) 

for all o and 5. Thus, neither the shear viscosity/~ nor the bulk viscosity 2 + ~ # 
can be negative, and heat cannot flow from cold to hot (i. e. by (2.5)3, q �9 g must 
be < 0). Furthermore, when a viscous fluid is at rest with g = 0, the stress reduces 
to a hydrostatic pressure, and the basic equations (1.1) and (1.2) of thermostatics 
hold. ** 

Let a motion of a body ~ be given, and let x be the position in Euclidean space 
E of the material point X of ~ at time t, which we interpret as the present time. 
Suppose that at time z < t the same material point X occupied the position ~ in 8. 
For  the dependence of ~ on x, t, and z, we write 

= z,(x, ~). (2.8) 

It  is easy to show that the function It  is determined when the velocity field v is 
specified at all times. *** We call the function C[ defined by 

Ctr(s)=Fr(s)F(s), with F(s)=gradx l , (x , t - s ) ,  0 < s < o o ,  (2.9) 

�9 The form (2.4) of the Clausius-Duhem inequality is given by TRU~SDELL & TOt;PIN [1960, 
1, p. 644]; in our interpretation of (2.4) as an inequality which must hold for all admissible 
processes we are following COLEMAN & NOLL [1963, 1]. 

�9 * The details of the arguments used to derive (2.5) and (2.7) for classical elastic and linearly 
viscous fluids are given by COLEMAN & NOLL [1963, 1]. The relation of the classical constitutive 
equations (2.4) and (2.6) to constitutive hypotheses reflecting TRUESDELL'S principle of equipresence 
is discussed by COLEMAN [1964, 1] and COLEMAN & MIZEL [1964, 2]. 

�9 ** For details see COLEMAN & NOLL [1961, 2]. 
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the past history (up to time t) of the strain at the material point X. This function 
C; maps (0, ~ )  into the set of symmetric positive definite tensors. The value of 
Ct,(s) is the right Cauchy-Green tensor at Xa t  time t - s  computed using the confi- 
guration at time t as reference. 

The past history (up to time t) of the specific internal energy at the material 
point X is the function e t, mapping (0, oo) into (0, ~ )  and given by 

e'r(s)=e(X, t - s ) ,  0 < s <  ~ .  (2.10) 

A general simple fluid is defined by four constitutive functionals {), ~, t, and Q; 
a process is admissible in a homogeneous body ~ consisting of the fluid if at each 
point X and each time t the present values of r/, T, 8, and q are given by the equa- 
tions 

, =t~(o, ~; c'r, 4 ) ,  

T=Z(o, e; C',, err), 
~ =t(o,  ~; c',, 4 ) ,  (2.11) 

q = q(o, ~, g; c',, 8'r), 

where the number o= o(X, t), the number e=e(X,  t), and the vector g=g(X, t) 
are the present values of o, e, and grad 8, while the functions C t, and e, ~ are the 
past histories defined in (2.9) and (2.10). * 

Assuming that the functionals b, ~, t, and tl obey the principle of fading 
memory**, COLEMAN [1964, 1] has found the restrictions which the second law 
places on general constitutive equations of the type (2.11). Rather than enumerate 
all these restrictions, we shall state here only those consequences of the Clausius- 
Duhem inequality which have a direct bearing on theorems to be proven in Sec- 
tion 3. 

Let 1 t and 1 t be the constant functions on (0, oo) equal, respectively, to the 
number 1 and the unit tensor 1: 

l*(s)--- 1, It(s)---I, 0 < s < o o .  (2.12) 

If a region containing the point X has remained in its present configuration at all 
times z =< t, or has been subjected only to rigid rotations, then C~= 1 t at X; if the 
specific internal energy at X has remained constant at its present value e for all 

__< t, then e', = e 1 t at X. Thus, we may call the function ~ defined by 
- -  d e f  �9 

~/(o, e) = D(o, e, I t, 81 t) (2.13) 

the equilibrium entropy function for the simple fluid under consideration. Among 
the consequences of the second law is the following inequality which functional 
1~ obeys throughout its domain***: 

b(o, e; Ct~, ~ ) <  D(o, e; 1 t, 81t)=~(o,  e). (2.14) 

�9 The concept of a general simple fluid was introduced by NOLL [1958, 2] in a framework 
which ignores thermodynamic influences. The full set of equations (2.11) was studied by COLE- 
MAN [1964, 1, pp. 36 and 43]. 

�9 * This is a postulate of smoothness introduced by COLEMAN & NOEL [1960, 1], [1961, 1] 
and recently developed from a set of elementary axioms by COLEMAN & MIZEL [1966, 2]. 

�9 ** COLEMAN [1964, 1, p. 38, Remark 31]. 
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In words: For a simple fluid with fading memory, of all strain-energy histories 
ending with given values of o and e, that corresponding to perpetual rest at the 
present strain and energy has the maximum entropy. 

In analogy to (2.13) we may define equilibrium response functions for the stress, 
the temperature, and the heat flux: 

T(0, e) %f Z(o, e; I t, e l t ) ,  

5(0, e)~f t(o, e; I t, e I t ) ,  (2.15) 

q(o,~,g)~fq(o, ~, g; 1 t, ~l t) .  

Using the principle of material frame indifference*, one can easily show that the 
functions T and ~ must have the forms 

T(o, e)= - p l ,  p=/~(o, ~), 
(2.16) ~(o ,~ ,g)=-xg,  x=~(o, e, g). 

It is a consequence of the second law that the functional b must determine the 
functionals Z and t through a formula called the "generalized stress relation". 
For our present purposes it is not necessary to assemble the apparatus required 
to state the generalized stress relation; we need merely note that the relation implies 
that the equilibrium response functions ~, ~ and ff must obey (1.2). In fact, 
although the dynamical behavior of simple fluids with fading memory differs 
markedly from that of elastic fluids, in purely statical situations the two types 
of fluids are indistinguishable. 

Definition 2.1. A body ~ is said to be in permanent rest if for all t in ( -  oD, ~ )  
and all X in 

e ( X , t ) = 0  and v(X,t)=O. (2.17) 

Definition 2.2. We say that the material comprising ~ is a regular fluid if 

(i) when ~ is in permanent rest, grad ~ = 0 implies q = O, 

(if) there exist equilibrium response functions !I, p, and-~, obeying (1.2) and 
such that when ~ is in permanent rest at each point X in ~ we have 

n = ~(o, 8), 

T = - p l  with p=ff(o,e) ,  (2.18) 

=~(v, ~), 
and 

(iii) in every admissible process of ~ we have 

~(X, t)<~(o(X, t), e(X, t)) (2.19) 

.for all t and all X in ~ ,  where ~ is the static entropy function appearing in (2.18). 

We have observed that elastic fluids, linearly viscous fluids, and simple fluids 
with fading memory are indistinguishable in states of permanent rest and obey 
the conditions (i) and (if). The condition (iii) is of importance in processes that 

* NOLL [1958, 2]. 
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depart  f rom permanent  rest. For  elastic fluids and viscous fluids, (iii) holds trivially. 
For  simple fluids with fading memory,  (iii) is not  trivial but  is nevertheless a 
consequence of the second law of thermodynamics .*  
Hence, every elastic fluid, every linearly viscous fluid, and every simple .fluid 
with fading memory is a regular fluid. ** 

We now render mathematical  the physical concept  of "an  isolated body" .  

Definition 2.3. I f  an admissible thermodynamic process ~ in a body ~ is such 
that at each time t 

b=O and r=O for all X e ~ ,  

v .n=O,  v. Tn=O and q . n = O  f o r a l l X e a ~ ,  (2.20) 

then ~ is said to be compatible with isolation of 8 .  

Occasionally, to indicate that  cg obeys (2.20), we say, less formally, that  cg is a 
process in an isolated body. 

In  the special case of an elastic fluid we have T = - p l ,  and hence v. T n =  
- p  v. n. Therefore, for an elastic fluid, an admissible process with p~-O is com- 
patible with isolation if and only if for all t 

b = 0  and r = 0  for all X ~ ,  

v .n=O and q . n = O  for all X ~ 3 ~ .  (2.21) 

For  more  general fluids the stress need not  reduce to a hydrostat ic  pressure - p  1. 
However,  we can assert that  a process admissible in a body comprised of a general 

fluid is compatible with isolation of the body if for all t 

b = 0  and r = 0  for all X ~ M ,  

v = 0  and q . n = 0  for all X ~ d ~ .  (2.22) 

The conditions (2.22), though  sufficient, are not  necessary for isolation. 

Returning now to our  original definition (2.20), we may  observe that  the con- 
dition v �9 n = 0 on d&, implies that, for all t, 

dt ~odm=O , (2.23) 

while the remaining conditions, when combined with the equat ion (2.2) of balance 
of energy, with ~ put  equal to &, yield 

dt ~ (e+�89 (2.24) 

for  all t. Thus, the total volume and total energy of an isolated body are constant 
in time. 

�9 Although (2.19) reduces to an equation for elastic and linearly viscous fluids, the inequality 
in (2.19) can be strict for a fluid with memory that has not been held in permanent rest. 

�9 * Fluids with internal state variables are also regular fluids, provided that the evolution 
equation for the internal state obeys a stability postulate discussed in w 10 of COLEMAN & GURTIN'S 
[1967, 1] article. 
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In the next section we study processes which occur in an isolated body com- 
posed of a regular fluid. We assume the second law of thermodynamics, i.e. that 
the constitutive equations of the fluid are such that the Clausius-Duhem ine- 
quality holds for all processes. Therefore, by (2.20) and (2.4) with ~ = 9~, for all 
admissible processes compatible with isolation of & we have 

d S~dm>O (2.25) 
d t ~  

for all t. Or, as expected: The total entropy of an isolated body does not decrease 
in time. 

3. A Basic Property of Equilibrium 
When the body force b and the heat supply r vanish, the balance laws (2.1) 

and (2.2) may be cast into the differential forms 

p r = d i v T ,  
(3.1) 

p ~ = T. grad r + div q. 

Using (3.1) and the Definitions 2 .1-2 .3  one may easily verify the following 
remark which shows that each uniform static state (Oo, Co} of a regular fluid body 
is realizable as an admissible process which is compatible with isolation and which 
keeps the body in permanent rest. 

Remark 3.1. Let ~ be a regular fluid body with total mass ~ ' ( ~ ) = M .  To 
each pair V>0, E > 0  there corresponds a unique admissible process C~o(V, E) of 

such that 

(i) C~o(V, E) is compatible with isolation of ~ ,  and 

(ii) in the process ego(V, E), ~ is in permanent rest with 

D(X, t)=-Oo %f V/M , e(X, t)=eo d~ E/M. (3.2) 

This process has the following properties: 

v-O,  b-O,  r -O,  q -O,  
def -- 

~/(X, t)-- ~/o = ~/(%, So), 
def --/D T(X,t)---pol with P o = P l .  o ,%),  

( X ,  t)  ---- 0 0 clef ~ (DO,  50)~ 

(3.3) 

We call C~o(V, E) the uniform equilibrium process of ~ with total volume V and 
total energy E. 

In other words, the uniform static states {u o, Co} mentioned in Theorem 1, 
do have a thermodynamic significance: They can occur in isolated bodies as 
equilibrium processes. We now show that the hypothesis of Theorem 1 implies 
that, of all the processes which can occur in an isolated regular fluid body, the 
uniform equilibrium process gives the body the greatest entropy at all times. 
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We have seen, in equations (2.23) and (2.24), that during a thermodynamic 
process cg in an isolated regular fluid body & the total volume 

v= [. o(x, t)dm (3.4) 
a~ 

and the total energy 
E =  j [~(X, t)+�89 t)] dm (3.5) 

are constant in time. 

Definition 3.1. Let ~ be a thermodynamic process admissible in an isolated 
fluid body ~ of total mass M. The unique uniform equilibrium process ~o (V, E) 
which gives ~ the same total volume V and total energy E as ~g is called the uniform 
equilibrium process associated with ~. Putting 

o o = V/M,  e o = E/M,  (3.6) 
we call the number 

A(~, t )= ]" I o(x ,  0 - %  [ d m +  S [e(X, 0 - % 1  dm+�89 v2(X, t )dm (3.7) 

the departure of Cg from uniform equilibrium at time t. 

We shall regard A (c4, t) as a measure of the distance at time t between the 
process cg and its associated uniform equilibrium process. It follows from (3.3) 
that during the equilibrium process fro (V, E) the total entropy of ~ is constant in 
time and is given by the formula 

no  = ~ ~ (Oo, ~o) d m = M ~ (Oo, eo), (3.8) 

where ~ is the equilibrium entropy function for the regular fluid comprising ~ .  

Theorem 2. Let ~ be an admissible thermodynamic process in a regular fluid 
body ~ .  Suppose that ~ is compatible with isolation of ~ and that the equilibrium 
entropy function ~ for ~ is strictly concave. I f  the departure of cg from uniform 
equilibrium at time t is not zero, then the true total entropy 

H ( t ) =  ~I (X ,  t )dm (3.9) 
~g 

of ~ at time t in the process cg is strictly less than the total entropy H o of ~ in the 
uniform equilibrium process associated with cg ; i.e. 

A(Cg, t )>0  ~ n ( t ) < n  o (3.10) 

with A (cg, t) and H o given by (3.4)-(3.8). 

Proof. Since N is comprised of a regular fluid, it follows from (2.19) that in the 
process cg at each point X in N and at each time t we have 

rl(X, t )<~(o(X,  t), e(X, t)). (3.11) 

Since ~ is assumed to be strictly concave, we also have, by (1.11), 

~ (o( x,  t), ~(x, t))_-__ ~(Oo, ~o)+ Iv(x, t)-Oo] ~o(Oo, ~o)+ 
(3.12) 

+ [~(x, t ) -  eo] ~(Oo, ~o), 



Thermodynamics and the Stability of Fluid Motion 333 

and this is a strict inequality whenever either v(X, 04:00 or s(X, t)4~So. Using 
the fact that ~,(Vo, eo)- l=~(Vo,  So)>0, we may observe that the inequalities 
(3.11) and (3.12) imply that 

r/(X, t) < ~ (Vo, %) + Iv (X, t ) -  Oo] ~o (Oo, Co) + Is(X, t ) -  Co] ~ (Oo, %) + 

+ �89 v 2 (X, t) ~(Oo, Co) ~f ~ (3.13) 

with v(X, t), s(X, t), and vZ(X, t) evaluated in the process ~. The inequality in 
(3.13) is strict whenever 

o(X, t)~=Uo, s(X, t)~=eo, or v2(X, t)~eO. (3.14) 

Of course, (3.13) holds for any pair Vo, eo > 0. We, however, choose o o and s o as in 
(3.6) with V and E given by (3.4) and (3.5). Therefore, for theintegral over ~ of the 
right side of (3.13) we have 

( d m  = M  ~(o o , So). (3.15) 

Furthermore, since, by hypothesis, A (c~, t) is nonzero, it follows from (3.7) that 
there exists a subset ~ of ~ ,  with ~ g ( ~ ) > 0 ,  such that at least one of the in- 
equalities (3.14)holds for all X in ~ .  Since (3.13) is a strict inequality for all X in 
~ ,  integration of (3.13) over ~ yields 

~,7(X, t)dm< S(dm,  (3.16) 

and this inequality, by (3.9), (3.15), and (3.8) implies that H(t) is strictly less 
than Ho; q.e.d. 

4. Dynamical Stability of Uniform Equilibrium 

Our investigation of the stability of uniform equilibrium processes requires a 
sharpening of the result obtained in Theorem 2; to this end we make the following 
preliminary observation. 

Remark 4.1. Let ~ be the equilibrium entropy function of a regular fluid, let 
% > 0  and eo>0 be arbitrarily assigned, and let the function q~oo.~o be defined by 

~oo, 8o (v, ~, v ~) = ~ (Vo, So) + ( o -  Vo) ~o (Oo, ~o) + ( ~ -  ~o) ~(Vo, So) + 

+ �89 v 2 ~ (Oo, So) - ~ (o, s), (4.1) 

O>0, S>0, V2~0. 

If ~ is strictly concave over (0, ~ ) x  (0, ~), then given any number d > 0  there 
exists another number A (d, %, %) such that 

~Ooo ' ~o(O, s, v 2) 
inf > A (d, o o , So) (4.2) 

. . . . .  ~)~y~ I o - o o l + l ~ - ~ o l + � 8 9  2 
where 

~={(o,s, v2) l o>0,  s>0 ,  v2>0, IO-ool+l~-sol+iv2>d}. (4.3) 

Proof. Since we assume that ~ is strictly concave, the function f ,  defined by 

f(o, s)=~(Oo, So)+ (o-Oo)~o(Oo, So)+ (s-Co)~,(o o , So)-~(v,  e), (4.4) 
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is strictly convex over (0, ~ )  x (0, oo), and 

(o, e)4:(Oo, So) =:" f(o, s )>0 .  (4.5) 
Furthermore, if 

~s (Oo, %) > 0, (4.6) 

as is always the case for a regular fluid, we have, trivially, 

v24=0 =~ �89 (4.7) 
Since 

q~oo, so( v, s, v 2) =f(o,  s) + �89 v 2 ~(Oo, So), (4.8) 

Cpoo, so(O, s, v 2) is a convex function over (0, ~ )  x (0, oo) x [0, ~ ) ,  and 

(o, s, v2)4:(Oo, So, 0) =~ q~oo, so( v, s, v2)>0. (4.9) 

Now, since it is also true that 

q~o, so(~ %, 0) = 0 ,  (4.10) 

it follows from a known theorem on convex functions* that for each triplet 
(a, b, c), 

1 
q~oo, so (s0 + ~a, o o + c~b, c~c) 

is an increasing function of ~ for all ~ > 0 with So + ~ a > 0, o o + c~b > 0, and ~ c > 0, 
and this observation, when combined with (4.9), proves the remark. 

We use Remark 4.1 to establish 

Remark 4.2. For each regular fluid with a strictly concave equilibrium entropy 
function ~, there exists a function fi (09, M, V, E)possessing the following properties: 

(i) ~(09, M, V, E)>O for all 09>0, M > 0 ,  V>0, and E>O. 

(ii) I f  ~ is a process admissible in a body ~ comprised of the regular fluid, then 
given any 09 > 0 

no-n(t)<~5(a~, M, V, E) =:. A(Cg, 0<09, (4.11) 

with M the total mass of ~ ,  and H(t), given by (3.9), the true total entropy of 
at time t in the process ~. The numbers H o and A (~, t) are given by (3.7) and (3.8), 
with V, E, Oo, So obtained from (3.4) - (3.6) using the values of v, s, v in the process 

at time t. 

It will be noticed that (4.1 1) is a statement about any process admissible in the 
regular fluid, not only processes compatible with isolation. Of course, in a general 
admissible process, the numbers V, E, oo, %, and Ho, obtained from (3.4), (3.5), 
(3.6), and (3.8), will depend on t, but the proof we have given for Theorem 2 still 
can be used to show that H o - H ( t  ) is not negative. 

Proof of Remark 4.2. Since we are dealing with a regular fluid, it follows from 
(2.19) that in an admissible process c~ we have 

S r/(X, t) d m < S ~(~ (X, t), e(X, t)) d m; (4.12) 

* See, for example, EGGLESTON [1958, p. 47]. 
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therefore, by (3.8) and (3.9), 

Ho - H(t) ~~ ~ ~ (Oo, %) d m -  ~ ~/(X, t) d m 

> ~(Oo,go)dm- S~(o(X,t),e(X,t))dm. (4.13) 

Of course, by (3.4) - (3.6), 

j" ([o(x, 0-Oo] ~o(Oo, So)+ [~(x, t ) -  ~o] ~(Oo, So)+ 
+�89 v2(X, t)~,(oo, go))dm=O. (4.14) 

Adding (4.14) to (4.13) and using (4.1) we obtain 

H o -H(t)> ~ ~Poo, ~o(~ X, t), e(X, t), v2(X, t))dm. 
(4.15) 

Now, let 09>0 be given and let the sets ~o,(t) and 5e, o(t) be defined as follows: 

{ ~ 6eo,(t)= X ~  ]o(X,t)-ool+[g(X,t)-eol+v2(X,t)<-~--1q- , (4.16) 

S~,o(t) = ~ -  5P~o (t) . 

It follows from (3.7) that 

A (4, t)= ~ [I o-Oo I + Ig-~o 1+�89 v 2] d m = ~  +J2 ,  (4.17) 
where 

J1 = [. [Io-ool+le-gol+�89 
SPo, (0 

J2 = .~. io_ool+lg_~ol+�89 (4.18) 
~,(t) tPoo,,o(O,~,v) r176176176176 dm; 

here we have written o for o(X, t), e for g(X, t), and v for v(X, t). By (4.16), 

(2) 
4__<-i--. 

By Remark 4.1, 

I V - v o l + l g - ~ o l + � 8 9  2 
s u p  

x~=~=<o ~%,~o (~'~'v) 

A__< 

< 

and hence, 

1 < 
= 

, O0 ~ SO 

1 
_~ q~o,~o(O,e, v2)dm 

1 
I ~Ooo, ~~ 5, v 2) din. 

, O0, go 

< 0 0 ,  

(4.19) 

(4.20) 

(4.21) 
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Substituting (4.19), (4.21), and (4.15) into (4.17), we find that 

< o9 H ( t ) - H  o A(~,t)=~ 
A (  ~ M  ) ,  (4.22) 

, O0,/~0 

from which it follows that (4.11) holds with 

6(O9,M, V,E)=-~ A ( O92M , M E ).. , (4.23) 

q.e.d. 
We have now assembled the apparatus required to state and prove our main 

theorem. 

T h e o r e m  3. Let ~ be a regular fluid body, and suppose that every uniform static 
state of ~ is Gibbs stable. Let V>0 and E> O be arbitrarily assigned, and let ff ( V,E) 
be the class of admissible processes in ~ which are compatible with isolation of 
and which give ~ the (constant) total volume V and total energy E. Of course, all 
the processes in if(V, E) are associated with the same uniform equilibrium process 
ego(V, E);  we denote by Ho(V, E) the total entropy of ~ in the process ~qo(V, E). 
Now, given any o9>0, there exists a 6o, such that if a process c~ in if(V, E) satisfies 

Ho(E,V)-H(z)<6,~, with H(z)= ~q(X , z )dm,  (4.24) 
ar 

at any one time ~, then for all t> z, ~ satisfies 

A (c~, t) < o9 (4.25) 
with A (<~, t) defined in (3.7). 

In words: If all uniform static states are Gibbs stable, and if we know that the 
total entropy H of an isolated body & is at present close to its value H o in uniform 
equilibrium, then we can be sure that the departure of ~ from uniform equilibrium, 
as measured by the metric (3.7), will be small at all future times. 

Proof of Theorem 3. Since we assume that every uniform state of ~ is Gibbs 
stable, it follows from Theorem 1 that ~ is strictly concave. Now, we let co>0 be 
given, and we put 

6o, =6(o9, M, V, E), (4.26) 

where the function on the right is that given to us by Remark 4.2, M is the mass 
of ~ ,  and V and E are the total energy and total volume of & for the processes in 
if(V, E). It then follows from (4.11) that for all processes in if(V, E) 

H o-H(t)<6o, =~ A(~, t)<og. (4.27) 

But, since the processes in if(V, E) are compatible with isolation of ~ ,  for these 
processes, by (2.25), 

d H(t)>_O. 
dt 

Hence, if c~ is in if(V, E) and obeys (4.24) at some time z, then Ho-H(t)<6o, 
at all times t>z,  and, by (4.27), c~ also obeys (4.25); q.e.d. 
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The reader will notice that although (4.27) holds, it does not follow that 
Ho - H(t)  must be small whenever A (cg, t) is small. Theorem 3 tells us that uniform 
equilibrium processes are dynamically stable in the sense that no perturbation 
which keeps the entropy at time z close to its equilibrium value can yield a large 
departure A (cg, t) from uniform equilibrium at a later time t. Since the hypothesis 
of Theorem 3 does not imply that if A (cg, z) is small, then A (cg, t) must be small 
for all t > ~, our theorem deals with a type of stability weaker than the Lyapunov 
stability considered in the theory of differential equations. 

Theorem 3 has the following immediate corollary. 

Remark 4.3. Under the hypothesis of Theorem 3, for each o9 > 0 there exists 
a 6,o>0 such that ifaprocess ~f in ~(V, E) satisfies (4.24) at any one time z, then 
c~ also satisfies 

IS o(x, t) d m -  Vo (~)~ _<r 
5* 

and 

with 

1~ e(X,t)dm-Eo(~)]<=r with 

~r (4.28) Vo (~)  = V d ( ~ ) ,  

E o ( ~ ) = ~  ~ ( ~ )  dr ' (4.29) 

(4.30) �89 I v2(X,  t) dm~_~(.o, 
5. 

at each time t> T and for all parts ~ of ~ .  

In words: When all the uniform static states of a regular fluid body ~ are 
Gibbs stable, to insure that the volume, the internal energy, and the kinetic 
energy of all the parts of & remain close to their values at uniform equilibrium, 
it suffices to isolate ~ and to set the initial total entropy of ~ close to its value at 
uniform equilibrium. 

Although we know no simpler proof of (4.28) and (4.29), restrictions on the 
kinetic energy of the parts of ~ can be derived by arguments more direct than that 
which we used to prove Theorem 3. To show this we now establish 

Theorem 4. Let ~ be a regular fluid body with the property that every uniform 
static state of ~ is Gibbs stable. In each process cg that is admissible in ~ and 
compatible with isolation of ~ ,  we have, for each time ~ and for all parts ~ of ~ ,  

t>~ =~ �89 S v2( X, t) dm<[no-n (~ ) ]  80, (4.31) 
5. 

where H(z) is the true total entropy of & at time x in the process cg, and 8 o and H o 
are the temperature and total entropy of & in the uniform equilibrium process 
associated with ~. 

Proof. Let Oo and So be defined by (3.6) with V and E the (constant) total 
volume and energy of ~ in the process cg. The argument used in the proof of 
Remark 4.2 may be applied here to obtain the relation (4.15), and we may use the 
equations (4.8), (3.3)9 , and (1.2)1 to write (4.15) in the form 

Ho--H(t)>esS f ( o ( X , t ) , ~ ( X , t ) ) d m +  2-2To~ v2 (X ' t )dm (4.32) 

23 Arch. Rational Mech. Anal., Vol. 25 
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with the function f defined by (4.4). From Theorem 1 and our hypothesis that 
every uniform static state of g is Gibbs stable, we deduce that ~ is strictly concave, 
which implies that (4.5) holds. Hence (4.32) yields 

Ho-H(t)> 2-~o~ V2(X,t)dm> 2-~o~ V2(X,t)dm (4.33) 

for all parts ~ of ~ .  Of course, since the process cg is compatible with isolation 
of &, it follows from (2.25) that 

t>__z ~ H o - n ( T ) > = H o - n ( t ) ,  (4.34) 

and this with (4.33) clearly yields (4.31); q.e.d. 
It is evident from the proof just given that by making use of (2.24) and the 

strict inequality in (4.5), one can strengthen (4.31) as follows: 

Remark 4.4. Under the hypothesis of Theorem 4, 

t>z,  S v2(X,t)dm#O ~ �89 S v2(X,t)dm<~o[Ho-H(z)] (4.35) 

for all parts ~ of ~. 
An interesting corollary to our proof of Theorem 3 is 

Remark 4.5. If in addition to the hypothesis of Theorem 3 we suppose that the 
constitutive equations of the regular fluid are such that for processes in E(V, E) 

H(t)#Ho(V,E) =~ J T  H(t)#O, (4.36) 

then for each ~r in E(V, E)* 
lim A (cr t )=0 .  (4.37) 

It'-* oo 

Proof. For each cg in ~(V, E) we have, by (2.25) and Theorem 2, 

d H(t)>O and H(t)<=Ho(V,E) (4.38) 
dt 

for all t; hence 
lim H(t) ~f H(oo) (4.39) 

t---~ o0 

exists. But, (4.36) implies that H(oo) cannot be different from Ho(V, E); hence 

lim H (t) = no  (V, E). (4.40) 
t---~ 0 0  

It follows immediately from this observation and Remark 4.2 that (4.37) holds 
for each cg in g (V, E); q.e.d. 

Of course, in applications it will not be a trivial matter to check whether (4.36) 
holds for a given set of constitutive equations. It is clear, however, that (4.36) does 
not hold for a perfectly elastic non-conducting fluid, i.e. for a material which 
always obeys (2.3) with rc = 0. 

* It will be recalled that, by definition, the time-dependent fields comprising a process ~ of 
exist for all t in (-- cx), 0o). 
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5. On Non-Simple Fluids 

The definition of a thermodynamic process given in Section 2 presupposes (i) 
that the force system acting on & may be resolved into a stress field T and a body 
force field b, (ii) that all transfers of non-mechanical energy can be expressed with 
a heat supply field r and a heat flux field q, and (iii) that the entropy H of & is an 
integral of the entropies of the parts of ~ .  Here we shall observe that the theorems 
of Sections 3 and 4 can be generalized to cover materials for which the supposi- 
tions (i)-(iii) fail. 

Let us continue to suppose that the list of fields comprising a thermodynamic 
process contains the specific internal energy e. Any thermodynamic theory pre- 
supposes some set of constitutive assumptions, a law of balance of energy, and a 
law of positive production of entropy. Here we need not state these principles 
explicitly. It suffices to assume that for the processes in & that are compatible with 
isolation of :~ we have 

d--{V=O, E=O,  (5.1) 

and 
d 
,it H(t)>=O, (5.2) 

where V, E, and H are the total volume, energy, and entropy of &. Of course, 
V is the integral of o: 

v= I o(x, t) am. (5.3) 

The formula (3.5) for E may be generalized to permit expressions for the kinetic 
energy other than the classical: 

E =  I [e(X, t)+B(X, t)] din, B(X, t)>=O. (5.4) 

It is not necessary to assume that H(t) is always given by (3.9). However, we say 
that the material comprising N is a generalized regular fluid if (i) there exists a 
function ~ over (0, oo) x (0, oo) such that in every admissible process of 

n(t)  < S ~(o(X, t), e(X, t)) din, (5.5) 

and (ii) for each pair V>0, E > 0  there exists an admissible process C~o(V , E) of 
that is compatible with isolation of & and such that 

fl(X, t) = O, o(X, t) = Oo ~f V/M, e(X, t) = e o ~f E/M, (5.6) 

H(t) = S ~(Oo, So) d m = M ~(Oo, Co). (5.7) 

The function ~ is again called the equilibrium entropy function for the regular 
fluid; we assume that the number 30, given by 

So = [n~(Oo, So)I- 1 (5.8) 
is strictly positive. 

23* 



340 B.D. COLEMAN & J.M. GREENBERG : 

Using the function ~ we can repeat the theory of Section 1. For the small part 
of classical thermostatics described there, we may take the functions ff and 
to be defined by (1.2). 

It will be noticed that our present definition of a generalized regular fluid 
assumes the existence, but not the uniqueness,* of an equilibrium process of the 
type described in Remark 3.1. We here call any admissible process in & obeying 
(5.6) and (5.7) a uniform equilibrium process. 

For an arbitrary admissible process cg in & we now define A (cg, t) by 

A(Cg, 0 = S I o ( X , t ) - o o l d m +  S ] e ( S , t ) - e o l d m +  ~ f l (X , t ) dm ,  (5.9) 

where 
Oo = V/M, eo = E/M, (5.10) 

with V and E given by (5.3) and (5.4). If & is comprised of a generalized regular 
fluid and if ~ is compatible with isolation of ~ ,  then A (cg, t) gives a measure of 
the departure of cg from the (possibly several) uniform equilibrium processes 
ego (V, E) having the same total volume V and energy E as cg. 

Using the few definitions and hypotheses just stated it is now easy to generalize 
Theorems 2, 3, and 4. As a generalization of Theorem 2 we have 

Remark 5.1. Let ~ be a generalized regular fluid body with a strictly concave 
equilibrium entropy function "~. l f  qg is an admissible process compatible with isolation 
of ~ then,for any t in ( -  or, ~) ,  

A(~g,t)>0 =~ n ( t ) < H o ,  (5.11) 

where H(t)  is the true entropy of ~ in the process fg at time t, the number A (cg, t) 
is given by (5.9), and H o is the constant 

Ho = M ~(o o , %) (5.12) 

with o o and So given by (5.10), (5.3), and (5.4). 

Proof. By (5.5), the concavity of ~, and the positivity of fl(X, t) and ~h, we have 

n(t) < ~ ~(o(X, t), e(X, t)) dm 

_-__ ~ (~o(Oo, So)+ Iv(X, t ) -  Oo] ~o(v0, So)+ (5.13) 

+ [5 (X, t ) -  Sol ~,(Oo, So) +/~ ~o (Oo, So)} d m. 

When Vo and eo are chosen as in (5.10) with V and E given by (5.3) and (5.4), the 
right side of (5.13) reduces to M~/o (o0, So). Furthermore, since ~ is strictly concave 
and ~ (oo ,  %)>0,  the inequality (5.13)2 is strict whenever A (cg, t)=~0; q.e.d. 

Theorems 3 and 4 are generalized in 

Remark 5.2. Let & be a generalized regular fluid body with ~ for its equilibrium 
entropy function, and suppose that every uniform static state of ~ is Gibbs stable. 

* In applications we expect the conditions (5.6) to determine a unique admissible process 
compatible with isolation, as in Remark 3.1, but such uniqueness is not necessary to the proofs 
of our theorems. 
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Let V>O and E>O be given, put 

Ho=M~(oo,eo),  ~qo=[-r/,(o0,eo)] -1 ,  vo=V/M,  eo=E/M, (5.14) 

and let ~(V, E) be the set of admissible processes in ~ which are compatible with 
isolation of ~ and which give ~ the total volume V and total energy E. Now, given 
any co>0,  there exists a go, such that for processes in ~(V, E) 

Ho-H(z)<~,o => A(~,t)<o~ for all t>z;  (5.15) 

here H(z) is the entropy of ~ in ~ at time z, and A (c~, t) is given by (5.9). It is also 
true that for processes in ~(V, E), 

t>=z => S fl(X, t) d m < [ H o - H ( z ) ]  ~o, (5.16) 

where # is any part of ~ .  

Proof .  Use the proofs  of Theorems  3 and  4 wi th  �89 v 2 and  ~ ll(X, t) dm replaced  
by  fl and  H(t), respectively,  wherever  they occur.  

I t  is now clear  tha t  our  Remarks  4.3 - 4.5 are  also easily extended to general ized 
regular  fluids. 

We acknowledge with gratitude the support of this research by the Air Force Office of Scien- 
tific Research under Grant AF-AFOSR 728-66. 
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