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Ueber die Bewegungsgleichungen der Elektrlcltat
fir ruhende leitende Korper.
(Von Herrn Helmholtz in Heidelberg.)

Bei Gelegenheit gewisser Versuche wurde ich veranlasst, die Frage
zu discutiren, in welcher Weise elektrische Strome im Innern eines korperlich
ausgedehnten Leiters zu fliessen beginnen. Ich suchte Aufschluss dariber
aus der Theorie zu gewinnen. Die Bewegungsgleichungen der elektrischen
Strome von verdnderlicher Intensitat fiir Leiter von drei Dimensionen, welche
sich aus Herrn W. Webers sinnreicher Hypothese iber das Wesen der elektri~
schen Fernwirkungen ergeben, sind von Herrn G. Kirchhoff *) entwickelt,
und theils von ihm, theils von anderen Mathematikern mit Erfolg zur Erklirung
einiger Beobachtungsthatsachen benutzt worden. Bei meinem Versuche, sie
auf eine neue Aufgabe anzuwenden, ergaben sich physikalisch nnzulissige
Folgerungen, und die nihere Untersuchung iberzeugte mich bald, dass der
Grund davon in den Principien der Theorie stecke, dass namlich nach den
Folgerungen aus der Weberschen Theorie das Gleichgewicht der ruhenden
Elektricitat in einem leitenden Korper labil sei, und dass deshalb die darauf
gegriindete Theorie die Moglichkeit von elektrischen Stromungen anzeige, die
zu immer grosser werdenden Werthen der Stromungsintensitdt und der elektri-
schen Dichtigkeit fortschritten. ' ‘

Als ich dagegen versuchte, neue Bewegungsgleichungen zu bilden, bei
denen ich statt des Weberschen Gesetzes fir die Induction zweier Stromelemente
auf einander das von Herrn F. E. Neumann **) (dem Vater) formulirte Gesetz
zu Grunde legte, erhielt ich brauchbare Gleichungen, d1e fir die ruhende
Elektricitat stabiles Gleichgewicht ergaben.

Bei diesem Widerstreit der Theorien schien es mir rathsam, moglichst
wenig den Boden der Thatsachen zu verlassen und in der Theorie unbestimmt

*) Poggendorffs Annalen CII. pag. 529.

#) Die mathematischen Gesetze der inducirten elektrischen Strome. Schriften
der Berliner Akad. d. Wissensch. von 1845. — Besonders abgedruckt. Berlin, Reimer
1846. — Ueber ein allgemeines Prmc\i’p der mathematischen Theorie inducirter elektri-
scher Strome. Berlin, Reimer 1848. (Vorgelegt der Berliner Akademie 9. August 1847.)
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zu lassen, was bisher nicht als durch Versuche entschieden angesehen werden
konnte. Die Art, wie ich in diese Frage hineingezogen war, liess schon
erkennen, dass die Untersuchung selbst eine gewisse Einengung in der Breite
der zuldssigen Annahmen herbeifiihren wiirde; denn nur diejenigen Annahmen
konnten beibehalten werden, die fiir die ruhende Elektricitat stabiles Gleich—
gewicht ergeben. Zweitens schien zu hoffen, dass eine solche Theorie er-
kennen lassen wiirde, bei welchen Klassen von elektrischen Versuchen wir
erwarlen diirften, Erscheinungen zu beobachten, welche auf das wahre Geselz
der Fernwirkung zweier Stromelemente gegen einander einen Riickschluss er-
lauben wiirden, und umgekehrt, bei welchen anderen Klassen von Versuchen
die bestehende Liicke unserer Kenntnisse keinen wesentlichen Einfluss auf ihre
theoretische, Erkldrung und Ableitung habe. Diese Aussicht ist auch in einem
gewissen Sinne erfiillt worden, indem sich zeigt, dass die mit den uns gegen-
wirlig zu Gebote stehenden Beobachtungsmitteln wahrzunehmenden Erschei-
nungen von jener Licke in unseren Kenntnissen wahrscheinlich nirgends Kunde
geben, und daher auch zunichst nichts zu deren Ausfillung beitragen werden.
Die wesentlichste Liicke der Theorie in dem vorliegenden Gebiet be-
zieht sich auf die durch Aenderung der Stromintensitit vorhandener elektri-
scher Strome inducirten elektromotorischen Krifte, sobald die inducirenden
Strome nicht vollstiandig geschlossen sind. Der charakieristische Unterschied
zwischen einem System geschlossener und einem System ungeschlossener
Strome ist, dass in ersierem keine Verdnderungen in der Dichtighkeit der freien
Elektricitit vorkommen, wohl aber in dem letzteren. Bisher kennen wir nun
aus -der Erfahrung mit hinreichender Genauigkeit die Gesetze der elektro-
dynamischen Anziehungen und die damit connexen Gesetze der inducirten
elektromotorischen Krifte nur fir geschlossene Strome, oder hochstens solche
Fille ungeschlossener Strome (Leydener Flaschen), bei denen die Unterbrechungs-
stelle einflusslos auf die elektrodynamischen Wirkungen blieb. B
Der Standpunkt der reinen Erfahrungsthatsachen ist gewahrt, wenn man
nach Ampéres Vorgang die elekirodynamischen Anziehungen darstellt als die
Krafte, welche zwei von den Stromkreisen begrenzte Flachen, mit magnetischen

Doppelschlchten bedeckt, auf einander ausiben; aber diese Art der Darstellung

kann, wie ersichtlich, auf ungeschlossene Strome nicht ausgedehnt werden.
Indessen liegt es in der Natur der Sache, dass man versuchen musste,

die Gesammtwirkung zweier Stromkreise auf einander nicht von zwei imaginéiren

durch sie begrenzten Flichen herzuleiten, sondern sie in die Wirkungen ihrer
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einzelnen Elemente aufzulosen. Dabei zeigte sich, dass das Geselz der Elemen-
larwirkungen nicht vollstindig und eindeutig aus dem der Gesammtwirkung
bestimmt werden konnte. Schon Ampére hatte ein Gesetz fir die anziehenden
und abstossenden Krifte gegeben, welche zwei Stromelemente auf einander
ausiiben. Herr Grassmann *) zeigie, dass dafir auch andere Krifte eingefiihrt
werden konnten, ohne das Resultat bei irgend einer Anwendung auf ge-
schlossene Strome zu veréindern. Herr F. E. Neumanr (Vater) leitete aus
Ampéres Gesetzen fir die Krafte den Ausdruck fir das Potential zweier Strom-
elemente ab, und sprach zuerst das daraus herfliessende Gesetz der Induction
aus, im Wesentlichen gestitzt auf die Erfahrungsregel, dass die durch Bewe-
gung von Magneten oder Stromleitern inducirten Strome dieser Bewegung
immer entgegenwirken. Wenig spéter erschien der erste Abschnitt von Herrn
W. Webers ,Elektrodynamischen Maassbestimmungen‘‘, in denen er zuerst
das unter seinem Namen bekannte Gesetz der elektrischen Fernwirkung auf-
stellte, welches alle bis dahin bekannten Wirkungen der Elektricitit, die elektro-
statischen, elektrodynamischen und inducirenden unter einen Gesichtspunkt zu-
sammenfasste. Das daraus hergeleitete Inductionsgesetz war abweichend von
dem Neumannschen Gesetze; aber es zeigte die darauf folgende Discussion,
dass bei richtiger Anwendung des Weberschen Gesetzes, es fir alle Fille,
wo der inducirende Strom geschlossen ist, genau dieselben Resultate giebt,
wie das von Herrn Neumann aufgestellte Gesetz.

Da die von Herrn C. Neumann (Sohn)*¥) aufgestellte Hypothese iber
die elektrischen Fernwirkungen fiir geringere Stromungsgeschwindigkeiten der
elektrischen Massen zum Weberschen Gesetze fiihrt, so ist auch das daraus
folgende Inductionsgesetz dasselbe, so lange nur die ersten Potenzen der Strom-
starken zu beriicksichtigen sind.

Ein andres Gesetz der Induction ist dagegen in den Arbeiten von
Herrn Cl. Mazwell ***), wenn auch in verdeckter Form, enthalten, welches
wiederum fiir geschlossene, aber nicht fiir ungeschlossene Strome mit den
beiden vorher erwéhnten ibereinstimmt. '

Analytisch genommen beruht das bezeichnete Verhiliniss dieser ver-
schiedenen Gesetze darauf, dass die Differenzen zwischen den Werthen, die

*) Neue Theorie der Elektrodynamik in Poggendorffs Annalen LXIV. 1845.
) Nachrichten von der Konigl. Gesellschaft d. Wiss. zu Gottingen. 16 Juni 1868.
*#%) London, Philosophical Transactions 1865. P.I. p. 459.
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sie ergeben, alle auf die Form

d’r

ds.do
gebracht werden konnen, wo r die Entfernung der beiden Stromelemente ds
und do, und B eine Constante bezeichnet. Diese Grosse liefert aber ein
Integral vom Werthe Null, so oft sie iiber einen ganzen geschlossenen Strom-
kreis, sei es s oder o, integrirt wird. Ihr Einfluss verschwindet also aus dem
Resultate, so oft dabei einer der beiden Stromkreise als geschlossen in die
Rechnung eingefithrt wird. Dasselbe wiirde ibrigens der Fall sein, wenn r
auch nur irgend eine Function der Entfernung bedeutete. Im ersten Paragraphen
der folgenden Untersuchung ist gezeigt worden, dass letzteres die allgemeinste
Annahme ist, welche fir das Potential zweier Stromelemente gewahlt werden
kann, wenn das Potential geschlossener Stromsysteme immer seinen richtigen
Werth erhalten soll. Wenn man iibrigens noch die Annahme hinzufiigt, wie
dies in den folgenden Untersuchungen geschehen ist, dass die Wirkung un-
geschlossener Strome in die Ferne keiner anderen Function der Entfernung
proportional sei, als die aller anderen elektrischen Wirkungen, so ist unter r
in dem obigen Ausdrucke die Entfernung selbst zu verstehen.

Auf die hier gemachten Bemerkungen gestiitzt, habe ich meiner Unter—
suchung einen Ausdruck fir das Potential zweier Stromelemente zu Grunde
gelegt (§.1, Gleichung (1.)), welcher eine Constante von unbekanntem Werthe
(bezeichnet mit k) enthdlt, und in dieser Form die sémmtlichen bisher fir
dieses Potential aufgestellten Ausdriicke umschliesst. Aus meinem allgemeineren
Ausdrucke ergiebt sich ndmlich der von Herrn F. E. Neumann gebrauchte,
wenn wir setzen k=1, dagegen der von Herrn Cl. Maxwell, wenn wir setzen
k=0, und endlich der von Herrn W. Weber und C. Neumanr, wenn wir
seizen k= —1.

Die besondere Form der Herleitung des betreffenden Ausdrucks, wie
sie im ersten Paragraphen durchgefihrt ist, habe ich gewahlt, um hervortreten
zu lassen, dass unter Hinzunahme der schon erwahnten Hypothese dieser Aus-
druck der allgemeinste ist, der den Bedingungen der Aufgabe und dem Ge-
setz von der Erhaltung der Kraft entspricht. Die weitere Annahme, dass
auch die elektrodynamischen Wirkungen der ungeschlossenen Stromtheile ihrer
Stromintensitit einfach proportional sind, widerspricht gewissen Folgerungen
der Weberschen Hypothese, die ibrigens noch in keinem Falle durch die
Erfahrung unterstitzt worden sind. Wie es sich damit aber auch verhalten
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mag, jedenfalls wird fir geringere Stromstirken, die unterhalb einer gewissen
Grenze bleiben, meine Annahme zuléssig sein, so dass diese ungiinstigsten Falls
die Anwendbarkeit der von mir gezogenen Folgerungen nur in Bezug auf die
zuldssigen Stromstdrken beschrinkt.

Im zweiten Paragraphen sind die Werthe des elektrodynamischen Poten-
tials fir Strome, die continuirlich im Raume verbreitet sind, entwickelt, und
zum weiteren Gebrauche umgeformt. Die Art der Umformung und die ana-
lytischen K@nstgriffe, welche dabei angewendet sind, sind im Wesentlichen
dieselben, welche schon Herr Kirchhoff fir denselben Zweck, aber auf einen
etwas anders gestalteten Ausdruck angewendet hatte.

Dann sind im dritten Paragrapher die Bewegungsgleichungen der
Elekiricitat aufgestellt, und auf ein System von Differentialgleichungen gebracht
worden. Letztere sind im Innern eines Leiters von gleichméssiger Beschaffen—
heit dieselben, wie fiir verschwindend kleine Bewegungen in einem der Reibung
unterworfenen Gase, nur mit anderen Grenzbedingungen. Dabei entsprechen
aber die elektromotorischen Krifte den Geschwindigkeiten des Gases, die elektro-
statische Potentialfunction den Druck- und Dichtigkeitsénderungen des Gases.

Im vierten Paragraphen folgt dann die Untersuchung, ob durch die
aufgestellten Gleichungen der Verlauf der Bewegung eindeutig bestimmt sei.
Dies ist der Fall, wenn die Constante k nicht negativ ist. Wenn sie aber
negativ ist, ergiebt sich, dass der Werth der durch die elektrische Bewegung
reprisentirten Arbeit negativ, d. h. kleiner als im Ruhezustande werden kann,
was das Zeichen eines labilen Gleichgewichts der Elektricitiat im Ruhezustande
ist. In der That wird ganz allgemein fir Leiter jeder Form nachgewiesen,
dass, wenn die genannte Arbeitsgrosse erst einmal einen negaliven Werth
hat, die Bewegung, sich selbst iiberlassen, fortdauernd anschwillt und zu un-
endlichen Geschwindigkeiten und Dichtigkeiten der Elektricitat fiihrt *).

Die Frage konnte noch sein, ob solche Bewegungen, die nach der
labilen Seite des elektrischen Gleichgewichts hin ausschlagen, durch die be-
kannten #usseren Einwirkungen, welche uns bei wirklichen Versuchen zu
Gebote stehen, hervorgerufen werden konnten, falls die Constante k wirklich

*) Aus miindlichen Mittheilungen meines Collegen Kirchhoff weiss ich, dass er
schon vor mir gefunden hatte, dass gewisse elektrische Bewegungen in der Kugel
nach den von ihm aus der Weberschen Hypothese abgeleiteten Gleichungen diese
Eigenschaft haben.
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einen negativen Werth hatte. Es wird im finften Paragraphen an einem
Beispiel, namlich der Kugel, gezeigt werden, dass dies wirklich der Fall ist.
Es muss dies nachweisbar im Allgemeinen geschehen, so oft elekirische Be-
wegungen in einer homogenen leitenden Kugel dadurch hervorgerufen werden,
dass man ihr einen elektrisirten Korper nihert, und ihn dann wieder entfernt,
gewisse besondere Bewegungsarien des elektrisirten Korpers ausgenommen.

Daraus geht hervor, dass die Annahme eines negativen Werthes fiir

die Constante k, wie sie im Weberscher Inductionsgeseize gema®ht ist, un—
zuldssig ist. _ :
Es kann auffallen, dass in den hisherigen Arbeiten iiber dieses Thema,
welche alle das von Herrn Kirchhoff*) aus dem Weberschen Inductionsgesetz
hergeleitete System von Gleichungen benutzt haben, diese Unzulinglichkeit
nicht zum Vorschein gekommen ist. In dieser Beziehung ist zu bemerken,
dass Herr Kirchhoff selbst Anwendungen der von ihm gefundenen Gleichungen
nur auf unendlich dinne Driihte gemacht hat, und es wird in §.7 gezeigt
werden, dass wenn nur solche Oscillationen der Elektricitit als stattfindend
vorausgesetzt werden, gegen deren Wellenldnge der Durchmesser des Drahtes
verschwindend klein ist, der Einfluss der Constante % ebenfalls verschwindet,
so dass Herrn Kirchhoffs Resultate durch die meinigen nicht beeintrachtigt
werden. .

Dann hat Herr Jochmann **) dieselben Gleichungen angewendet zur
Bestimmung der Strome in einem rotirenden und der Einwirkung eines Magneten
ausgesetzten Leiter. Solche Strome sind in einer rotirenden Kugel immer
geschlossene, so dass der Einfluss der Constante % verschwindet, und in einem
Leiter von andrer Form (Scheibe) hat Herr Jochmann die Einwirkung der
theilweis ungeschlossenen inducirten Strome auf einander ausser Rechnung
gelassen.

Endlich hat Herr Lorberg ***) die unter Einwirkung beliebiger periodischer
ausserer Krifte in einer homogenen leitenden Kugel vor sich gehenden perio~
dischen Bewegungen der Elektricitdt untersucht, und es ist ihm gelungen, das
ziemlich complicirte System der Differentialgleichungen fiir diesen Fall voll-
standig zu integriren. Seine Arbeit zeigt, dass periodische endlich bleibende

*) Poggendor/fs Annalen CIi, p- 529,
#¥) Dieses Journal Bd. LXIII, 158—178; 329—331.
#4#) Dieses Journal Bd. LXXI, p. 53,



Helmholtz, iber die Bewegungsgleichungen der Elektricitdt. 63

Bewegungen der Elektricitdt in einer Kugel unter Einfluss periodischer Krifte
vor sich gehen komnen, aber nicht, dass solche Bewegungen durch solche
Krifte aus dem Zustand der Ruhe hervorgerufen werden. Im Gegentheil
die Vergleichung mit den von mir aufgestellten Integralen der Differential-
gleichungen zeigt, dass dauernd endliche Bewegungen unter zeitweiliger Ein-
wirkung dusserer Krifte in der Kugel nur moglich sind, wenn schon vorher
eine schwellende Bewegung der Elektricitat bestand, welche durch Einwirkung
der ausseren Krifte in eine abschwellende verwandelt worden ist.

Die von den Herren W. Weber und Lorberg hinzugefiigte Annahme,
dass die elektrischen Flissigkeiten trige Masse und Beharrungsvermogen
hatten, andert nichts Wesentliches an diesen Ergebnissen.

Auch die von Herrn W. Weber ¥) angedeutete Annahme, dass in
elektrisch geladenen Theilen des Leiters sich positive und negative Elektricitat
mit verschiedener Geschwindigkeit bewegen konnten, wobei dann die Fern-
wirkungen seiner Hypothese gemiss nicht einfach der Intensitat der Stromung
proportional, sondern auch von dem Producte dieser Intensitéit und der elektrischen
Dichtigkeit abhingig werden wiirden, beseitigt die Schwierigkeit nicht, da die
genannte Annahme nur Glieder hoherer Dimensionen hinzufiigen wiirde, die
unzuldssigen Folgerungen aber schon aus den Gliedern erster Dimension
herfliessen, und sich daher bei den allerschwichsten Stromen schon geltend
machen miissen.

Es scheint mir vielmehr, dass die hier zu Tage kommende Unzuling-
lichkeit des Weberschen Gesetzes in der Natur desselben tief begriindet ist.
Dieses Gesetz fiigt sich allerdings in so fern dem Geseize von der Erhaltung
der Kraft ein, als es keinen Kreisprocess zuléisst, der Arbeit aus Nichts er—
zeugte. Aber es widerspricht in so fern, als zwei elektrische Theilchen,
die sich nach diesem Gesetze bewegen und mit endlicher Geschwindigkeit
beginnen, in endlicher Entfernung von einander unendliche lebendige Kraft
erreichen und also eine unendlich grosse Arbeit leisten konnen.

Es sei m die Masse, welche sich mit dem elekirischen Theilchen e
bewegt; dieses sei der abstossenden Kraft des gleichartigen Theilchers e’
unterworfen; die Bewegung geschehe in Richtung der Entfernung r beider
Theilchen. Nach dem Weberschen Gesetze ist:

d’r e.e 4 zdr\* 2r d'r
w g = [ (@D 5w

*) Elektrodynamische Maassbestimmungen Heft I. p. 160—164.
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Wir multipliciren mit 9 und integriren:

dt
m odr\* e e rdry
(@) = ¢+ (@)
oder
e.e
Loy o T
¢ Ndit/ aim.c’——e—'—(i

e.e 2 . dr\’ - , o dr
Ist ——>ime > C, so ist <7i?) positiv und grosser als ¢’, also 9

’
reell. Ist letzteres selbst positiv, so wird r wachsen, bis e%:%m.c’, dann
wird %;— unendlich gross.
!
Dasselbe wird geschehen, wenn im Anfange C > %m.07>3;‘i und

dr
v negativ ist.

Dies konnte also schon im einfachsten denkbaren Falle, bei der Bewegung
zweier isolirter elektrischer Theilchen geschehen. Die Resultate unseres fiinften
Paragraphen zeigen, dass dasselbe auch bei wirklich ausfihrbaren Versuchen
miisste vorkommen konnen, wenn das Webersche Gesetz in Wirklichkeit das
Grundgesetz der elektrischen Fernwirkungen wire ¥).

Im sechsten Paragraphen folgt dann eine Untersuchung dariiber, ob
und bei was fir Versuchen ein wahrnehmbarer Einfluss der neu eingefiihrten
Constante % eiwa erwartet werden konne. Bilden wir die Gleichungen fir
eine radial von einem Centrum in einem unendlich ausgedehnten leitenden
Medium sich ausbreitende elektrische Bewegung, so zeigt sich, dass sich in
einem solchen Falle die Elek’ricitat in longitudinalen Wellen ausbreiten kann,
die aber je nach der Schwingungsdauer und dem Leitungswiderstand des Medium

*) Das Potential zweier elektrischer Theilchen ist nach Weber

e;'e’ cin dr) ]

Fiigte man diesem Ausdrucke noch ein Glied hinzu, némlich

_ A4k e.e d'r
2 ¢ are

so wiirde man das in Gleichung (1.) §. I gegebene Potential zweier Stromelemente
erhalten, und wenn k positiv, stabiles Gleichgewicht der Elektricitit. Diese Annahme
wiirde aber in den Ausdruck der Kraft ein Glied mit ?it’ bringen, und ich wage
deshalb keineswegs sie zu empfehlen.
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einem verschiedenen Grade von Dampfung unterworfen sind. Ist die Dampfung

gering, so ist die Fortpflanzungsgeschwindigkeit solcher longitudinalen Wellen
'AIW’ wobei der Factor %nach Herrn Webers
ist, welche letztere Grosse, wie schon Herr Kirchhoff

nach unserer Bezeichnung gleich
£
Y2
gefunden hat, der Lichtgeschwindigkeit ausserordentlich nahe gleich ist und als
Fortpflanzungsgeschwindigkeit der elekirischen Wellen in einem sehr gut leiten—
den Drahte von ihm nachgewiesen wurde.

Nach Herrn Mazwells Annahme k=0 wiirde die Fortpflanzungsgeschwin-
digkeit der longitudinalen elektrischen Wellen in einem Leiter unendlich gross
werden, das heisst, die stromende Elektricitat wiirde sich wie ein incompressibles
Fluidum verhalten. Es bringt diese Annahme eine sehr betrichtliche Ver-
einfachung der analytischen Schwierigkeiten hervor, die bei den hierher ge-
horigen Aufgaben vorliegen, weil bei diesem Werthe von % nie freie Elektricitat
in das Innere eines homogenen Leiters eintritt, wenn sie nicht von Anfang
an darin vorhanden war. Es wird dabei eine der Grundgleichungen der
Aufgabe ((IL.), beziehlich’ (II*.) des §.3) frei von dem Differentialquotienten
nach der Zeit, also ihre Integration nach der Zeit unnothig.

Nach Herrn F. E. Neumanns Annahme k=1, wird die Fortpflanzungsge-
schwindigkeit der Longitudinalwellen gleich der des Lichtes. Wiare k eine
nicht sehr grosse positive Zahl, so wiirde die genannte Fortpflanzungsge-
schwindigkeit doch zu der des Lichtes immer noch in einem endlichen Ver-
hiltniss stehen. Nach Fouriers Satz kann man sich jede elektrische Bewegung
zerlegt denken in eine Summe superponirter einfacher Oscillationen. So
lange nun die Wellenlingen der Longitudinalwellen der mit den gegebenen
Beobachtungsmitteln wahrzunehmenden Oscillationen so gross sind, dass die
Dimensionen der leitenden Korper dagegen verschwinden, so lange kann auch
die Bewegung keinen merklichen Einfluss der Constante & zeigen, und kann,
selbst wenn & von Null verschieden ist, mit hinreichender Anniherung ge-
funden werden, auch wenn wir zur Erleichterung der Rechnung k=0 setzen..

Der einzige praktisch vorkommende Fall eines Leiters von sehr er-
heblicher Erstreckung, wenigstens nach einer Richtung hin, ist der eines langen;
Drahtes. - Ich habe deshalb im siebenten Paragraphen den Ablauf elektrischer
Wellen in einem unendlichen Cylinder von kreisformiger Basis so weit unter—
sucht, als fir den vorliegenden Zweck nothig war. Ist die Wellenldnge sehr
gross gegen den Durchmesser, so afficirt die Constante & erst die kleinen
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Glieder hoherer Ordnung. Die der ersten Ordnung finden sich iibereinstimmend,
wie in Herrn Kirchhoffs Analyse.

Es geht daraus hervor, dass wir uns bei den elekirischen Versuchen
der von der Constante k abhiingigen Geschwindigkeit der elektrischen Longi-
tudinalwellen gegeniiber in einer ahnlichen Lage befinden, wie in der Optik
der Lichtgeschwindigkeit gegeniiber. Bei unseren Laboratoriumsversuchen
werden wir nicht leicht in die Lage kommen, die eine oder die andere be-
riicksichtigen zu miissen, oder ihren Werth bestimmen zu konnen, wenn wir
nicht Mittel anwenden, ganz ungewohnlich feine Zeitunterschiede wahrnehmbar
zu machen, wie dies fir die physikalische Messung der Lichtgeschwindigkeit
geschehen ist.

In den bisher besprochenen ersten sieben Paragraphen der vorliegenden
Arbeit sind die elektrostatischen und elektrodynamischen Wirkungen als reine
Wirkungen in die Ferne behandelt worden, welche die zwischen liegenden
isolirenden Medien nicht afficiren und von ihnen nicht afficirt werden; es war
dies, bisher wenigstens, die gelaufige Betrachtungsweise der meisten mathe—
matischen Physiker, wenigstens des Continents. Indessen wissen wir jetzt,
namentlich durch Faradays Entdeckungen, dass bei weilem die meisten korper—
lichen Medien magnetisirbar sind, und dass ein der magnetischen Polarisation
ahnlicher Zustand von diélektrischer Polarisation in den elektrischen Isolatoren
vorkommt. Die einfachste Theorie des Diamagnetismus wird gewonnen, wenn
wir auch den den Weltraum fillenden Lichtither als magnetisirbar voraussetzen,
und ist dies einmal angenommen, so liegt es nicht fern, ihn auch als Die-
lektricum, in Faradays Sinne, zu hetrachten. Fir die Wirkungen ruhender
oder langsam bewegter Elektricitit, ruhender oder langsam bewegter Magnetismen
ergiebt eine solche Hypothese, welche das den Weltraum fiillende Medium
gselbst als diélektrisch und magnetisirbar betrachtet, durchaus dieselben Resultate,
wie die, welche den Raum als absolut wirkungslos ansieht. Faradays
Theorie freilich, welcher Herr Cl. Maxwell in dem oben citirten Aufsatze
ihren mathematischen Ausdruck gegeben hat, geht weiter, indem sie die Fern-
krifte ganz leugnet, und dafir nur die durch contiguirlich fortschreitende Pola-
risation des Medium fortgepflanzten Wirkungen setzt. Beide Theorien sind
.cinander in gewissem Sinne entgegengesetzt, da nach der von Poisson aus-
gogangenen Theorie der magnetischen Induction, welcher: die Theorie der
diélektrischen Polarisation der Isolatoren ganz entsprechend durchgefithrt werden
kann, die Fernwirkung durch die Polarisation verkleinert, nach Herrn Maxwells
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Theorie dagegen die Fernwirkung durch die Polarisation des Medium gerade-
zu ersetzt wird.

Aus Herrn Mazwells Theorie hat sich nun' das merkwiirdige Resultat
ergeben, dass elektrische Storungen in isolirenden Diélektricis sich in Trans~
versalwellen vérbreiten, fur deren Fortpflanzungsgeschwindigkeit sich im Luft-
raume die Grosse , das heisst die Lichtgeschwindigkeit, ergiebt.

Bei der hervorragenden Bedeutung, welche dieses Resultat fir die
weitere Entwickelung der Physik haben konnte, und da die Frage tber die
Fortpflanzungsgeschwindigkeit der elektrischen Wirkungen in neuerer Zeit
mehrfach angeregt worden ist, schien es mir wichtig, auch noch zu unter-
suchen, was das von mir verallgemeinerte Inductionsgesetz fir den Fall er-
gebe, dass magnetisirbare und diélektrisch polarisirbare Medien vorhanden
seien. Dies ist im achten Paragraphen geschehen.

Diese Untersuchung ergiebt Folgendes:

1) In diélektrischen Isolatoren, selbst wenn sie nicht magnetisirbar
sind, konnen sich elektrische Bewegungen in transversal und longltudmal oscil-
lirenden Wellen fortpflanzen.

2) Die Geschwindigkeit der transversalen Wellen im Luftraum (be-
ziehlich Weltraum) ergiebt sich in der Rechnung als desto geringer, je grosser
seine diélektrische Polarisirungsfihigkeit angenommen wird. Ist diese Null,
so ist die genannte Geschwindigkeit unendlich; ist die Polarisirungsfihigkeit
sehr gross, so findet man die Geschwindigkeit der transversalen Wellen, wie
bei Herrn Maxwell, gleich der Lichtgeschwindigkeit.

3) Die Geschwindigkeit der longitudinalen Wellen im Luftraume findet
sich gleich dem Product aus der der transversalen Wellen mit dem Factor

7F und einer. von der magnetischen Beschaffenheit des Luftraums abhéngigen

Constanten. In Herrn Mazwells Theorie ist die Fortpflanzungsgeschwindigkeit der
longitudinalen elektrischen Wellen als unendlich vorausgesetzt, was dem Werthe
k=0 entspricht; das heisst, longitudinale Wellen kommen gar nicht zu Stande.

4) Die Geschwindigkeit der transversalen und der elektrischen longi-
tudinalen Wellen in andern Isolatoren wird desto kleiner, je mehr ihre elektrische
und magnetische Polarisirbarkeit die des Luftraums iberirifft. In den Leitern der
Elektricitat pflanzen sich die Wellen unter allmaliger Schwachung durch Absorption
fort. Fur die Transversalwellen stimmt auch dies mit Herrn Maxwells Theorie.

5) Wenn der Isolator, in welchem sich transversale elektrische Wellen

9 ¥*

i
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fortpflanzen magnetisch polarisirbar ist, und die elektrischen Oscillationen
parallel einer durch die Fortpflanzungsrichtung gelegten Ebene geschehen, so
finden magnetische transversale Oscillationen senkrecht zu dieser Ebene statt,
die mit derselben Geschwindigkeit fortgepflanzt werden. Fir magnetische
longitudinale Oscillationen ergiebt sich in solchen Medien unendliche Fort-
pflanzungsgeschwindigkeit.

Es ergiebt sich also aus diesen Untersuchungen, dass die merkwirdige
Analogie zwischen den Bewegungen der Elektricitit in einem Diélektricum und
denen des Lichtithers *) nicht von der besonderen Form von Herrn Maxwells
Hypothesen abhéngt, sondern sich in wesentlich ahnlicher Weise auch ergiebt,
wenn wir die éltere Ansicht iber die elektrischen Fernwirkungen beibehalten.

Zu der bisher nicht bestimmbaren Constanten % unserer Untersuchungen
kommt also noch eine zweite, namlich die aus den bisherigen Versuchen eben-
falls nicht bestimmbare diélektrische Constante des Luftraums, oder die Fort-
pflanzungsgeschwindigkeit der elekirischen Transversalwellen im Lufiraume.

§. 1.

Die allgemeinere Form des Inductionsgesetzes.

Das von Herrn F. E. Neumann aufgestellte Inductionsgesetz fir die
Strome, welche durch Bewegung von Magneten. oder von Leitern constanter
geschlossener Strome inducirt werden, ist der unmittelbare Ausdruck der Er-
fahrung, wonach die durch Bewegung inducirten Strome dieser Bewegung immer
entgegenwirken, und wonach die elektromotorische Gesammtkraft des durch eine
" gewisse Bewegung erzeugten Integralstroms unabhingig von der Schnelligkeit
dieser Bewegung ist. Um den mathematischen Ausdruck hierfiir zu geben, mussten

*) Diese Analogie ist noch in einer andern sehr wichtigen Beziehung vorhanden,
welche Herr Maxwell nicht beriihrt hat. Man hat den mechanischen Zustand des Licht-
ithers in durchsichtigen Medien bisher dem der festen elastischen Korper gleich ge-
setzt. Diese Annahme ergiebt aber fiir die Grenze zweier durchsichtiger Medien
andere Grenzbedingungen, als man braucht, um die' Refraction und Reflexion des
Lichts an dieser Grenze zu erkliren, so dass hier in der theoretischen Optik ein un-
geloster Widerspruch bestanden hat. Die Theorie.der elektrischen Oscillationen (Glei-
«chungen (20°.) bis (20¢) unten) ergiebt aber nicht bloss im Innern eines gleichartigen
isolirenden Medium, sondern auch an der Grenze von zwei solchen Medien, dieselben
Gesetze der Fortpflanzung, der Refraction und Reflexion der Wellen, wie wir sie beim
Lichte thatsiichlich finden, vorausgesetzt dass man entweder die magnetische oder die
diglektrische Polarisationstihigkeit beider Medien gleich und letztere sehr gross setzt.
Von der bezeichneten Alternative hiingt es ab, ob die elektrischen oder magnetischen
Oaxcillationen eines polarisirten Strahls in der Polarisationsebene geschehen.
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die Krafte, welche zwei durchstromte Leiter, oder ein solcher und ein Magnet,
auf einander ausiiben, auf die Differentialquotienten einer Kraftefunction, oder
wie diese hier genannt wurde, eines Potentials zurickgefihrt werden.

Dies war zunéchst unmittelbar moglich mittels des Ampéreschen Satzes,
wonach die Fernwirkung eines geschlossenen Stromes auf Magnete oder andere
Strome gleich ist derjenigen einer vom Strome begrenzten Fliche, die mit
einer magnetischen Doppelschicht bedeckt ist, deren Moment in allen gleich
grossen Flichenstiicken das gleiche und der Stromstirke proportional ist.

Das Potential eines Stromes auf einen andern oder auf einen Magneten,
im Neumannschen Sinne, kann definirt werden als die Quantitit mechanischer
Arbeit, welche durch die elekirodynamischen oder elektromagnetischen Ab-
stossungskrifte geleistet. wird, wenn die beiden Strome, beziehlich Strom und
Magnet, bei unverénderter Stromstirke und Magnetisirung in unendliche Ent-
fernung von einander ibergefihrt werden.

Das von Herrn Neumann formulirte Gesetz sagt dem entsprechend aus, dass
die inducirte elektromotorische Kraft, welche in dem Stromleiter s durch Be-
wegung anderer constanter Strome oder Magneten hervorgebracht wird, pro--
portional ist der auf die Zeiteinheit berechneten Zunahme des Potentials jener
Strome und Magnete, genommen auf den von der Stromeinheit durchstromten
Leiter s.

Ich habe dann gezeigt, dass, wenigstens bei der Induction durch Be-
wegung eines unverinderlichen und die Elektricitdt nicht leitenden Magneten,
aus dem Gesetze der Erhaltung der Kraft folgt, dass die genannte elektro-
motorische Kraft der genannten Aenderung des Potentials nicht nur proportional,
sondern gleich sein muss, wenn man die Einheit des Widerstands so wiihlt,
dass die Einheit des Stroms in derselben wihrend der Zeiteinheit eine der
Einheit der Arbeit dquivalente Wirmemenge erzeugt.

~ Weitere' Erfahrungen zeigten, dass die- elektromotorische Kraft des
Integralstroms ebenfalls den gleichen Werth hat, wenn der inducirende Strom
im unbewegten Leiter geschlossen wird, als wenn der Leiter mit dem schon
bestehenden Strome aus unendlicher Ferne her schnell in die betreffende Lage
gefihrt wird. Es folgt daraus, dass es fir die inducirende Wirkung einerlei
ist, ob die Zunahme des Potentials durch Bewegung oder Verstirkung des
Stroms erfolgt.

Die Induction, welche ein Strom auf sich selbst ausiibt, und welche
in seiner eigenen Bahn den Extracurrent der Schliessung und Oeffnung her-
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vorruft, konnte unter dasselbe Geselz gebracht werden, und ich selbst habe
durch den Versuch nachgewiesen, dass die Stirke auch dieser verhiltniss—
missig schnell verlaufenden Stromschwankungen, wenigstens bei vielgewundenen
gut leitenden Spiralen, einfach durch das Newmamnsche Gesetz geregelt wird*).
Fiir einen einzelnen Stromkreis, dessen Widerstand W ist und in welchem
die constante elektromotorische Kraft 4 wirkt, ist also nach dem Ohmschen
Gesetze

JW = 442P. % dt ,

worin P das Potential des von der Stromeinheit durchlaufenen Stromkreises
auf sich selbst bezogen bedeutet, und zwar so berechnet, dass die Wirkung
aller Elemente ¢ des Stromes auf alle diejenigen Elemente b, die noch nicht
als ¢ in die Summe aufgenommen sind, addirt wird. So berechnet ist das
Potential das Maass der mechanischen Arbeit, die bei Formverdnderungen
des Stroms geleistet werden kann. Bei den Inductionswirkungen kommt jedes
Stromelement als inducirendes und inducirtes in Betracht, und kehrt deshalb
jede Combination aus je zweien zwei Mal wieder. Daher der Factor 2 vor P.
‘Aus jener Gleichung folgt die Gleichung der Erhaltung der Kraft:

T Wdt—AJdi = S [PJ].de.

Nun ist AJdt die Arbeit (chemische in den hydroélektrischen Ketten), welche
wihrend der Zeit df, um den Strom zu treiben, aufgebraucht ist; J*Wdt ist
der Theil dieser Awbeit, der durch Wirmeentwickelung in der Stromleitung
vernichtet ist. Daraus folgf, dass die gleichzeitige Zunahme der Grosse —PJ*
einer Arbeitsleistung  entspricht, welche die den Strom treibenden Krifte ver—
richtet haben, wiahrend der Sirom ansteigt. Umgekehrt, wenn die elektro-
motorische Kraft A beseitigt wird, und der Strom allmalig auf Null sinkt in
der ubrigens geschlossen bleibenden Leitung, so wird durch den Extracurrent
die der Grosse —PJ* aquivalente Wirmemenge wiedererzeugt. '

Es ist hierbei zu bemerken, dass die: Grosse P nach Herrn Neymanns De~
finition nothwendig negativist, und daher —PJ* positiv. Dieser Satz, dass das
negativ genoinmene Gesammipotential simmtlicher vorhandener Strome  auf ein~
ander dem durch das Bestehen dieser Strome reprisentirten Arbeitsaquivalent

#)” Ueber die Dauer und den Verlauf der durch Stromesschwankungen mducu‘ten
Strdme Poggendorffs Annalen’ LXXXIII, p. 505. - 1851..
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gleich ist, gilt ganz allgemein fiir beliebige Systeme geschlossener Strome.
Es wird nicht nothig sein, den Beweis dafiir an dieser Stelle auszufihren,
da in §.4, Gleichung (5°.) der Beweis ganz allgemein (auch ungeschlossene
Strome nach der neuen Inductionsformel umfassend) gegeben werden wird.

Daraus folgt also, wie schon die Herren W. Thomson und Cl. Maxwell
hervorgehoben haben, dass die Stromung der Elektricitat, ahnlich der lebendigen
Kraft einer bewegten tragen Masse, einer Arbeit aquivalent ist. Nur tritt der
Unterschied ein, dass dies Arbeitsiquivalent der elekirischen Stromung in einer
complicirten Weise von den rdumlichen Verhaltnissen der vorhandenen Strome
abhangt. . '

Wenn zwei geschlossene Stromkreise s und ¢ mit den Stromintensititen
¢ und j vorhanden sind, ist das Potential von der Form

P, ,¢+P,,.ij+P,,.7.
Darin sind P,, und P,, die Potentiale der Kreise s und o auf sich selbst,
P,, das Potential der beiden auf einander, alle fir die Stromeinheit in s und
o berechnet.

Die Grosse P,,.i.j ist also nach ihrer urspriinglich von Herrn F. E.
Neumann ihr gegebenen Bedeutung die Grosse mechanischer Arbeit, welche
bei constanten Stromen die beiden Leiter leisten konnen, wenn sie in unend-
liche Entfernung von einander gebracht werden. Ihre negativen Differential-
quotienten, fiir irgend eine Lageninderung genommen, sind die elektrodynami-
schen Krifte, welche diese Lagenénderung hervorzubringen streben. Dass
fir geschlossene Strome diese Krifte auf ein Potential zuriickgefiihrt werden
konnen, ist durch die Ergebnisse der Versuche erwiesen. Fiir ungeschlossene
Strome konnte dies zweifelhaft erscheinen. :

Eben deshalb ist es wichtig, dass die Grosse —P,,.i. _7 noch die zweite
von den Bewegungen der Stromleiter unabhingige Bedeutung hat. Sie ist
derjenige Theil des vorhandenen Arbeitsaquivalentes, der von dem gleichzeitigen
Vorhandensein der beiden Strome ¢ und j herrihrt. Eine Function dieser
Art muss offenbar auch fir eine einzelne oder zwei neben einander bestehende
ungeschlossene Stromungen existiren. Es muss sich der Werlh des Arbeits~
dquivalents ihrer elektrischen Bewegung angeben lassen. ‘

Wenn wir mit D, und D, die Elemente der Linge zweier linearen Leiter
s und o bezeichnen, mit (D,, D,) den Winkel, welchen die Richtungen beider
mit. einander machen, mit r ihre Entfernung, mit i die Intensitit des Stromes
in 8, mit j die in o, so ist nach Herrn F. E. Neumann das Potential der



2 Helmholtz, iiber die Bewegungsgleichungen der Elektricitit.

beiden Stromelemente auf einander gleich
__A{i.j.ﬁﬂp-*_’ﬂ’).pwpa.

r
Darin ist A® eine Constante, deren Grosse von dem zur Messung der Strom-
stirke gebrauchten Maasse abhiingt. Herr Newumann hat Ampéres elekirody-
namische Stromeinheiten gebraucht, und demzufolge A’ = § geselzt. Wir
wollen im Folgenden elektrostatisches Strommaass gebrauchen, das heisst als
Einheit der Stromstirke diejenige ansehen, wobei die gesammte Quantitit
Elekiricitdt (algebraisch summirt), welche durch einen Querschnitt des Leiters
in der Zeiteinheit fliesst, gleich Eins ist*). Als Einheit der Elektricitit be-
zeichnen wir mit Gawss diejenige, welche ruhend in der Einheit der Entfernung -
die gleiche ruhende Masse mit der Einheit der Kraft abstosst. Dann ist nach
den Messungen der Herren W. Weber und R. Kohlrausch zu setzen

1 Millimeter
= 310740 .10° Secunden”

oder 711— ist eine Geschwindigkeit von 41928 geographischen Meilen in der

Secunde, eine Geschwindigkeit, welche der des Lichtes gleich kommt.

Der obige Ausdruck fir das Potential zweier Stromelemente, sowie
auch der von Ampére fiir die Anziehungskraft zweier Stromelemente gegebene
Ausdruck, aus dem jener Werth des Potentials abgeleitet wurde, ist selbst
~ hergeleitet aus und gepriift worden an Beobachtungsthatsachen, welche sich
auf geschlossene Sirdme beziehen #*). FEr ist aber bisher nicht durch die
Erfahrung als giiltig erwiesen fiir solche Strome, welche nicht als ein System
iiberall geschlossener Stromcurven angesehen werden konnen, deren jede ein-
zelne in ihrer ganzen Linge constante Intensitat hat, und in der That ergeben
die Theorien der Herren W. Weber und Cl. Mazwell andere abweichende
Ausdricke fir das Potential zweier Stromelemente, ohgleich ihre Ergebnisse
fur alle elektrodynamischen und inducirenden Wirkungen geschlossener Strome
durchaus mit der Neumannschen Theorie zusammenstimmen.

*) Diese Bestimmung ist tibereinstimmend mit derjenigen, welche die Commission
der British Association fur Bestimmung des Widerstandsmaasses gewihlt hat. Herrn
W. Webers mechanische Stromeinheit 18t doppelt so gross, weil er verlangt, dass die
Einheit der positiven Elektricitit allein genommen, in der Zeiteinheit den Querschnitt
durchfliesse. /

- %) Strome mit Gleitstellen konnen immer als geschlossene Strme von verinder-
licher Form betrachtet werden, Entladungsstrome von Leydener Flaschen sind bis-.
her auf die elektrodynamischen "Wirkungen der Unterbrechungsstelle zwischen den

beiden Belegen nicht untersucht .worden. -
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Wir haben zunichst zu untersuchen, welches die allgemeinste Form des
Ausdrucks fiir das Potential der einzelnen Stromelemente sei, die in allen
den Fillen, wo einer der Strome geschlossen ist, den gleichen Werth, wie
die Neumannsche Formel ergiebt. Zu dem Ende stellen wir folgende Ueber-
legung an.

Es gehe der Stromleiter s vom Punkte a zum Punkte b, und der in
ihm fliessende Strom habe die Intensitéit ¢, ferner gehe der Stromleiter ¢ vom
Punkte ¢ zum Punkte d, und der Strom in ihm habe die Intensitat j. Es sei
Q der wirkliche Werth des Potentials dieser beiden Stromleiter und P der
nach Neumanns Formel berechnete Werth. Wenn wir nun statt des Strom-
leiters s einen andern s, mit denselben Endpunkten setzen, und in ihm die-
selbe Stromintensitit ¢ von a nach b fliessen lassen, mogen die entsprechenden
Werthe von Q und von P heziehlich mit Q, und P, bezeichnet werden, Lassen
wir nun die beiden Stromleiter s und s, zugleich bestehen, aber so, dass die
Stromintensitat in letzterem gleich —i gemacht wird, und daher sein Potential
auf o den negativen Werth — @, erhilt, so bilden ¢ in s und —4 in s, einen
geschlossenen Strom, dessen Poiential Q —Q, ist. Dieses ist aber auch durch
die Neumannsche Form vollstédndig gegeben, also:

0—01 = P"Pn-
Setzen wir also
Q0 = P+F:
so ist auch
01 = PJ+F

und die Grosse F iuberhaupt durchaus unabhingig von der Form, Linge, Lage,
Richtung des Stromleiters s zwischen @ und b, wenn nur die Lage dieser
seiner Endpunkte unverandert bleibt.

Ebenso ergiebt sich, dass F auch unabhéngig von der Form des Strom~
leiters o zwischen den Punkten ¢ und d ist, wenn nur diese beiden Endpunkte
von o unverdndert bleiben.

Die Grosse F hiingt also von keinen anderen Raumgrossen ab, als von
den Coordinaten der Punkte @, b, ¢ und d. Wenn nun tdberhaupt die Ge-
sammtwirkungen, welche zwei Sirome auf einander ausiben, als die Summen
der gleicharligen Wirkungen aller einzelnen Elemente des einen auf alle ein-
zelnen Elemente des anderen betrachtet werden dirfen, so sind die Ausdricke
Q und F entstanden durch Integrationen iiber simmtliche Elemente von s und
¢, und- die Function F, welche nur von den Coordinaten der Endpunkie abs

Journal fiir Mathematik Bd. LXXIL Heft 1. 10
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hangt, muss also die Form haben:

F = Fyy—F,;—F, +F,.,
wo jede dieser rechts stehenden Functionen nur von der Lage der durch die
Indices bezeichneten Punkte abhingt. ,

Die einzige Raumgrosse, welche durch zwei Punkte vollstindig be-
stimmt ist, ist deren Entfernung: also miissen F,, eic. Functionen der Ent-
fernungen r, , etc. sein. Von andern Raumgrossen konnen sie nicht abhingen,
wohl aber konnen sie noch beliebige Functionen der Intensititen ¢ und j sein.

Reduciren wir nun die beiden Stromleiter s und o auf zwei verschwin-
dend kleine Elemente Ds und Do, und verstehen wir unter F irgend eine
Function der Entfernung r dieser Elemente und der Intensititen ¢ und j,
so wird

d’F

Fb,d_Fa,d_Fb,c+Fa,c- = M'DS. Do.

Dies ist also die allgemeinste Form der Erginzung, welche dem Neumannschen
Ausdrucke des Potentials zweier Stromelemente gegeben werden kann, ohne
dass dadurch die Gesammtwirkung eines geschlossenen Stroms auf einen be-
liebig beschaffenen anderen Strom geindert wird. '

Ich erlaube mir im Folgenden die Form der Function F durch die
schon in der Einleitung erwiahnten Hypothesen zu beschranken, welche sich
auf die Analoéie der simmilichen bisher bekannten Fille elekirischer Wir-
kungen stitzen.

Erstens setze ich die in der Function F zusammengefassten Wirkungen
den Intensitdten ¢ und j direct proportional.

Zweitens setze ich voraus, dass die Abhangigkeit von der Entfernung
in diesem Falle dieselbe ist, wie bei allen anderen elektrischen Fernwirkungen,
die sich von einem Massenelement gleichmissig nach allen Richtungen ausbreiten;

dass namlich die Potentialfunction proportional -:—, die Krafte proportional
1

—r sind.
Nach diesen beiden Hypothesen haben wir zu setzen
d'F . . d'r
dsde — B0 g

wo B eine Constante bezeichnet.
Bezeichnen wir die Coordinaten von Ds und Do bezieblich mit 2, y, 5
und &, 7, &, die Projectionen beider Elemente auf die Coordinaten besziehlich
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mit Dz, Dy, Dz und D&, Dy, D, so ist

dr _ x—§ y—n . 5—5,

—s-Ds = — ‘Dz . Dy-l——r— Dz
= cos(r, Ds).Ds,

& Do = —cos(r, Do).Ds,

wenn (r, Ds) und (r, Do) die Winkel bezeichnen, welche die vom Punkte
(&,7m,8) nach (x,y,s) positiv gerechnete Richtung von r mit den Richtungen
der Elemente Ds und Do macht. (

Weiter erhalten wir durch nochmalige Differentiirung:

d*r
dd «Ds.Do

= ——:—(Dw. D&+ Dy.Dn+ Ds. DY) +lr cos (r, Ds). cos (r, Do) Ds. Do

oder
d’r
ds.do
Es hat also der oben gegebene Werth von d’F

[cos (r, Ds).cos(r, Do) —cos (Ds Do)].

r i Isdo wirklich dieselbe Art
der Abhingigkeit von r, wie andere elektrische Potentialfunctionen. Dagegen
wire, wie man sich leicht iberzeugt, keine andere Function von r, als allein
F=B.i.j.r, im Stande den in den obigen beiden Hypothesen gestellten Anforde-
rungen zu geniigen. ‘

Was die Annahme insbesondere betrifft, dass die Function F' den In-
tensititen ¢ und j direct proportional sei, so werden wir es im Folgenden
mit Gleichungen zu thun haben, in denen die Stromintensititen nur linear
vorkommen. Sollte also die Abhangigkeit der Function F von ¢ eine solche
sein, dass sie nach Potenzen von ¢ entwickelt hohere Potenzen dieser Grosse
eintreten liesse, als die erste, — worauf bisher aber noch keine Erfahrungsthat-
sache hindeutet, — so wiirden immerhin unsere Gleichungen noch fiir Stromungen
von einer gewissen geringeren Intensitdt ihre Geltung behalten.

Dasselbe wirde, wie schon erwihnt, der Fall sein, wenn nach einer
von Herrn W. Weber aufgestellien Hypothese, die Fernwirkungen nicht bloss
von der Intensitit, sondern auch vom Product der Intensitat und der Dichtigkeit
der freien Elekiricitat abhéngen sollten, eine Hypothese, ‘die dbrigens ebenfalls
noch durch keine Erfahrungsthatsache unterstitzt wird. :

In den von uns zu behandelnden Fillen wemgstens wirde die chhtxgkelt
im Innern der Leiter bei verschwindend kleinen Stromintensitilen immer; selbst

‘ 10 #
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eine verschwindend kleine Grosse derselben Ordnung sein, und also das Pro-
duct beider zu vernachlassigen.

Beide Moglichkeiten wiirden also nur die Breite der Anwendbarkeit
unserer Folgerungen fir stirkere Strome beschrinken, ohne ihre Richtigkeit
fur schwache Strome aufzuheben.

Ich setze jetzt, um den von uns zu brauchenden verallgemeinerten
Ausdruck des elektrodynamischen Potentials zweier Elemente auf die zweck-
missigste Form zu bringen, die oben gebrauchte Constante

f—k
B = ———2-—./1 ,
worin k& eine neue Constante bezeichnet. Dann wird das Potential zweier
Stromelemente gleich dem Ausdrucke:

(1.) — 4 L1 [(44F). cos (Ds, Do)+ (1—k).cos(r, Ds).cos(r, Do)} Ds. Da.

§. 2.

Umformung der Ausdriicke des Potentials fiir continuirlich im Raume verbreitete
Stromungen.

Ich bezeichne mit #», v, w die Componenten der elektrischen Stromung
in Richtung der positiven rechtwinkligen Coordinaten x, y, s im Innern eines
continuirlich durchstromten Korpers, und die Werthe des elektrodynamischen
Potentials, welches die sdmmtlichen vorhandenen Sirome in Bezug auf die
Stromcomponenten u, v, w im Volumenelemente dx . dy . ds hervorbringen,
der Rethe nach mit

—A. U.u .dr.dy.ds,
— A% V.o .dx.dy .dz,
—A*.W.w.de.dy .ds.

Der Werth von U ist nach dem in Gleichung (1.) festgestelliten Werthe des
Potentials je zweier einzelner Stromelemente

ey U= fff {552 2R 228 (o) 4 o (y—n) + w0 (5D} d5  di. L.
= (w—f)’+ (y—n)'+ (5= L)

Unter dem Integralzeichen sind u, o, w als Functionen von &, 7, { zu nehmen,
und die Integration ist entweder iber den ganzen Raum, oder wenigstens
iiber alle Stellen des Raumes auszudehnen, in denen elekirische Strémungen
oder Bewegungen elektrisirter Massen vorkommen.
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Die Werthe von V und W erhalten wir, wenn wir in (1°.) vertauschen

U w, =« §
mit V, o, Y 7
oder mit W, w, = C.

Der Werth von U lasst sich auch in folgender Form schreiben:

(1) _/]/§_+ 5% g d§+° d52;u+ gz, d;‘]} d§. dn. dg.

Bezeichnen wir mit ¥ folgenden Ausdruck

) = fff (wGro- Gt G)-dé.dn.d,

so konnen wir, vorausgesetzt, dass ¥ einen endlichen Werlh bat, die Werthe
von U, V und W in folgender Form geben:

U= SRR s,
a4y v =1k d‘p+/f/ dé.dy. dT,
w= 1=k ’*"‘ X)) s an. dt,

In dem Ausdrucke (1°) fir ¥ sind die Grossen Z’;, :r, ZZ dchte Briiche,

und ¥ ist jedenfalls endlich, wenn, wie im Folgenden mit Ausnahme von

§.7 immer angenommen werden wird, nur endliche elektrische Massen mit

endlicher Geschwindigkeit bewegt werden, und diese sich alle in endlicher

Entfernung von einander befinden, so dass jenseits eines gemssen Abstandes
(1) wu=0o=w=0.

Um die Continuitit der Functionen ¥, U, V und W, so wie ihrer.
Differentialquotienten festzustellen, beziehlich die Ausnabmefille zu finden,
nehmen wir hierzu noch die Gleichungen, welche die Constanz der Quantitat der
Elektricitat ausdriicken. ' '

Bezeichnen. wir mit ¢ die Potentialfunction der freien Elektricitit, so
ist im Innern eines Raumes, in welchem die Elektricitat endliche Dichtigheit
hat, die Abnahme dieser Dichtigkeit fir die Zeiteinheit gleich

1 dde du  do |, dw
@) wm = mtytas
wm*m das Zeichen 4 die Operation bezelchnet

' . I d’
4 = —_T+7§r+ rr
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Und an einer mit Elektricitat belegien Fliche £2 mag N die Normale der
Fliche bezeichnen, @, b, ¢ die Winkel, welche ihre Richtung mit den positiven
Axenrichtungen der «, y, 5 bildet, df2 das Flichenelement; ¢, w, v, w mogen
Werthe dieser Functionen bezeichnen an der Seite der Fliche, die der negativen
Richtung der Normale zugekehrt ist, dagegen ¢,, u,, v, und w, die Werthe
an der Seite der Fliache, wo die positive Richtung der Normale hinzeigt.
Dann ist die Zunahme der Elektricititsmenge auf der Flacheneinheit gleich

1rd& d? .
() 44 ﬁfv"ﬁﬁ = (u—wu,)cosa-+ (v—wv,)cosb+ (w—w,)cosc.
Wenn man nun mit Benutzung von (2.) und (2°.) die Gleichung (1°.) partiell
integrirt, so erhilt man

@) ¥=47 dt/(d(p dqp') A2—4= dt/ dp.ds.di.dg,

oder auch, wenn man die freie Elekiricitit mit E bezeichnet,
¢ 1 dE
@) ¥=-- .d§.dn.dg.
Die Integrale, welche bei der Blldung von (2%) sich auf die unendlich
entfernte Grenzfliche des Raumes beziehen, miissen nach der bei (1°) ge-
machten Annahme gleich Null werden, und sind deshalb weggelassen.

Durch Benutzung des Greenschen Satzes ergiebt sich ferner, dass, wenn
% nirgends discontinuirlich ist, das heisst, wenn nirgends elektromotorische
Flichen von verdnderlicher Kraft vorkommen, der in (2°.) angegebene Werth

von ¥ gleich sei

¥ — -—-——/ A dE.dn.dC.

Auch hier konnen wieder. die auf die unendlich entfernte Grenzfliche des
Raumes bezﬁglichen Integrale weggelassen werden, unter Voraussetzung, dass

daselbst —-——— keine grosseren Glleder enthalt, als solche von der Form

B. c(')‘s’a ,
wo o der Winkel ist, den die Linie r mit irgend einer festen geraden Linie
bildet, und B eine Constante. Die gemachte Voraussetzung wird immer zu-
treffen, wenn alle zu beriicksichtigenden elektrischen Bewegungen nur in end-
licher Entfernung von der untersuchten Stelle vor sich gehen.



Helmhollz, iiber die Bewegungsgleichungen der Elekiricitdi. 79

Da nun
41‘ = '—?‘—,
so folgt:
1 dp 1
¥ = —%— -Er--;-d§.d7].d§,
(%) und
_ o.dp
AT — 2'7{"

Die Function ¥ ist also analylisch darstellbar als die Potentialfunction einer

© Tae oy s 1 d . .
mit der Dichtigkeit ——2—n-d—‘f ausgebreiteten Masse. Da nun g jedenfalls

dt
nicht an einer Fliache unendlich wird, so ist ¥ iiberall stetig, ebenso seine
. . a¥ Jd¥ . .
Differentialquotienten %, &y @ beide mit eventueller Ausnahme solcher
Punkte, in denen %‘:l unendlich wird.

Demgemdiss sind die oben in (1°.) gegebenen Werthe von U, V, W
jedenfalls iberall stetig, mit Ausnakme solcher Punkie, wo die elektrische
Stromung unendlich wird.

Es ergiebt sich ferner aus (2%.) durch Differentiation nach «

ay 1 dp x—& .
= o) @ % dn.dg,
und durch partielle Integration nach §
\ . d¥ 1 ,de 1,
(2) %‘ = ‘—-é-;- ——dt'dg-T-dédn.d‘g.

Daraus folgt, dass auch die ersten Differentialquotienten von ¥ nach

x, y, 5 genommen als Potentialfunctionen einer Masse dargestellt werden

Sy p . 1 d'¢ . . . . ’
konnen, deren Dichtigkeit ———5’—!—-37%); ist. Diese ist iberall endlich, ausge-

genommen in Punkten, in denen die Geschwindigkeiten unendlich werden. Also
miissen mit Ausnahme solcher Punkte auch die zweiten Differeniialquotienten
von ¥ iiberall stelig sein.

Nachdem dies festgestellt ist, folgt aus den in (1%) fir U, V und W
gegebenen Werthen, dass auch U, V, W mit Ausnahme einzelner Punkte
unter den angegebenen Voraussetzungen iiberall, namentlich auch an den Grenz~
flichen der Leiter stetige Differentialquotienten haben miissen. Dasselbe Resultat
kann ibrigens auch direct aus der Gleichung (1°.) mittels #hnlicher Betrach-
tungen abgeleitet werden, wie sie angewendet werden, um fir die Potential-
functionen von Massen endlicher Dichtigkeit den gleichen Beweis zu fiihren.
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Aus der Gleichung (2%.) folgt
f — 9%
(27) 4% = 2%
und demgemiss aus (1%)

— (1—k)--ZP gy,

dz.dt
d’
(3) {4V = (1—15).@%—4%,
AW = (1—k) 2%t

Fe’rner ergiebt sich aus (17.)
dv  dw _ 1—k rroE—w q—y E—sy .
+ d_'] + dZ - '—2"_'42["{'/‘(”' 73 +v‘ o +W"—,‘3—).d§od'].d§.

Indem man aus (27.) fir das erste Glied links den Werth setzt, und da-s fol-
gende Glied partiell integrirt mit Beriicksichtigung von (2.) und (2°.), so er-
hédlt man

. au | dv dW dy
3 & +dy =~k

Nachdem diese Eigenschaften der Functlonen U, V, W festgestellt sind, konnen

wir zur Aufstellung der Bewegungsgleichungen ibergehen.

§. 3.
Bewegungsgleichungen der Elektricitit.

Die elektromotorische Kraft, die im Punkte x, y, 5 wirkt, ist zusammen-
gesetzt aus derjenigen, die von der elekirostatischen Kraft der freien Elektri-
citét herrihrt, und deren Grosse durch die negativ genommenen Differential-
quotienten der Potentialfunction ¢ der freien Elektricitit gegeben wird, und

ferner aus der Inductionskraft, die in Richtung der « gleich _A2—Et— ist.

Bezeichnen wir also den Widerstand eines prismatischen Leiters von der Ein-
heit der Lénge und Einheit des Querschnitts mit x, so smd folgendes die Be-
wegungsgleichungen der Elektricitat: *) <

*¥) Um die' hier gegebenen Gleichungen anf die, Kcrchho/fschen zuruckzuf!ihren
sefze man
statt k x P A’

2 2
nunmehr —1 5 12, =
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o do . dU
w o= — = A g,
do av
b o, — — A2
(3 ) 7 = dy A dt ° i
. _ do _ 2 W
aw o= — = A

Was den Werth der Constanten x betrifft, so ist Herrn W. Webers
elekiromagnetische Stromeinheit nach unserer Bezeichnung gleich —}, seine
Einheit der elekiromotorischen Kraft dagegen gleich A zu setzen, also seine
elektromagnetische Widerstandseinheit gleich A*. Fir Kupferdrihte von 1 Milli-
meter Lénge und 1 Milligramm Gewicht ergeben seine Messungen die Grosse
des Widerstands, aus verschiedenen Drahtproben berechnet, wie folgt:

Jacobis Draht . . .. .. .. .. 2 310 000
Kirchhoffs Draht . . . . . . ... 1 916 000
W. Webers Draht . . . . .. .. 1 865 000

Mittel . . . 2 030 300

~ Um fiir einen Leiter von einem Millimeter Linge und einem Quadratmillimeter
Querschnitt den Widerstand zu finden, muss man diese Zahlen durch das
specifische Gewicht des Kupfers 8,95 dividiren, und so ergiebt sich als dem
Mittel jener drei Kupfersorten entsprechend

297000 A2 Quadratmillimeter

7 =
Secunden

oder

1

x = foEmmo 0w Secunden.

Der bestleitende Draht von galvanoplastischem Kupfer ergiebt

1
= MTOT; Secunden.

In den Gleichungen (3°.) sind U, V, W und ¢ zuniichst als Integrale gegeben.
Um die betreffenden Gleichungen in die Form von Differentialgleichungen zu
bringen, brauchen wir nur die genannten vier Grossen als Unbekannte zu
benutzen.

Wir haben dabei zu unterscheiden:

1) Theile des Raums, die wir mit S bezeichnen wollen, welche leitend
sind, und auf deren Inneres keine anderen Krifte wirken, als die elektro-
statischen und inducirten elektromotorischen Krafte. Innerhalb solcher Theile

Journal fiir Mathematik Bd. LXXIL Heft 1. 11
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gelten die Gleichungen (3°.), welche bei Beriicksichtigung von (3.) die Form
annehmen:

AU—(1— k)dd’P =il_”_{_di’.+A2ﬂ?

l!

(L) {aV—(— k)dy L +A? }

dp - 4m § dp 2alW
AW—(1—k) ds.dt T{ dz +4 “&T}'

2) In anderen Theilen des Raumes konnen wir die elektrischen Stro-
mungen als vorgeschrieben betrachten. Dies wird zum Beispiel der Fall sein,
wo elektrisch geladene Isolatoren bewegt werden, oder elektrische Strome in
Drahten unter Einfluss relativ grosser hydroélekirischer Krifte circuliren. Auch
wenn man Magnete durch ein System elektrischer Sirome ersetzt denkt, sind
diese als unverinderlich vorgeschriebene Strome zu betrachten. Diese Theile
des Raumes mogen mit S;, die Werthe der Functionen U, V, W, ¢ etc. mit
U, V,, W,, ¢, elc. bezeichnet werden. In ihnen ist

AV —(1—B) e — gy,
(1) { av,—(1—k) j;f@t — —4no,,
Wi—(1—k) b — Ao,
3) Im ganzen Raume S und S, gilt die Gleichung (3°.)
) ﬁ+3§+ﬂ—~k$,
4| G WL/ ‘fi'; ERLL .

4) Die Grenzbedingungen an mit Elekiricitat belegten Flichen 2 sind
(ML) U-U=V-Vi=W—W,=¢g—¢,=0,
W) == =W W
5) In unendlicher Entfernung von den Leitern und bewegten Massen
| (V) U=V=W=¢=0.
Wenn aus diesen Gleichungen U, V, W und ¢ bestimmt sind, erhalt
man u, o, w durch die Gleichungen (3.).
Das System der Gleichungen (I.) bis (V.) vertritt vollstandig die Be-
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dingungen der Aufgabe, die ausgesprochen sind durch die Gleichungen (1°.),
nebst den entsprechenden Gleichungen fir ¢ und w, und durch (2.), (2%.), (3°.).

Da das System (I.) bis (V.) abgeleitet ist aus den Bedingungsgleichungen
der Aufgabe, so figt es keine neuen Bedingungen hinzu, die jene nicht
enthalten.

Umgekehrt ist nachzuweisen, dass, wenn das System (1.) bis (V.) erfillt
_ist, jene vier Bedingungsgleichungen der Aufgabe erfillt sind.

Zunichst ist ersichtlich, dass die Gleichungen (3°.) unmittelbar aus (I.)
erhalten werden, wenn man AU etc. durch die Geschwindigkeiten ausdriickt,
wie in den u, v, w definirenden Gleichungen (3.) vorgeschrieben ist.

Die Gleichung (2.) erhilt man, wenn man die Gleichungen (IL) und
(II°.) der Operation o unterwirft, und die Werthe von 4 %} etc. aus (3.) bildet.

Die Gleichung (2°.), welche an Fliachen 2 gilt, erhdlt man durch fol-
gende Betrachtungen. Wenn ¥ eine Function ist, die auf beiden Seiten der
Flache £2 gleiche Werthe hat,

P = ¥,
aber % von % verschieden ist, so ist, wie leicht zu sehen,
A(B—W)  d(P—W)

dz N~ o8
da¥-¥) _ da¥-¥)

a = IV cosb,

o = N cose,

wo @, b, ¢ wie friher die Winkel sind, welche die Normale N mit den Co-.

ordinatenaxen macht. Da 4U  dU - dU ..t beiden Seiten der Fliche £2
9
dz® dy° ds
nicht verschieden sind, so ist
a@U-U) _ d {dU-U)
do.dy  dN { d }"OS“’
PU—U) 4 (dU-U)
dy.dy _dTV—; d }COSI”
und daraus folgt:
4U=0) cosb— —————-d U—0) cosg = 0.
dx.dy
Daraus folgt weiter, dass, wenn man die Werthe von ‘f;f und —(%L aus den Glei-

chungen (II.) entnimmt,
. 11 #*
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cosa[d(U_Ul)_}_ki%f%‘&).]+cosb[d(V—V,)+ k d’(;€;y¢.)

a(@g—9,)
+cosc[.d W—W,)+k——"= TP ]

und wenn man hierin fir 4U, 4U, u. s. w. die Werthe setzt aus (3.) und
(1), so folgt die Gleichung (2°.).

Endlich ist noch zu erweisen, dass die Functionen U, V, W der Glei-
chungen (L) bis (V.), wenn man vermoge der Gleichungen (3.) die Ge-'
schwindigkeiten u, o, w einfiihrt, gleich den in (1°.) und gemiss (1°.) gebilde-
ten Werthen dieser Grossen sind. Dies geht daraus hervor, dass eine Function,
die tberall endlich und stelig ist, deren Differentialquotienten ebenfalls iiberall
endlich und stetig sind, und die in unendlicher Entfernung gleich Null ist, wie
dies die Gleichungen (III.), (IV.), (V.) von U, V, W aussagen, nach den be-
kannten Sitzen iiber Potentialfunctionen dargestellt werden kann in der Form

1 AU
U=—45

Setzt man nun statt 4U die in (3.) und (I“.) gegebenen Werthe, so

erhilt man Gleichungen von der Form (1%), wo der Werth von % ete.

zundchst in der Form von (2°.) gegeben ist. Die Transformationen aber des
Werthes von ¥, welche uns von der Form (1°¢.) zu (2¢) gefihrt haben, und
welche auf partiellen Integrationen beruhten, kann man alle riickwirts machen,
und kommt so auf die Gleichungen (17.) und (1¢.), die nur eine andere Schreib-
weise von (1%) sind.

Es ist in diesen Entwickelungen keine Riicksicht genommen auf das
Vorkommen elekiromotorischer (hydroélektrischer oder thermoélektrischer)
Molecularprocesse. Haben diese constante Kraft, so geben sie einfach einen
den iibrigen Stromen superponirten constanten Strom. Haben sie aber inconstante
Kraft, so lassen sich die Umformungen der Function ¥ nicht immer so aus-
filhren, wie oben geschehen.

Die in der Einleitung erwiahnte Amalogie zwischen den Bewegungen
der Elektricitit in einem Leiter und denen eines Gases zeigt sich in folgender
Weise. Es sei p der Druck, ¢ die Dichtigkeit, », », w die Componenten
der. Stromungsgeschwindigkeit; letztere seien so klein, p und ¢ so wenig von
den Werthen p, und g, in der ruhenden Flissigkeit unterschieden, dass die
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Glieder zweiter Dimension der Grossen (p—p,), (¢—¢,) vernachldssigt werden
konnen. Dann sind die Bewegungsgleichungen eines reibenden Gases, auf
dessen Inneres keine dusseren Krifte wirken:

1 dp  du d
—odr @ —udu— Ve (dm+dy+d~
1 dp _ d d dw
Tety T T dm+dy ’
1 dp  dw du , dw
T T @ WA de d:c+7y“r dz>’

1 dp du | do | dw
T U T Tyt E

Man setze
statt @, o, w, Lt ) ¢ . by v
0, (2
1 % 1—k x
UJ V: VV: T(Pﬁ k(py At A®° k : AnA®°®

so erhalten wir die fiir das Innere eines Leiters von constantem Leitungsver-
mogen geltenden Bewegungsgleichungen der Elektricitat. Dabei ergiebt sich

P—P — 1

0— 0, kA®
Dem kann ein Gas von stabilem Gleichgewicht nur entsprechen, wenn £ positiv
ist. Ist k=0, wie in Herrn Mazwells Annahme, so wirde die Elekiricitat
sich wie eine incompressible Flissigkeit bewegen. Auch miissen die beiden
Reibungscoefficienten « und » positiven Werth haben, wenn die Vergleichung
statthaft sein soll, was bei » nur der Fall ist, wenn 1> k> 0 ist.

Die Geschwindigkeiten der Flissigkeit entsprechen aber hierbei, wie man
sieht, nicht den Geschwindigkeiten der Elektricitat, sondern den elektromotori-
schen Kraften. Die Geschwindigkeiten der Elekiricitat waren vielmehr den
durch die Reibung hervorgebrachten Bewegungskraften proportional.

Die Grenzbedingungen freilich sind abweichend; indessen giebt eine
solche Vergleichung immerhin einen Anhalt fir die Vorstellung.

S 4
Eindeutigkeit der Losungen und Stabilitit des Gleichgewichts.

Bezeichnen wir mit & denjenigen Theil der Arbeit, welcher durch
Abénderung der elekirischen Stromungen in den Leitern S verandert wird,
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so besteht derselbe aus zwei Theilen @,, welcher den elekirodynamischen,
und &,, welcher den elektrostatischen Wirkungen entspricht. Die ganze
Grosse dieser Arbeit ist

(4) b = q'z’o‘l“ 'I’u
4*) &b, = %AZ‘/(ZUu—{— Vo+ Ww)dx.dy.ds,

) & =g (BN L [ ap.de.dy. ds.

Durch partielle Integration ist dieser letztere Werlh, wie bekannt, auf die Form
zu bringen

(4°.) /[( )+< >+( )]dwdydz

und ist also nothwendig positiv.
In dem Werthe von &b, ersetzen wir zunéchst #, v, w durch die Werthe
dieser Gr(“)ssen in (3.) und (I°.) und erhalten

b, = —5- {U AUV . AVEW. AW
e
—(1 -k [Udz dt+de dt+Wdz di }d“" dy.ds.

Wenn man hier partiell integrirt mit Beriicksichtigung der Gleichungen (III.),
(IV.) und (V.), so erhilt man

D, = /{ [ da:,.>]+1_k (Zl:lc]_*'dy d—dVZK]Q}dw.dy.dz.

Hierin bezeichnet U,, irgend eine von den Grossen U, V, W, und z, irgend
eine von den Coordinaten x, y,

Wenn man beriicksichtigt, wie sich aus (III.) und (IV.) durch partielle
Integration ergiebt, dass -

/' au dav  dU dVy
dy dz dx dy

so verwandelt sich der letzte Ausdruck in

CONETE f{z[(dm” dxm ]+k( 'V do. dy. ds.

Durch die in (4“) und (4d)gegebenen Werthe von &, und @b, ergiebt sich,
dass beide nothwendig positiv sind, wenn % einen positiven Werth hat, oder
gleich Null ist. Wenn aber % einen negativen Werth hat, so kann das Ar-
“beitsiquivalent der elekirischen Bewegung negativ, also kleiner als im Gleich~
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gewichtszustand werden. Es wire alsdann der Zustand der Ruhe nicht ein
Minimum der Arbeit, also das Gleichgewicht in diesem Zustande nicht stabil.
Der Unterschied im Verlauf der Storungen des Gleichgewichtszustandes,
je nachdem £ positiv oder negativ ist, zeigt sich noch bestimmter, wenn wir
~ die Gleichung der lebendigen Kraft fiir die elektrischen Bewegungen aufstellen.
Dieselbe wird uns auch dazu dienen, nachzuweisen, dass durch die Gleichungen
(I.) bis (V.), wenn gleichzeitig der Anfangszustand gegeben ist, die elekirische
Bewegung eindeutig bestimmt ist, vorausgesetzt, dass & —=0.
Wenn némlich zwei von einander verschiedene Losungen der Glei-
chungen (I.) bis (V.) existirten, und in der einen
U’} V,’ W’) (p”
in der andern
U”, ‘V"’ WII’ (pll
die Werthe der in den Gleichungen vorkommenden Functionen wiren, so
wiirden auch ihre Unterschiede

ey (U= V=V
: W'— W/r= VV, (p' '—(P" =¢
gesetzt, den Gleichungen (1.) bis (V.) geniigen, wenn in diesen u, =0,=w,=0
gesetzt wiirde. :
Um nun zu ermitteln, unter welchen Bedingungen eine solche Ver-

q
schiedenheit der Losungen moglich wire, wollen wir den Werth von %ﬁ—) mittels

der Gleichungen (I.) bis (V.) bestimmen, wobei wir festsetzen, dass
(5.) u1=01=w1=0

sei, also keine Bewegung der Elektricitat ausserhalb der Leiter S vorkomme.

_ Aus den in §. 1 aufgestellten Principien ist schon klar, dass der Werth
sein muss

(52) ¥ = _fa(u o+ w?)ds,

da, wenn dussere inducirende Krifte fehlen, die in der Leitung erzeugte
Wirme, deren mechanisches Aequivalent rechts in Gleichung (5°) steht, nur
erzeugt werden kann auf Kosten des Arbeitsdquivalents der elektrischen Ver-
theiling und Bewegung. In der That lasst sich die Gleichung (5“.) verificiren
aus den Gleichungen (3.), (L.) bis (V.), (4.) bis (4%) und (5.). Am einfachsten
geschieht dies mittels der mit (I.) identischen Gleichungen (3°.)
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ﬁ(u’+og+w7)ds = —/(w%—{—wi—(;—}—w‘%)dS
—Ay(u-idg——l-v-%? w~c%-:,—>dS.

Aus der in (1°.) vorgeschriebenen Bildungsweise von U und der in (4%) vor-
geschriebenen von @, ist leicht ersichilich, dass

aw i y du do dw dd,
af(u il +o- oG )as = af (U GE4 V- Z 4 W E2)as = 10
Ferner ergiebt sich aus (4°.) leicht
ab, dp d’¢ dp d¢ de d’¢
Tt /[dw dx. dt+ dy “dy. dt+ ds ds.dt ]dm.dy.dz

e N0 . 4(2%
/ (det i) 12 4n ¢4 () do.dy.ds,
und wenn wir hierin die Grossen u, v, w mittels der Gleichungen (2.) und
(2°.) einfithren, und partiell integriren, ergiebt sich
d(I)

(v G +o- G+ ) do.dy. ds.

Da ausserhalb S nach Gleichung (5°.) u, v, w iberall Null sind, ist es einerlei,
ob wir die Integration in diesem letzten Ausdruck nur auf den Raum S, oder
auf den ganzen unendlichen Raum ausdehnen.

Diese Umformungen zeigen, dass die Gleichungen (I.) bis (V.) der
Forderung des Gesetzes von der Erhaltung der Kraft, wie sie in (5°.) aufge-
gestellt ist, entsprechen.

Die Gleichung (5°.) zeigt, dass die Grosse %— nur einen negativen

Werth haben kann, da das rechts stehende Integral eine Summe von lauter
Quadraten ist, und , der Widerstand, jedenfalls positiv.

A. Wenn k=0 ist, ist & nothwendig immer positiv, und kann nicht
kleiner als Null werden. Ist es also in irgend einem Augenblicke der Be-
wegung gleich Null, so muss es von da ab fortdauernd gleich Null sein. Da-
mit & aber Null sei, miissen alle die positiven Quadrate, deren Summe es ist,
gleich Null sein, also entsprechend (4.), (4¢.) und (4%.)

dg _dy _dp o

dx dy ~ds ~
was, da ¢ im Unendlichen gleich Null sein muss, nur geschehen kann, wenn
im ganzen Raume ¢ =0, d. h. wenn gar keine freie Elektricitat existirt.
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Ferner, wenn wir (4”.) gleich Null setzen, ergiebt sich

dU 4V aV _dw 4w _ aUu
—z—iy———dw’ ds ~ dy’ Az~ ds
o,

Durch D ifferentiiren erhélt man aus dlesen Gleichungen:
AU=4V=4dW =0,
und da ausserdem U, V, W und ihre ersten Differentialquotienten nirgends unstetig
sein sollen, so folgt, dass im ganzen Raume
U=V=W=0.

Daraus folgt also entsprechend den Gleichungen (4¢.), dass, wenn im

Anfang der Bewegung
U'-U"=V—-V'=W-W=¢g'—¢"=0,
diese Differenzen fortdauernd gleich Null bleiben.

Wenn also k =0 und wenn fir den Anfang der Bewegung die Werthe
von U, V, W gegeben sind, so bestimmen die Gleichungen (1.) bis (V.) in
Verbindung mit (3.) die Bewegung der Elektricitit vollstandig.

Es folgt ferner daraus, dass, wenn wir fir die Zeit t<7 und ¢>7
zwei verschiedene analytische Ausdriicke der Bewegung haben, diese eine
einzige continuirliche Bewegung darstellen, wenn zur Zeit ¢ =7 beide Aus-
drucksformen iberall im Raume gleiche Werthe von ¢, U, V und W ergeben.

B. Wenn k negatie ist, so kann & negativ werden, und die Bewegung der
Elektricitdt kommt nicht nothwendig zum Stillstand, wenn < gleich Null wird.

(
Aber auch in diesem Falle muss, wenn éussere Einwirkungen fehlen, ddtb nach

Gleichung (5°.) nothwendig immer einen negativen Werth haben, und wenn
also & einmal negativ geworden ist, so muss es zu immer grosseren und
grosseren negativen Werthen fortschreiten. Damit & einen endlichen negativen
Werlh F haben konne, muss nothwendig der mit dem negativen % multiplicirte
Theil seines Werthes

‘/' ﬂ)’d:c.dy.dz = /[d:v i +d":]2d:c.dy.dz

grosser als - k)F sein und bleiben.
do

Wenn ¢ iberall endlich ist und bleibt, so muss ¢ i endlichen Theilen

des Raumes einen endlichen Werth haben, damit das vorstehende Integral
Journal fiir Mathematik Bd. LXXIL Heft 1. 12
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einen endlichen Werth haben konne. Wenn die leitenden Korper S endlich

. . dyp . . ~ . .
begrenzt sind, nimmt "E(i{ in unendlicher Entfernung ab wie 71,-, und die von

unendlich entfernten Theilen des Raumes herrihrenden Theile des Integrals

werden also jedenfalls unendlich Klein. Damit aber %t’i endliche Werthe in

endlicher Raumerstreckung habe, miissen endliche Geschwindigkeiten der Elektri-
citdt in endlichen Rdumen, oder unendlich grosse Geschwindigkeiten in unendlich
kleinen Raumen bestehen. Denn es ist

dp d 1 d /1 d (1N] .
A "f[“’HE(T>+”'&7(T)+w'EZ(T>] ds. di. d.
Wenn aber die Geschwindigkeiten fortdauernd in endlichen Riumen endliche

Werthe haben, muss % nach Gleichung (5°.) fortdauernd einen endlichen

negativen Werth haben, und & also fortdauernd wachsen bis zu unendlicher
negativer Grosse.

. dyg ' . .
Daraus folgt, dass, wenn nicht d—f, #, v oder w von vorn herein an ein-

zelnen Stellen unendliche Werthe haben, sie jedenfalls mit der Zeit zu unend-
lichen Werthen anwachsen miissen. Ist also bei negativem & die Grosse &
nur einmal negativ geworden, so wird die entsprechende elekirische Bewegung
sich- fortwihrend an Intensitat steigern, wenn sie nicht von Anfang an in
einzelnen Stellen unendlich ist.

Das bedeutet also, dass bei negativen Werthen von k das Gleichgewicht
der ruhenden Elektricitit in leitenden Korpern ein labiles Gleichgewicht ist.

Bewegungen, welche & negativ machen, sind in sehr mannichfacher
Weise moglich. Man braucht nur anzunehmen, dass in irgend einem Augen-
blick keine freie Elektricitat existire, also ¢ =0 sei, und dass ausserdem sei

d d, d
==, V=7’§-, W=k
Damn fallen alle positiven Theile von & weg, und nur der negative bleibt
dbrig. Die Function x ist hierbei nur den Bedingungen unterworfen, dass
nach den Gleichungen (I°.) bis (V.) und (5°.) ausserhalb S
ddy = 0

und. an den Grenzen von S die ersten und zweiten Differentialquotienten von
x continuirlich und in unendlicher Entfernung gleich Null seien. Es kann x
innerhalb S vollkommen beliebig gewahlt werden, und ist dann fiar den Aussen-
‘raum bis auf eine willkirliche Constante bestimmt.
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A Unter diesen Umstinden ist nun auch die fir positive Werthe von &
gezogene Folgerung nicht zuldssig, dass die Gleichungen (I.) bis (V.) die Be-
wegung der Elektricitit eindeutig bestimmen, wenn die Werthe U, V, W, ¢
fir die Anfangszeit gegeben sind. Es kann sich ndmlich zu der gegebenen
Anfangsbewegung eine verschwindend kleing labile Bewegung gesellen, welche
nach Verlauf einer gewissen Zeit endliche Werthe erhiilt.

Wohl aber kann auch fir negative Werthe von & gezeigt werden, dass,
wenn in zwei verschiedenen Integralen der Gleichungen (I.) bis (V.) sich die
Grossen U, V, W, ¢ zu Anfang und zu Ende einer gewissen Zeit unendlich
wenig von einander unterscheiden, die beiden Integrale auch wahrend der ganzen
Dauer dieser Zeit sich unendlich wenig von einander unterscheiden.

Denn fir ihre Differenz gilt Gleichung (5°.), und ist % fortdauernd

negativ. Wenn also fir ihre Differenz der Werth von & zu Anfang und zu
Ende der betreffenden Zeitperiode verschwindend klein ist, so muss er wihrend
der ganzen Dauer dieser Peribde verschwindend klein gewesen sein.

Wenn also auf einen elektrischen Leiter wihrend einer gewissen end-
lichen Zeit inducirende Krifte einwirken, und ein Integral der entsprechenden
Bewegung gefunden wird, welches die Werthe von U, V, W, ¢ fir t =—o0
und £=-+4oo, gleich Null ergiebt, so giebt es keine zweite Losung, die den-
selben Bedingungen geniigte.

S. 5.

Radiale Stromungen der Elektricitit in einer leitenden Kugel.

Die Erorterungen des vorigen Paragraphen zeigen nur die Moglichkeit,
dass unendlich fortschreitende Storungen des elektrischen Gleichgewichts ein—
treten konnten, wenn % einen negativen Werth hat; aber sie lassen noch dem
Zweifel Raum, ob solche Storungen auch wirklich zu Stande kommen konnen
bei denjenigen Methoden elektrische Bewegungen hervorzurufen, welche uns
bei Versuchen zu Gebote stehen.

Um zu zeigen, dass dies der Fall sei, wird es geniigen, ein moglichst
einfaches Beispiel zu behandeln, und ich wihle dazu radiale Bewegungen der
Elektricitat in einer Kugel, die hervorgebracht werden durch Verengerung und
Erweiterung einer #dusseren concentrischen, mit Elektricitat geladenen Kugel-
schaale. In dieser Form wird zwar das wirkliche Experiment nicht leicht
ausgefihrt werden. Aber es ist zu bemerken, dass ein unserem Falle eni—

12 *



92 Helmholtz, iber die Bewegungsgleichungen der Elektricitdt.

sprechendes, von den Richtungen der Radien unabhéngiges Glied jedesmal vor-
kommen wird, wenn man die durch Anniéherung eines elekirisirten Korpers
in der Kugel hervorgerufene Bewegung nach Kugelfunctionen entwickelt. Denkt
man sich némlich alle die elekirischen Bewegungen in der Kugel superponirt
(und ungestorte Superposition vergchiedener Bewegungen ist moglich), welche
dadurch entstehen wiirden, dass der gleiche elektrisirte Koérper von allen
moglichen verschiedenen Richtungen aus zur Kugel in gleicher Weise bewegt
wird, so wird die Summe aller dieser Bewegungen auf den von uns zu be-
handelnden Fall fihren, und es ist klar, dass die durch solche Superposition
entstandene Gesammibewegung kein mit der Zeit in das Unendliche wachsendes
Glied enthalten kann, wenn nicht die urspriingliche einzelne Bewegung ein solekes
enthalt. Stellt sich also heraus, dass unser vorausgesetzter einfachster Fall eine
labile Storung des elekirischen Gleichgewichts ergiebt, so folgt, dass diese auch
stattfindet in jedem Falle, wo eine elekirische Masse in gleicher Weise der
leitenden Kugel genihert und entfernt worden ist, wie wir dies von der von
uns angenommenen concentrischen elektrischen Schicht voraussetzen.
Wir setzen
T=gcose, y=gQCos3, z=QC0SY.

Der Radius der leitenden Kugel sei & ; iber eine grossere concentrische Kugel-
fliche von dem veranderlichen Radius R sei die elekirische Masse M gleich—
missig ausgebreitet. Die elekirischen Stromungen sollen nur in Richtung des
Radius geschehen; wir werden also setzen konnen

_ dx _ dy _ 9%
6) w=Zy> o=, 0=
Da alles um den Mittelpunkt der Kugel symmetrisch ist, werden auch
die Werthe der elektromotorischen Krifte U V, W von der Form sein:
dll a1

(6“1-) U::——-.-, V— g 9 =‘j§;‘a

und ¢ wird wie y und 77 nur eine Function von ¢ und ¢ sein.

Da die Herren W. Weber und Lorberg die Annahme gemacht haben,
die Elektricitit konne auch trage Masse haben, so will ich diese Annahme
in diesem Paragraphen ebenfalls recipiren, und den linken Seiten der Bewegungs-
gleichungen (3°.) noch emsprechende Glieder hinzusetzen; die trage Masse der
elektrostatischen elektrischen Einheit werde mit u bezeichmet. Die Gleichungen

(8%.) verschmelzen dann in eine Integralgleichung fiir das Innere der Kugel

d, dall
(6%)  uday = —p—A' o,
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und die Gleichungen (3.) und (3°.), die im ganzen Raume gelten, werden:

(6) A = (1-K) % _azy,
(6%) 4T = —k22.
Die Gleichungen (6°.) und (6°.) treten hier an Stelle von je drei
Gleichungen, die durch Differentiirung nach x, y und s aus ihnen entstehen.
Es ist beim Uebergang von den letzteren zu ihren beiden Integralgleichungen
nicht nothig, eine willkirliche Function der Zeit hinzuzufiigen, da eine solche
schon in I7 und x steckt, deren Differentialquotienten nach z, y, 5 genommen
wir allein brauchen.
Die letzten beiden Gleichungen ergeben noch, wenn sie von einander
subtrahirt werden:

(6) —-=A4my.

Die Gleichung (6°.) ergiebt ferner, dass 7T durch den ganzen Raum

gleich der Potentialfunction der Dichtigkeit I; —d(% sei. Dadurch ist II ebenfalls

bis auf eine willkirliche Function der Zeit, die keinen Einfluss auf die Losung
unserer Aufgabe hat, vollstindig bestimmt, wenn ¢ gefunden ist.

Zur Bestimmung ven ¢ im Innern der Kugel ergiebt sich zunichst aus
der Gleichung (6°.), wenn wir an ihr die Operation 4 ausfihren, und die
Werthe von I7 und x aus (6%) und (6”) substituiren :

1

) 7 d’(p % ’lp
(7.) J{IE' a T an dt 7+ } A’k dir -’

Im &dussern Raume dagegen ist der Werth von ¢ nur abhingig von den Ge-
sammimengen der Elektricitat It auf der Kugel vom Radius R, M auf der
vom Radius R.

o . m, M M dR
Fu}' R<o<<Rist cpz—é—-{——R— und ﬂ-=—7§?-7;
(7)) ;
und ;tJ = 0.

Was die Grenzbedingungen (IH.), (IV.), (V.) betrifft, so sind diese erfiillt,

wenn 17 die Potentialfunction ven Z!:? ';T , und letztere Grosse uberall ‘con-

tinuirlich igt. Also die einzige Grenzbedingung ist, dass die aus der Glel-
chung (7.) gefundene Function ¢ fir ¢ = R sei

b . |
(%) »=xt+3x

fir o>R ist<p=ﬁg—~£

.
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Ich bemerke hier gleich, dass fir den Fall £ =0, wenn wir mit e die
Dichtigkeit der Elektricitat bezeichnen, die Gleichung (7.) ergiebt:

" —gd—’t;—l—z %‘-:—4-4713 =0,
woraus folgt
e = Be™+Be™,
wo n, und =, die beiden Wurzeln der Gleichung sind:
unt—xn+4n = 0.
Soll ‘'vor Einwirkung der ﬁusseren Krafte Ruhe hestehen, so muss B,=B,=0
sein, folglich fiir alle Zeit e— =0. Folglich tritt gar keine Bewegung

ein, wenn k£ =0. \

Die im vorigen Paragraphen aufgestellten Sitze uber den Werth des
Arbeitsaquivalents der elektrischen Bewegung und die continuirliche Abnahme
dieses Werthes bei einer durch édussere Krifte nicht influirten Bewegung dndern
sich in unserem Falle nur in so weit, als zu dem elektrostatischen und elek-
trodynamischen Arbeitsdquivalent noch die lebendige Kraft der bewegten Elek-
tricitdt hinzukommt, deren Grosse ist

P, = %‘/ (W0’ o) dS = 32‘;’/ (df?g)zds ’

die Integration iber die ganze Kugel ausgedehnt.

Wenn man die Gleichung (7.) mit %(—f- multiplicirt, iber die ganze Aus-
dehnung der Kugel integrirt, und diese Integration partiell ausfiihrt, beachtend,
dass in diesem Falle an der Oberfliche der Kugel -gt——-O ist, so konnen
wir der Bezeichnung des vorigen Paragraphen entsprechend setzen:

WP TS Py S

und erhalten dann das Resultat:

q * rd’
idfi = T 162 /(dt Zl)g> ds.
Es entsprlcht diese Gleichung der Gleichung (5°.) des vorigen Paragraphen,
mit der durch Einfihrung der Grosse w bedingten Modification, und es lassen
sich dieselben Schliisse betreffs der Stabilitat des Gleichgewichts, der Eindeutig-

keit der Losungen, der Continuitit zweier Bewegungen von verschiedenem
analytischen Ausdruck daraus ableiten.
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Ablauf elektrischer Radialstrome in der Kugel ohne #ussere Einwirkung.

Um spiter die vollstandigen Integrale der durch eine gegebene édussere
Einwirkung hervorgerufenen Strome finden zu konnen, miissen wir zuerst das
vollstindige Integral der Gleichung (7.) mit der Grenzbedingung (7°.) suchen

fir den Fall, dass

dR
8) 2 =o

Setzen wir innerhalb der Kugel
a ag
(8%.) ¢ = —i— —I—— el sm( R )

so ist Gleichung (7%.) erfillt, wenn a eine ganze Zahl ist, und Gleichung (7.),
wenn
n’a’

(8) —Tr Vot gt = A%k

) &= 5@ E

Die beiden hier fir 7:—- gegebenen Werthe sind auch die Werthe fir die

wl iz +4() ]

Ich bemerke dabei, dass ein complexer Werth fiir a die Bedingungen
nicht erfilllen kann, da ein solcher einen complexen auch fiir » ergeben wiirde,
und dann nicht fir jeden Werth von ¢ die Gleichung (7°.) zu erfillen wire.

Da x und u positive Grossen bedeuten, so hat », Werthe, deren reeller
Theil jedenfalls negativ ist, und einer zum Gleichgewichtszustand zuriickkehren-
den Bewegung entspricht, wenn k positiv ist.

Ist k dagegen negativ, so wird n ebenfalls fir sehr grosse Werthe von
a mnegative reelle Theile haben. Wenn aber R gross genug ist, dass fir
niedrige Werthe von a

oder

Grosse

_k< >>4n’

so wird von den beiden entsprechenden Werthen von #, einer positiv werden,
und einer das Gleichgewicht zerstorenden Bewegung entsprechen. Wenn 1 =0
ist, wird dies fir jeden Werth von a der Fall sein. Hat u einen gewissen
positiven Werth, so wird jedenfalls & so gross gedacht werden konnen, dass
es der vorstehenden Ungleichung Geniige leistet. Da ibrigens die Constante
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w so klein ist, dass ihr Einfluss durch keine bisher angestellien Versuche sich
entdecken liess, so wird es sich dabei gar nicht um erhebliche Werthe von
R handeln. Hatte u Werthe, welche neben der Grosse A?®! in Betracht
kiamen, wenn & auch nur mit den Dimensionen gewohnlich gebrauchter Draht-
spiralen vergleichbar wire, so miissten solche Spiralen, die zwei neben ein-
ander laufende Fiden enthalten, einen merklichen Extracurrent auch dann geben,
wenn beide Fiden in entgegengesetzter Richtung durchsiromt werden. In
diesem Falle wirde es das durch die Grosse u gemessene Beharrungsver—
mogen der Elektricitat fast allein sein, was den Extracurrent in Gang erhielte.
Jedenfalls ist aber der so entstehende Extracurrent verschwindend klein gegen
denjenigen, welcher bei gleich gerichteter Durchstromung solcher Doppelspiralen
entsteht, und dessen Grosse von dem mit A* multiplicirten Potential der ganzen
Spirale, auf sich selbst genommen, abhingt.

Aus der Gleichung (8°.) konnen wir ein vollstindiges Integral der
Gleichungen (7.) und (7°.) ableiten in der Form:

¢ = %&"‘K‘F‘Pu,
P = 4 {[B et LB, e“a’]sm( SRQ)}

a(J

(9.)

Darin sind », und n, die beiden Werthe, Welche Gleichung (8°.) fiir den be-
treffenden Werth von a ergiebt, B, und B, aber sind willkiirliche Coefficienten,

welche so bestimmt werdem konnen, dass ¢ und q) fir ¢=0 w111kurllch
gegebene Functionen von ¢ im Innern der Kugel werden

Wenn ¢ und _Zg_ fir die Zeit ¢ =0 gegeben sind, so ist in unserem
Falle, wo
au av av daw aw aUv

Ay T dz’ ds dy’ do s’
der Anfangszustand vollstindig bestimmt, da dann die Potentiale &, und P,
nach (4°.) und (4%) vollstindig bestimmt sind, ebenso wie das von der leben-
digen Kraft der elekirischen Bewegung abhiingige Glied &, des Potentials,
welches. noch hinzukommt, wenn w von Null verschieden ist. Es konnen also

zwei Bewegungen, fir welche ¢ und ‘p iiberall im: Anfang gleich ist, sich,

wenigstens wenn k positiv ist, ﬂberhaupt nicht: von einander unterscheiden.
Ebenso wenig konnen sich bei negativem Werthe von. &k zwei Bewegungen
von einander unterscheiden, bei denen zur Zeit £=0 die Functionen ¢ und
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%% iberall die gleichen Werthe haben, und die beide nach Ablauf unend-
licher Zeit

¢ = Const.,
dp
da 0

machen. Zu dem Ende missen in der Reihe (9.) nur die Glieder bewahrt
bleiben, welche hinreichend grosse Werthe von a enthalten, dass =, und n,
nur negative reelle Theile enthalten.

Die Falle, wo », oder u, positive reelle Theile enthalten, werden wir
erst am Schlusse dieses Paragraphen besonders besprechen.

Elektrische Radialstrome bei bestimmter #usserer Erregungsweise.

Es sei 4 irgend eine Constante, fir welche wir nur, um die Behand-
lung von Ausnahmefillen zu umgehen, festsetzen, dass sin(AR) micht gleich
Null sein soll. Es seien ferner v, und », die Werthe von » aus der Gleichung

9°)  —|Lwt a1} = Ak,
und es werde gesetzt:

‘ M c v, v,
. (96.) ﬁ‘ = [Vl .e 01—-1/(,.8 lt] +Cu,

V=

so ist innerhalb der Kugel

9) o= v, E,,o ) 2%:::](()_};}(3 [Vl-er“t_VAJ-emt]+%+(Po+ Co,
wo unter ¢, die in der Gleichung (9.) enthaltene unendliche Reihe zu ver-
stehen ist.

Dass ¢ ein Integral der Gleichung (7.) mit Einhaltung der Grenzbedin-
gung (7°.) ist, geht aus dem Bisherigen hervor. Die Coefficienten B, und B,
der Reihe ¢, werden wir nun nach Fouriers Methode so bestimmen konnen,
dass fir die Zeit ¢ =0

g = C+o+Gi,

(92.) p
(p ——
. a =90
wird. Zu dem Ende muss sein
R.sin (Ag) _ 1 e=% ' na
(92) tc[i—m = ?ﬁ{(&%—%ﬂmn( R );,
0 =u,.B+n,.B,,
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was nach bekannten Rechnungsmethoden ergiebt:

(4L, C 233
Ba+$a - ( 1)+ ”oclsmz_nQQS) 9

97) (B, = —“ [B,+8],

a— Ng

%a = [Ba+'Ba]

Da die Coefficienten B und B fir hohe Werthe von a abnehmen, wie a3,
so convergirt die Reihe fiir ¢, und hat einen eindeutigen Werth fiir #=0
und alle positiven Werthe von #, wenn nicht eine von den Grossen n_ oder
n_ positiv unendlich wird, was geschieht, wenn gleichzeilig =0 und % ne-

ng— Mg

gativ ist. Ebenso sind die Reihen fiir. 9% und fir %2, wenn ¢ =0, und die

dt do’
. d’
Reihe fiir m—gj—, wenn ausserdem auch @ = 0, convergent und emdeutlg.
Unter diesen Umslanden konnen wir den Grossen ¢ und —— die ihnen

in den Gleichungen (9%) fir die Zeit £ =0 und den ganzen Raum beigelegten
Werthe auch fir alle negativen Werlthe von ¢ beilegen, ohne die Continuitat
der Bewegung zu storen.

Das entscheidende Kennzeichen fir die Moglichkeit, zwei Bewegungen
von verschiedenem analytischem Ausdrucke in einem gegebenen Zeitpunkte an
einander zu schliessen, ist, wie oben gezeigt wurde, dass die den gesammten
Arbeitswerth ihrer Differenz messende Function & gleich Null sei. Das ist
aber im vorliegenden Beispiele der Fall, da die in dem Werthe von & vor-
—%—,%—;ﬂ, d‘g@,fﬁrt=0
einerseits durch convergente Reihen gegeben sind, deren Werthe andrerseits
mit den Werthen der Gleichungen (9%) zusammenfallen.

~ Dadurch ist also diejenige elektrische Bewegung in der Kugel gegeben,
welche nach vorausgehendem Gleichgewichtszustande der Elektricitat erregt
wird, wenn von der Zeit {=0 ab die dussere Kugelschicht eine solche Be-
wegung ausfithrt, dass die elektrische Potentialfunction in dem Raume zwischen
den beiden Kugeln die durch Gleichung (9°.) gegebene Function der Zeit wird.

So oft entweder u« von Null verschieden ist, oder & positiv ist, wird
es immer moglich sein, fir 4 einen so hohen Werth zu nehmen, dass », und
v, reelle negative Grossen sind, und also die Bewegung der &usseren Kugel
eine voriibergehende ist. Dies werde im Folgenden immer angenommen.

Da man ibrigens beliebig viele verschiedene Bewegungen derselben

kommenden Werthe von und eventualiter auch
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Art, die zu verschiedener Zeit anfangen und verschiedene Intensitit haben, in
der Kugel superponiren kann, so erhalten wir die Losung einer allgemeineren
Form der letztbehandelten Aufgabe, wenn wir mit § die elektrische Potential-
funciion bezeichnen, die Bezeichnung ¢, dagegen fiir die in den Gleichungen
(9.) bis (97.) gegebene Function ¢ der Zeit beibehalten und setzen:

-0 t
(10)  § = [ Goony oottt Gy p.ar.
1 —m

Darin ist unter v, eine willkirliche Function von 7 verstanden, von der wir
nur voraussetzen, dass das Integral / Y, .dtr, zwischen welchen Grenzen man
es auch nehme, immer endlich sei. Unter ¢,_,,, dagegen ist der constante Werth
verstanden, den in den Gleichungen (9.) bis (97.) das ¢, fir negative Werthe
von ¢ hat:

m
Pu—wy = CH+ —9?{"—}‘ Cy.

Zu bemerken ist, dass fir den Raum zwischen beiden Kugelflichen bei der
in Gleichung (10.) angezeigten Integration immer nur die Werthe von ¢ zu
nehmen sind, die diesem Zwischenraume entsprechen, auch wenn R zeitweilig
kleiner gewesen wire, als das entsprechende o.

Der Werth von ¢ ist eine Summe von Theilen, die theils wie (%e_——}—CU)
in aller Zeit unveréndert bleiben, und deshalb in der Gleichung (10.) auch nur
eine Constante zum Werthe von & hinzufiigen, theils aber auch verdnderlich sind.

Zunichst wollen wir berechnen, welcher Art von Bewegung der éusseren
Kugelfliche die in Gleichung (10.) dargestellte Bewegung der Elektricitit an-
gehort, und dazu den Werth von § far den Raum zwischen ® und R be-
rechnen. Der veranderliche Theil von ¢ ist hier das Glied %—C(,, was wir
als Function der Zeit mit & bezeichnen wollen. Es hat aber fiir negative
Werthe von t{—7z die Grosse &_, den constanten Werth C und fir positive
Werthe von £—7 ist entsprechend der Gleichung (9°.):

(10%) &, =

=, [v,. " —v,.e""].

Diese Grosse geniigt, wie leicht zu sehen, der Differentialgleichung
d? d
(106-) %"‘(Vo‘*"’l)%’{"’u”nfp = 0.

Bezeichnen wir nun den entsprechenden veranderlichen3Theil von § mit E,

indem wir setzen
13 *
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(102) E = C/mw,.dt+/f6,_,.y',.dt.
t —w

Der oben gemachten Annahme gemass sind », und 7, negative reelle Grossen,

und y, immer endlich, folglich ist fir v = — oo |
& Y, = 07
ferner ist fir t=1<
—_ dfh—r .
& .,=C und i =0.

Wenn wir mit Beriicksichtigung davon die Differentialquotienten von E
bilden, so erhalten wir
dB _ [tde
. — dt

—o
d'E d%_
=) i pedn

und indem wir diese Ausdricke und (10°) entsprechend der Gleichung (10°.)
zusammenfiigen, erhalten wir:

d’E dE e
(10”.) —217—-(’/0_}_1/1) _?d‘t'—"l’"lyo.”lE == V(,.VI-C:/ ’l//-,_-.dt.
t

Y, . dr,

Wenn wir also E als Funclion der Zeit als gegeben ansehen, so konnen wir
mittels der letzten Gleichung daraus den entsprechenden Werth von vy her-
leiten. Eine nochmalige Differentiation nach ¢ giebt diesen Werth namlich
unmittelbar. Die Funclion E ist nur der Bedingung unterworfen, dass sie

. dE ~d’E
selbst, so wie 5 und T

_nicht in Gestalt der oben gegebenen Integrale unzweideutig auszudriicken sind.
Nun ist fir die in Gleichung (10.) dargestellte Bewegung
M

'“R“"" (R E.

zu jeder Zeit endlich sein miissen, weil sie sonst

Folglich ist auch % eine bis auf die Endlichkeit der ersten beiden Differential-
quotienten willkirliche Bewegung der Zeit, und die Gleichung (10.) stellt die
elektrische Bewegung in der leitenden Kugel fiir jede beliebige Bewegung
der dusseren elekirischen Schicht mit continuirlich sich @ndernder Geschwin-
digkeit dar. l

Ausgeschlossen sind jedoch, wie mehrfach hervorgehoben ist, die Fille,
wo u=0 und % negaliv ist, in denen die Reihe (9°.) nicht convergirt.
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Ist k positiv, so ist die Losung die einzige mogliche, wie aus den Be-
trachtungen des vorigen Paragraphen und den im Anfange des jetzigen dazu
gegebenen Zusélzen hervorgeht. Wird von einer gewissen Zeit ab E constant,
und also v, =0, so bleiben nur Bewegungen iibrig, die die Zeit mit Factoren
von negativen reellen Theilen in den Exponenten haben, und daher zum Gleich-
gewichtszustand zuriickkehren.

Wenn dagegen k negativ ist, und p einen positiven endlichen Werth
hat, werden bei gewisser Grosse der leitenden Kugel eine Anzahl Exponenten
n,, welche den unterhalb einer gewissen Grenze liegenden Werthen von a
entsprechen, positiv sein, und schwellende Bewegungen darstellen, die nie zum
Gleichgewicht zuriickkehren. Das im Ausdruck fir ¢ Gleichung (9.) vor-
kommende Glied

B, e
giebt laut Gleichung (10.) im Werthe von § ein Glied

*,
B, e"a"/ 'y, . e dr,
10

wenn #, und ¢, die Grenzen bezeichnen, zwischen denen ¥, von Null ver-
schieden ist. Da v, innerhalb dieser Grenzen vollkommen willkirlich ist,
wenn sein Integral nur endlich bleibt, so wird das Integral in dem letzige-
nannten Ausdruck nicht nothwendig gleich Null sein, und diese Glieder, welche
schwellende Bewegungen darstellen, werden im Werthe von § fir Zeiten
t > t;, nicht zu fehlen brauchen.

Es konnte nun fraglich erscheinen, ob der gefundene Werth von ,
der solche Glieder mu ansteigender Bewegung enthilt, deren Summe mit S
bezeichnet werde, das einzige Integral der Bewegungsgleichungen ist, welches

den vorgeschriebenen Werthen von 4 und einem anféinglichen Zustande elekiri-

schen Gleichgewichts entspricht, und ob nicht ein zweites davon verschiedenes
Integral existire, welches keine Glieder von schwellender Bewegung enthielte.
Um diesen Zweifel zu beseitigen, beachte man, dass
§-S

ebenfalls ein Integral derselben Bewegungsgleichungen ist, welches denselben

Werthen von —Jg— entspricht, wie §, welches fir £ = —oo wie fiir {=-+o0
sich einem endlichen constanten Werthe nahert. Dieses letztere Integral hat
aber einen anderen Anfangszustand. Namlich vor der Einwirkung der Aen-

derungen von R besteht schon die durch die Summe S dargestellte schwellende
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Bewegung. Sie wird durch die &ussere Einwirkung vernichtet, und geht in
eine abschwellende iber, die den Gleichgewichtszustand erreicht. Im vorigen
Paragraphen ist aber gezeigt worden, dass nur eine einzige solche Bewegung
existiren kann, die unter Einwirkung gegebener #usserer Krifte von einem
gegebenen Zustand unendlich kleiner Bewegung zu einem Endzustand unendlich
kleiner Bewegung fihrt. Also ist das Integral § —S das einzige dieser Art,
und es giebt kein anderes, welches bei den gegebenen Kriften aus anfinglichem
in endliches Gleichgewicht fiihrt.

Untersuchung des Falls, wo k negativ und @ =0. In diesem Falle
giebt es keinen Werth von a oder A4, fiir welchen nicht einer der beiden
Werthe von n, oder » reell positiv wirde. Um daher eine dauernd endlich
bleibende Bewegung zu erhalten, muss man die anfingliche Bewegung durch
die schwellenden, die endliche durch die abschwellenden Glieder zusammen-
setzen. ,

Wir wollen mit », und mit », die positiven Werthe, mit n, und », die
negativen der Exponenten bezeichnen. Die Gleichungen (8°.) und (9°.) wer-
den dabei:

A’knﬁ—kf—ai {'&%”a‘l‘ 1§ = 0,

(11.) R
x
Aty =0
Man setze
1) fir negalive Werthe von ¢
(11%) X = C.v.e*+C.n,

und fir R<<o<<R
a1y ¢ =g+,

fir o <<®
¢ _~ R.sin(Ag)
11%)  ¢=0C o.sin (%)

) fir positive Werthe von ¢

.rl.e""-i-C.v‘)'{‘%“*‘%z{Bﬂ'e"“t'sm< n;{e )} 3

11d) X = co e,
und fir R<<o<<R
| b W M
| (1) ¢ = T+
dagegen fir ¢ << R
R.sin(g)

(11%) ¢ = C.n+Cu -e"’-{-%—%—2{%a.e“ﬂ’.sin(_%g->}.

"To.sin(AR)
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Die Contmultat der Bewegung zur Zeit =0 ist hergestellt wenn die

Werthe von ¢ und —— ibereinstimmen, also:
- R.sin(A0) 5 ' . map
(1 lf) 0 (;‘ ’Vu 7/1) [1_ Q0. sm(lm) ]+?2l(3‘1+$a) . SIH(T }
) un

n,B,+n,3B, = 0.
Es sind dies Gleichungen von der Form wie (9°) und finden ebenso ihre
Losung.

So ist zundchst eine immer endlich bleibende Losung fir die eine in
den Gleichungen (11¢.) und (11%) vorgeschrichene Bewegung der d#usseren
elektrischen Schicht gewonnen. Aus dieser kann man wieder andere Losungen
fir andere #ussere Krafte durch Superposition zusammensetzen.

Es ist ebenso, wie in dem allgemeineren Falle, wo w nicht gleich Null
war, der Beweis zu fihren, dass durch solche Superposition jede beliebige
Art der Bewegung der dusseren Kugel, bei der die Geschwindigkeit sich nur
nicht sprungweise éandert, darzustellen ist.

Die durch eine solche Losung dargestellte Bewegung ist eine, die immer
endlich bleibt, und zur Zeit { = —oc wie zur Zeit { = 4 oo unendlich wenig
vom Gleichgewichtszustande verschieden ist.

Da es fir dieselben gegebenen Werthe von -I]'li keine zweite derselben

Art geben kann, so folgt, dass im Allgemeinen, wenn vor Beginn der Be-
wegung der Masse M Ruhe geherrscht hat, eine dauernd fortschreitende Storung
des Gleichgewichis in der Kugel erregt werden muss.

Ausnahmen hiervon konnen bei diesen und den vorigen Fallen, wo
k<0 <Tpu, nur bei bestimmten Bewegungsweisen eintreten, wenn namlich
fir jedes positive n, ‘

(112.) /1/) et dr = 0,
dies Integral awischen den Grenzen genommen, zwischen welchen v, von
Null unterschieden ist.

Fir eine endliche Anzahl von Werthen von a lasst sich diese Gleichung
offenbar erfilllen, wenn man iber entsprechend viele Constanten in dem Aus-
druck fir v verfigen kann.

Da aber vy, ganz willkirlich zwischen beliebigen Grenzen bestimmt
werden kann, und nur der Bedingung unterworfen ist, dass

/1/!,. dr,
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zwischen beliebigen Grenzen genommen, immer endlich bleibt, so werden die
Gleichungen (115.) im Allgemeinen nicht erfillt sein.

§. 6.

Ueber den Einfluss der Constante & bei ausfithrbaren Versuchen.

Die Grossen U, ¥V, W in den Bewegungsgleichungen (3°.) hingen nach
ihrer in (1%.) gegebenen Definition von der Constante & ab. Um die Theile
derselben, die davon abhiéngen, zu trennen von denjenigen, die von % unab-
hangig sind, fihren wir die Bezeichnung ein

k ¥
= Utgy o3>

, k AW

(12) (8 = V5 5o
k AW
B =Wty o,

wo unter ¥ die in der Gleichung (2°.) definirte Function zu verstehen ist,
und nach (2%)

d _ o dp
@) 4% =22

¥ selbst, wie seine ersten und zweiten Differentialcoefficienten, nach den
Coordinaten genommen, sind an den mit Elektricitéit belegten Flachen continuirlich.

Wir setzen ferner in diesem Paragraphen. voraus, dass die Abhdngig-
keit der behandelten Functionen vor der Zeit nur dadurch gegeben sei, dass sie
alle den Factor e* enthalten. Wenn n complex oder imaginar ist, sind
schliesslich in der. Losung nur die reellen Theile der betreffenden Functionen

zu nehmen. Das System der Gleichungen (I.) bis (V.) wird unter diesen
Umsténden:

Im Innern der Leiter:

% xn d(p kn dW
AW =AU = ()T g

o % 2 an drp 2 kn dW
(12°) (a8 —A0.8 = (14+7)-Fh— 45T,
% dp 2 fn AW

B A = (14 0) Pt S

Ferner im #@usseren Raume:
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A1, -—nc-%%— = —A4n.u,,
(12%) (4%, —n-if;y”_f = —4n.0,,
.428,——%-—%‘7;—’ = —4n.w,.
Im ganzen Raume:
an aB al
+ + = O,
(12¢) dz dy dz

!
e

du’! l
+ dy + dz
An den mit Elektricitat belegten Flachen:
(122) U-U,=8—-3B,=B-B,=¢—¢, =0,
. di du, _ dB dB, 4B 4B,
1) - =aw~an ~av v =
In unendlicher Entfernung
UN=B=[=¢p=%=0.

In diesem ganzen Systeme von Gleichungen kommt %k nur noch als
Factor der Function % in den Gleichungen (12°.) vor. Wir werden also zu
untersuchen haben, wann diese k enthaltenden Glieder merklichen Einfluss auf
die Losung der Aufgabe erhalten konnen, wann nicht.

Mit Beriicksichtigung der Gleichungen (2%) und (12°.) folgt aus
denen (12%.)

(127) 0 = (f=+1)dg—Akn’g,
und ein partikuldres Integral dieser Gleichung ist
12¢) ¢ = —g’ie'e+~',

wo ¢ =x'+y'+ 2 ist, und

Y _ An Ak’
(12°*.) p = m'

Bei wechselnden Werthen von x erreicht der Modulus von ! seinen hdchsten
Werth, wenn % =0. Dann wird
l=nA Vk

und also bei imagindrem n die Grosse m die Fortpflanzungsgeschwindigkeit

der durch die Gleichung (12¢.) dargestelllen Wellen. Wenn  nicht gleich

Null ist, ist die Fortpflanzungsgeschwindigkeit kleiner und die Fortpflanzung
Journal fir Mathematik Bd. LXXII. Heft 2. 14
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mit Absorption der Wellen verbunden. Uebrigens ist x» gegen 4n ver-
schwindend klein im Kupfer, selbst, wenn die Schwingungsperiode ein Million-
theil einer Secunde ist. :
' Wenn wir nun die letzten beiden Glieder in jeder der Gleichungen
(12) der Grosse nach vergleichen, so ist

(12 B~ _[B. IS sy,

'.3

A’kn
4 +xn

(124) 2n 8T — y [E 2550 0 d.dn. dT.

So oft nun §#*s* fiir diejenigen Werthe von r, welche zwischen den
Punkien «, y, 5 des Korpers und den Orten &, n, { der beweglichen elektri-
schen Massen vorkommen, verschwindend klein ist, wird im Allgemeinen auch
der mit % multiplicirte Ausdruck verschwindend klein gegen die Differential-
quotienten von ¢ sein, zu denen er summirt ist.

. l
Es ist aber TS
T

dauer ?”7;- ist, und die Fortpflanzungsgeschwindigkeit dieser Oscillationen ist

gleich der des Lichts, dividirt durch Y4 Wenn also & wie in Herrn F. E. Neu-
manns Annahme gleich Eins ist, oder wenigstens nicht unverhaltnissméssig viel
grasser als Eins, so werden im Allgemeinen bei Versuchen an irdischen Leitern
die Bewegungen der LElektricitit nicht merklich anders ausfallen, als wenn k=0
wdre, wenn nicht eben Dimensionen der Leiter benutzt und so kleine Zeit~
theile beobachtet werden konnen, dass sich die von der Lichtgeschwindigkeit
herriihrenden Unterschiede innerhalb dieser Dimensionen und Zeittheile geltend
machen.

Diese Folgerung ist darauf gegriindet, dass die in (12".) und (12°)
ausgedriickten Grossen Summen sind von denselben Summanden, aber so, dass
in der zweiten Summe jeder Summand mit einem verschwindend kleinen Factor
multiplicirt ist, der bei imagindrem = einen immer negativen reellen und einen
der Regel nach dagegen verschwindenden imagindren Theil hat. Diese Fol-
gerung wiirde nicht ohne Weiteres zuldssig sein, wenn ¢ die relativ kleine
Differenz einer sehr grossen positiven und einer nahehin ebenso grossen ne-
gativen Quantitdt wiére, und dabei der mittlere Werth von +* fiir die eine dieser
Quantititen einen endlichen Unterschied von dem der andern angehérigen Mittel-
werthe hitte. Nun kann allerdings ¢-in der angegebenen Weise zusammen-
gesetzt sein, aber dabei nur dann iberall endlich bleiben, wenn zwei unendlich

die Wellenlinge der Oscillationen, deren Schwingungs-
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grosse elektrische Quanta in unendlich kleiner Entfernung von einander als
elekirische Doppelschicht von endlichem Momente gelagert sind, wie in den
beiden Platten eines Condensators oder in den beiden Belegungen einer Ley-
dener Flasche. In diesen Fillen ist aber offenbar die zweite Bedingung nicht
erfillt, namlich die, dass der mittlere Werth von #* fir die positive und ne-
gative elektrische Masse endlich verschieden sei.
In der Voraussetzung also, dass die Constante % keine sehr grosse
Zahl ist, wird man die analylische Behandlung der Aufgaben iber Elektricitits—
bewegung vereinfachen dirfen, indem man k= O setzt, oder die Fortpflanzung
der Longitudinalwellen unendlich gross annimmt, so oft die Dimensionen der
gebrauchten Leiter verschwindend klein sind gegen die Moduln der (reellen
oder complexen) Wellenlédngen der zur Wahrnehmung kommenden elektrischen
Oscillationen (deren Periode auch complex sein kann).
Die Vereinfachung der analytischen Operationen, welche eintritt, wenn
wir k= 0 selzen, grindet sich darauf, dass die Gleichungen (IL) und (II%.)
nicht mehr nach ¢ integrirt zu werden brauchen. Die Gleichung (127.) er-
giebt alsdann fir das Innere der Leiter entweder
_an
Fg

n —
oder
49 = 0.
Die letztere Alternative ergiebt, dass gar keine freie Elekiricitit im Innern

der Leiter vorkommt. Die erstere giebt
4r

- —t1

P = fx.y,z'e *
unabhiingig von aller Einwirkung #usserér Krifte. Bei denjenigen elektrischen
Bewegungen also, die im Innern eines Leiters nach vorausgegangenem elektri-
schen Gleichgewicht durch dussere Krifte hervorgerufen werden konnen, wird
freie Elektricilidt, bei der Annahme k=0, nur immer an der Oberfliche der
Leiter oder an den Grenzflichen verschiedener Leiter vorkommen konnen.

S. 7.

Bewegung in einem unendlichen Cylinder.

Die einzige praktisch angewendete Form eines Leiters von hinreichg;}d
grossen Dimensionen, an der man hoffen konnte, Unterschiede, die der Lichi-
geschwindigkeit entsprechen, zu entdecken, wire die eines sehr langen Drahtes.

14 *#
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Ich will deshalb die Theorie der elekirischen Bewegung in einem solchen hier

noch ausfiihren, basirt auf die Gleichungen (12°.) bis (127.), indem, wie dort,

die Abhangigkeit von ¢ auf einen Factor " beschrinkt bleibe, und zugleich

die Geschwindigkeiten #,, v,, w, im dusseren Raume gleich Null gesetzt werden:
13) wy=0,=w,=0.

Die Axe des Drahtes sei auch die Axe der =, der Draht cylindrisch mit kreis-

‘formigem Querschnitt vom Radius R. Die Bewegung geschehe theils in Rich-

tung der z, theils in den darauf senkrechten Richtungen der *
(13) ¢ = TR

Wir konnen unter diesen Umstinden setzen

I A I

de.dp o  dw.dy ’

d2_.2__dx_,
4 de.do ¢  dr.ds
Aus den Gleichungen (12°.) fliessen die drei Gleichungen

%-J{%g—-%}—fi?.n. —(g——%} =

(13%)

T N — e " @
¥  (dl 4By, (dl 4B _
T {dy “ﬁ;s—f‘-"'{'@‘ =) =0

Die erste von diesen ist durch die Annahmen in (13%) erfillt. Die beiden
andern ergeben, dass die Differentialquotienten nach y und s genommen von
folgendem Ausdrucke gleich- Null sind

e x d’y d’y _
(8*)  Z.a{TE _u|_gn|TE-u} =,
und gleichzeitig gieht (12°.)
d 'y )

d -ﬁ-{u.{-dy“ +d5’} =0
oder

Ny Ay 1

~So =~ =

Da eine Function von ¢ allein zu x hinzugesetzt werden kann, ohne die Werthe
‘von B und B, zu andern, so konnen wir die willkirliche Function , hier
" weglassen, ohne die Allgemeinheit der Integration zu beschranken, und haben

(184 U = .gi;if._z/x.
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Wir erhalten dann fiir die Function y aus (13°*.) folgende Differentialgleichung:
(132) T”,,—ddx—-ffwx = 0.

Die dort stehende willkirliche Function f(z) kann hier wiederum
durch eine in x einbegriffene Funclion von « ersetzt gedacht werden, da die
Hinzufiigung einer solchen zu y die Werthe von U, B oder T nicht verdndert.

Setzt man nun diese Werthe in die Gleichungen (12°.) ein, so findet

man, dass die drei Differentialquotienten, nach =, y und z genommen, der
folgenden Gleichung gleich Null sind

% dy dy xn kn
(187) o d(GE)— A ngE = (1+2)g— A5 ¥+ Const.

Folglich muss diese Gleichung (137.) erfillt sein, und sie zusammen mit der
Gleichung (13¢.) ersetzt die Gleichungen (12".). Fiihrt man die Operation 4
an (137) aus, so erhalt man die Differentialgleichung fir ¢:

(139)  (14+42)dg—A . k.ut.q = 0.

Man kann auch im é&usseren Raume die Functionen U,, B,, B, auf die Form
bringen:

_ @ _ @y 1 dy
R Sy
d?
RN
__ax
B, = de.dzs °

welche die Gleichung (12¢.) erfiillen.

Die Gleichungen (12°.) und (13.) werden durch sie erfiilll, wenn
man setzt:

t dl — —
(13) 4 ——‘fc)—n(p,——%d.’lfl
und

(182)  44(%)=n. 49, =0.

Daraus folgt, dass im éussern Raume sich % und } %, nur um eine Potential-

function unterscheiden konnen, da die Gleichung (18'.) sich auch schreiben
lasst :

(18 4{% 1w} o0
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Wie wir oben schon angenommen haben, dass die Abhingigkeit der
hier zu untersuchenden Functionen von ¢ darauf beschrinkt sei, dass sie den
Factor ¢ enthalten, so figen wir nun die weitere Beschrankung hinzu, dass
ihre Abhingigkeit von = dadurch gegeben sei, dass sie den Factor ¢™* ent-
halten, worin m einen imaginidren Werth haben soll. Imaginir muss m sein,
weil nur unter dieser Bedingung die in den Gleichungen (1°.) oder (1°.) ge-
gebenen elektromotorischen Krifte endlich sind.

Unter dieser Annahme werden die Bedingungsgleichungen unseres
Problems folgende:

(14.) %-ddx—A2.n.dx = 0,
(14°) .44;(1::4(,01:0
(14) dx—Anmy = (1452 )p— 3 & k.0 7,
(147.) 2m.dxl=d?l’l=2n(p1.

Dazu kommen noch die Grenzbedingungen fir die Oberfliche des Cylinders,
(122.) und (12¢.), welche sich reduciren auf folgende:

(14%) myg—dy = m'y—dy,

c dy dz.
(14 ) ‘@‘ - °
dx dy,

(147) .4(79— = .4(

(14¢.) ¢ = ¢,

(14*) P =9,

; aw 4,

(14) =

Endlich fir ¢ = oo miissen alle diese Functionen gleich Null werden.
Bezeichnen wir mit Ji,,, diejenige Besselsche Funclion, welche fir ¢ =0
endlich bleibt und die leferentlalglexchung erfallt

(15) d In? [J(pe)]+ 0 dg [J(pe)]+p J(ve) = O’

so ist
A[e™ Jpp] = (m'—p°).€™ Jyg
und es wird also die Gleichung (13%.) integrirt durch die Annahme
(15%) @ = Y. et Jpps
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wenn
(15%) (14 o= )(m*—p?) = A%k.n.

Bezeichnen wir dagegen mit 3, dasjenige Integral der Gleichung (15.),
welches fir ¢ = oo gleich Null wird, so ist im dusseren Raume mit Beriick—
sichtigung von (14°.) und (14%.) zu setzen:

J
c nt+mx (PR)
(15 ) P = U.e 8( R) S((mg)'

Die aus ¢ zu bildende Function ¥ ist dadurch bestimmt, dass im ganzen Raume
(15%4) 4¥=2wm¢ und J¥, =2ng,,
sowie durch die Bedingungen fir die Oberfliche (14".) und (14‘.). Danach
wird im Innern des Cylinders ¥ die Form haben: '
152) ¥ = {m U Ty + € Sy - 7

und im #usseren Raume ~

J
(157",) P = { "0 3{(pl‘;) 3(mg)+‘i} 3(('"9)} ertmx

Aus der Differentialgleichung (15.) folgt leicht, wenn wir sie nach p differentiiren,
p dann mit m vertauschen, und zur Abkiirzung setzen

’ d
S<(me) = %'S((me)v

dass
[ S g[S+ [£-3] = —2m.90

und somit (15%) erfiillt sei. Die Coefficienten € und § bestimmen sich durch
die Gleichungen (14%.) und (14"), welche ergeben:

[m J(pR)+ Jory: (MR)]QI'F@ Joury— T - Smmy = 0,

2n ,
s Jom — nR.J(pR,]%I—{—@.J(,,,R)—-%.S(,,,R) — 0.

(15¢.)

Wir haben nun noch die Function y zu bilden. Zunéchst muss die
Function 4y die Differentialgleichung (14.) erfillen und dabei fir ¢ =0
endlich bleiben. Daraus folgt unter den vorausgeschickten Annahmen:

(16.) Ax = %.e"f'*'"‘x.-](q?)
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und
(16%) S (m'—q) = L.n.
Daraus folgt dann weiter, dass y von der Form sein muss:
(16%) x = [;1,—_‘_?.23..1(,9)+@.J(,,g,].e"'+mx,

wo B und @ zwei constante Coefficienten sind. Der letztere bestimmt sich

aus der Gleichung (14°.), die sich bei Einsetzung der Werthe (16°.), (15¢.)
und (15°.) reducirt auf :

16°) @ = ?"”;@
Im #usseren Raume muss die Function y, nach (14°) von der Form sein
1
(16d.) Xl = E'”Tlljjl'{—@.e"i-*_mx.s‘(mg).

Die Coefficienten B, ¥,  bestimmen sich durch die Grenzbedingungen (14%),
(14¢.) und 14%.), namlich

/ q '%'J(QB)+m2'©'J(mR)

mi___qa
n 2 m
= m(m’li—P’) A dom + 5 C.Jry + 1. D Sy
1 , ,
(16) , g B Jiry) +6 . Jiur)

n

' 1 , /
= m(mg_pz) 'QI'J(PR) +%.@‘J(MR) +@°3(mﬂ),

!
n Snry
B.Jr = —UA.Jpm: .
(¢R) m @R) Smr)

Die zwei Gleichungen (15%.), die eine (16°) und die drei (16°.) bilden
ein System von sechs homogenen linearen Gleichungen mit den sechs Un-
bekannten

A B, € F, G, H.
Folglich muss die Determinante derselben gleich Null sein. Dies giebt schliess—
lich eine Gleichung, welche zur Bestimmung von = dient. Zur Abkirzung
setzen wir ;
J (R (nR
(167) P=eR., Q- JWB uyg M= JeR.,
Dann ist die Eliminationsgleichung folgende:

m’'—q m’—

165) el -%[M—O]—k- '”’p?[M—P]Jri—gf-R[MUrm*] — 0.
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Die unbekannte Grosse = ist hier in den ¢, p, Q und P enthalten. Es ist
nun —?ml gleich der Wellenlinge der betrachteten elekirischen Wellen nach

der Lange des Drahtes gemessen; wir nehmen an, dass diese sehr gro ss gegen
die Dicke des Drahtes sei, und betrachten deshalb mR als eine Grisse, die
gegen die Einheit verschwindet.

Ferner ist

/—fE:; nach (15°.) die Wellenlinge der longitudinalen
m —

elektrischen Wellen in einem ausgedehnten leitenden Medium, deren Sch win-
gungsdauer —?nit— ist; wir konnen deshalb auch (m’—p*)R*> und p’R* wie m’R*

als verschwindend klein gegen die Einheit betrachten. Dagegen ist

dnn. A’
m2_q'z — -,
und fir Kupfer wird dies
mQ—qQ — A v Secunden .
227000 "(yadratmillimeter

Wenn also R nicht unverhilinissmassig viel grosser als ein Millimeter ist, und
n nicht viele Tausende betrdgt, so wird auch (m*—q¢*) R’ und ¢’R® als eine
gegen die Einheit kleine Grosse betrachtet werden konnen.

Da nun

p".R* . p*.R*
2.2 2.2.4.4
ist, so kann fir sehr kleine Werthe von pR und ¢R gesetzt werden

ete.

J(pR) = 1-

P=-—%p2R,
¢ _ 2, B
o= TETIZ

Wenn wir diese Werthe in (164.) einselzen, erhalien wir die fiir kleine Werthe
von pR und ¢gR zunédchst noch ohne Einschriankung der Werthe von mR
giiltige Gleichung: '

= My PR (2 (- R . mR
(16) 0= m[M+ 2 ]+4n[ RM<1 g )M -5
R ’R
+ A [ M+ W+ 2 kR,
Es ist nun nach Kirchhoff*) zu setzen

S = el Fo o) 0 0 - D s

2.2.4.4.6.6

*) Dieses Journal Bd. XLVIII, Heft 4.
Journal fiir Mathematik Bd. LXXII Heft 2. 15

¥
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worin
¥ = —0,5772157.

Daraus geht hervor, dass wenn mR sehr klein ist, auch RM sehr klein ist,
dagegen % sehr gross. Mit Beriicksichtigung hiervon konnen wir die Glei-
chung (16".) auf folgenden einfacheren Ausdruck bringen
(162) 0 = —m*— 5= M+ A% {1—}k.RM}.

Wenn % nicht so gross ist, dass kRM endlich wird, verschwindet das letzte
Glied mit & ganz aus dieser Gleichung. Der Rest der Gleichung stimmt
iiberein mit der Gleichung, welche Herr Kirchhoff aus dem Weberschen
Gesetze abgeleitet hatte, wenigstens in Bezug auf die Glieder, welche allein
Einfluss haben, wenn R unendlich klein wird. Nur in den Gliedern, welche
zunichst zu bericksichtigen sind, wenn log R nicht mehr als unendlich gross
betrachtet werden kann, zeigt sich ein Unterschied, indem statt unserer Function

M = 1
)-}- LN —logR}

R | —log(%"
in Kirchhoffs Gleichung steht:
1
R{logl—logR}
wo [ die Linge des Drahtes bezeichnet, und log/ statt der in meiner Formel
vorkommenden Grosse steht:

—-log( )-}— ¥, = —log(n)+¥,+log(4).

Im letzteren Ausdrucke bezeichnet i die Wellenlinge der betreffenden Os—
cillationen. '

Zu bemerken ist noch, dass durch die Annahme, kMR sei eine sehr
kleine Grosse, das Vorkommen labiler Gleichgewichtsstorungen fir negative
Werthe von k& von vorn herein ausgeschlossen worden ist.

§.8.

Einfluss diélektrischer und magnetischer Polarisation der Media.

Nachdem wir uns bisher mit der Frage beschiftigt haben, welchen
Einfluss die aus den bisherigen Versuchen nicht bestimmbare Constante % bei
den elektrischen Bewegungen haben konne, bleibt es noch iibrig, den Einfluss
zu erortern, den die zwischen den durchstromten Leitern liegenden und sie
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umgebenden Isolatoren haben konnen. Wenn in ihnen Verinderungen vorgehen,
so konnen diese auf die Ausbreitung der inducirenden Wirkungen Einfluss
haben. Dass die meisten, vielleicht alle Naturkorper magnetisch (beziehlich
diamagnetisch) polarisirbar sind, ist bekannt; fir eine Reihe von Isolatoren ist
auch nachgewiesen, dass in ihnen eine dhnliche Scheidung der Elektricititen,
diélektrische Polarisation, statifinden kann unter Einfluss elekirischer Krafte,
wie in magnetischen Korpern Scheidung der Magnetismen unter Einwirkung
magnetischer Krafte.

Es ist bekannt, dass man, wenigstens bei missigeren Graden der
Magnetisirung, das magnetische Moment, welches an irgend einer Stelle inducirt
ist, der Stirke der an der betreffenden Stelle wirkenden magnetisirenden Kraft,
diese multiplicirt mit einer von der Art des Stoffes abhéngenden Constanten,
gleich setzen kann. Die magnetisirende Kraft ist dabei diejenige, welche durch
die dusseren Einflisse in Verbindung mit dem in dem magnetisirten Korper selbst
und an seiner Oberfliche entwickelten freien Magnelismus hervorgebracht wird.
Genau dieselben Gesetze wenden wir auf die Diélekirica an, wobei wir zu-
nichst von den Vorgingen, die den elekirischen Rickstand der Leydener
Flaschen hervorbringen, und die von der Anwesenheit schwach leitender Theile
herzuriihren scheinen, absehen.

~ Es seien ¢, v, 3 die Componenten der durch Vertheilung erzeugten
elekirischen Momente parallel den Axen der x, y, z genommen, X, Y, Z die
Componenten der gegebenen #usseren Krifte, ¢ die Polentialfunction der durch
deren Wirkung verthellten Elekiricitat, so setzen wir dem entsprechend

e = (X,
17) {y = .s(Y——Lii"i),

3= (Z-———

Die Dichtigkeit freier Elektricitit im Innern eines der Vertheilung unterworfenen
Korpers, in zweierlei Weise ausgedriickt, ist gleich
ay 4y 4 1
aw.) R iy AL 4
An einer Oberfliche, wo 1, %, 3 und ¢ einen Sprung machen, ist mit Beibe-
haltung der bisher fir die Oberflichen £2 gebrauchten Bezeichnungen

1d de,
(17%)  (x—u)cosa+(h—bi) cosb+(3—p) cosc = An d?\; dti/'

15 *
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In Verbindung mit den Festsetzungen, welche den Werth von ¢ im
Unendlichen bestimmen, und das Vorhandensein éusserer elekirischer Massen
betreffen, geniigen diese Gleichungen zur Bestimmung von ¢, r, v und 3.

Sind die Krifte X, ¥ und Z von der Form

— dy
X_——%—’
dy
Y—‘_dy’
— dy
Z=- dz °

also gleich den Anziehungskriften einer mit der Dichtigkeit
1
E = —gzdv

verbreiteten elekirischen Masse, so ergeben die Gleichungen (17.) und (17¢.)
nach Elimination von 1z, v, 3.

47e) ;% [(1-+420) & (@t el g (gt {1+ 4) i)
= —4nkE,

und an den Grenzflichen, wo zwei Korper von verschiedenen Werthen von
¢ zusammenstossen, wenn E an der Fliche keine unendliche Dichtigkeit hat:

(A7) (+dne) 2 (p+v) = (1+4ne) - (gv).

Ist ¢ constant in dem Theile S des Raumes, wo E von Null verschieden ist,
so ist '

1 1
7 AVt = g B

Das heisst, die gesammte Potentialfunction (¢+¢) wird in dem Raume, in
welchem E liegt, sich so verhalten, als wenn in einem nicht diélektrischen

Raume nur T}—-Etl_n—e lage. Durch die erfolgte Vertheilung wird die Quantitit

—-———1:_‘;’; E dort hingeschoben, die einen entsprechenden Theil von E neutralisirt.

Fir die Verschiebungen von E im Raume S, so weit & constant ist,
hildet diese neutralisirende Elektricitit kein Hinderniss, weil diese iiberall
mitfolgen kann. Die Anziehungskrifte also, welche von anderweitig vorhan-
denen elektrischen Massen auf E ausgeiibt werden, missen ebenso gross sein,
als wenn die E zum Theil neutralisirende Elektricitdt gar nicht vorhanden wire.
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Die Potentialfunction einer punktformigen Masse E, ist also
__E__
(A +4ne)r
und die Abstossung, welche sie auf die Masse E ausiibt:
E.E,
(14-4ne)r?
Die Grosse der Massen E und E,, elektrostatisch gemessen, erscheint also im
Verhaltniss y1+4ne:1 verkleinert durch den Einfluss des Diélektricum, in
dem sie liegen.

Wenn wir nun unter ¢ eine beliebige constante Zahl verstehen, und jede
Masse E auf das c-fache vergrossert denken, jede Grosse (1-+4n¢) aber
auf das c’-fache, so bleibt die Anziehung der beiden Massen E unter so ver-
dnderten Umstianden unverindert, die Potentialfunction einer jeden wird ver-
ringert im Verhéltniss % und die Gleichung (17<.), welche die Vertheilung
bestimmt, bleibt vollstindig ungeéindert.

‘Wir konnen also durch alle elektrostatischen Messun«ren immer nur
das Verhiltniss der Werthe von (1+44n¢&) zwischen verschiedenen Korpern,
oder zwischen diesen und dem vom Lichtither gefiillten, iibrigens leeren Raume
ermitteln, aber nicht den absoluten Werth der genannten Grosse. Dasselbe
gilt fiir die Coefficienten der magnetischen Induction. Dass Poissor und andere
Bearbeiter der Theorie des Magnetismus den magnetischen Coefficienten,
welcher der Grosse (14-4n¢) entspricht, im Luftraume gleich Eins gesetzt haben,
ist willkirlich. Es ist bekannt, dass eine Reihe von Physikern durch die
diamagnetischen Erscheinungen veranlasst wurden, den betreffenden Coefficienten
fir den nur mit Lichtather gefiillten Raum grosser als Eins zu setzen, um &
in den diamagnetischen Korpern nicht negativ setzen zu miissen.

Die Bestimmung der elektrostatischen Einheit der Elektricitit, wenn sie
im Innern eines diélektrischen Isolators vorgenommen wird, muss diese Einheit
im Verhéltniss /1+4n¢:1 zu gross ergeben, und ebenso auch die elekirostati-
sche Einheit der Stromstirke in demselben Verhaltniss zu gross. Die Constante
A*ist der elekirodynamischen Anziehung zweier elektrostatischen Stromeinheiten
proportional. Ist also das Medium, in dem wir uns befinden, und diese Versuche
angestellt haben, diélektrisch, so ist der wahre Werth der betreﬂ'e:lden Constante,

A .
wie er fir einen absolut einflusslosen Raum gelten wiirde T dne,’ wo ¢, die

diélektrische Polarisationsconstante der Luft, beziehlich des den Weltraum
fillenden Medium ist.
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Wir missen ferner die diélektrische Polarisation auch bei der Be-
stimmung der Bewegung der Elektricitit beachten.

Wenn in dem Volumenelement dS die Menge E positiver Elektricitit
sich um }s in Richtung der positiven x, und die Menge negativer um s
nach Richtung der negativen x bewegt, so wird dadurch in demselben das
elekirische Moment

r = E.s

hergestellt, und gleichzeitig ist dieser Vorgang entsprechend einer Stromung
in dem Element

u,.dt = E.s.
Der Act der Polarisation bildet also eine Art elektrischer Bewegung, bei welcher
o —
v = S,
—y

Zu dieser kann sich noch hinzugesellen diejenige Bewegung, welche dem

Ohmschen Geseize entsprechend in leitenden Korpern geschieht, deren Com-

ponenten mit w,, v, und w, bezeichnet werden mogen.

, Da nun nach den in Gleichung (17.) gemachten Feststellungen, die die

Elektricitat in Richtung der Coordinatenaxen forttreibenden Krifte gleich sind:
%'@7 %t)o ':—'39

so erhalten wir die Gleichungen:

1

AUy = ”8—'!",
1

(18.) 20, = 9,
1

2w, = _5‘89

und die Gesammtigeschwindigkeiten der elekirischen Stromung werden:
de 1 .
=gtz
. dy | 1
(18%) v =+

_ 4 1,
T Tdt U e L3
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In Bezug auf diese Grossen # bleiben dann auch die Gleichungen (2.) und
(2°.) bestehen:

de  do [ dwo 1 ddy
R) Gty tw T o

1 a’
() (u—wu,).cosa+(v—wv,).cosb+(w—w,).cosc = Em((’)—%)’

und die Berechnungen der elektrodynamischen Krifte U, V, W, welche in
den Gleichungen (1¢.) bis (3%) in §. 2 gegeben sind.

Nachdem so die elektrostatischen und elektrodynamischen Krifte in
einem diélektrischen Medium bestimmt worden sind, haben wir noch festzu-
stellen, wie die Induction zweier Stromleiter in einem magnetisch polarisir-
baren Medium verandert wird. Ich bezeichne die magnetischen Momente mit
A, u, v und die magnetische Potentialfunction mit x, die Polarisationsconstante
mit 3, die ausserdem vorhandenen magnetisirenden Krifte mit £, I, N, so
ist, wie in Gleichung (17.), zu setzen

ol -],

19) {u = 9[%-%’5/—],
v =9[n-2%],

und

. A de  dv 1
19%)  Htata = wmdh

oder an Fldachen, welche freien Magnetismus enthalten:

. { rdy dy
(19°*)  (a—1,)).cosa+ (u—u,).cosb+(v—w,).cosc = i '&%—%\f .

Die magnetisirenden Krifte £, 9, % am Orte «, y, 5, herrihrend von den
Stromcomponenten u, v, w am Orte £, 7, £, sind die folgenden:
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Herriihrend

componente. ©

u 0 ——Au%(—i—) A-u-% %)
o LAt |0 | ek
o |cawt®) | aed® | o

Also, wenn man sie fir die simmtlichen vorhandenen Siromungen berechnet,

, dv. dw
o =Al )
dw  dU
b — e
(190) | m = 4[5 —2T],
aU av
R =Ala—wl

Somit sind, wenn #, v, w bekannt sind, die Grossen i, u, v durch die Glei-
chungen (19.), (19°.), (19°.) gegeben.

Die inducirende Wirkung der Grossen 4, u, » im Element dz.dy.ds
dagegen auf die Stromelemente u, o, w in &, 5,  ist proportional der Zu-
nahme des Potentials:

B S P T oM 10 P
o
o | —ag[eg()-1-5 ()] g
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L= fff %as.an.a,
(19:) (M= fff E az.an.az,
N = [ff L.d.ay.d,

so sind die Componenten der elektromotorischen Kraft, die von der Magne-
tisirung des Medium herriihrt:

Also wenn wir setzen:

d [dN dM
A uley &
d dL dN
/ d — T
(19%) +4 dt Uds ~ dz ]’
d 1dM dL
R i i £

und aus den Gleichungen (17.) folgen endlich folgende Bewegungsgleichungen
der Elektricitat, in denen X, ¥), 3 die durch andere, z. B. hydroélekirische
und thermoélektrische Processe bedingten dusseren Krafte bedeuten:

1= e ..i ﬂ_
R El+,
. 1 dy d dL
19) oy = — g gt ag T —E ]y,
1 dg aw d [dM
o= At g - g
wozu noch aus (19.) und (19°.) kommen:

A [aV aw dy
F“A[T{{_W e
f & g[eW _dUY_ b
(197) g A[da; dz dy °
v rdU  avy dy .
¥ =Alg—wl-ds

endlich, wenn wir mit E die freie Elektricitat bezeichnen:
dE du do dw
(198)  ——F = ‘d—x-'i-—@——i‘ P
Kennt man von den veréinderlichen Grossen z, v, 3, 4, u, ¥, E durch den
ganzen Raum, so ist aus den drei ersten u, », w mittels der Gleichungen (18".)
zu finden, der freie Magnetismus durch (19°.), und es sind alsdann ¢, x, U, V,
W, L, M, N durch Quadraturen zu berechnen, so dass die sieben vorstehenden
Journal filr Mathematik Bd. LXXIL Heft 2. 16
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Gleichungen (19¢.), (19%.) und (19%.) zur Bestimmung der vorgenannten siehen
Unbekannten als Functionen der Zeit dienen konnen.

Um aus diesen Gleichungen die Integrale zu entfernen, und sie in
reine Differentialgleichungen zu verwandeln, erinnere ich an folgende Sitze:

Wenn man drei Functionen §, 7, { von x, y, s hat, und fiir alle
Orte innerhalb eines gewissen einfach zusammenhiéingenden Raumes S die drei
Gleichungen erfiillt sein sollen:

(20) £=0, =0, C=0,
so folgt daraus, dass innerhalb des Raumes S sei

[ dn ¢
&y =
dg _ dE _
ey | FE T 0.
' dt  dy
G _ 9 _ 9
dy dx ’
it @
+ dy + ds 0.

Es lasst sich nun zeigen, dass das System der Gleichungen (20°.) das System
der Gleichungen (20.) vollstindig ersetzt, wenn die Bedingungen hinzugefiigt
werden,

1) dass & #, { im ganzen Raume S endlich und stetig seien,

2) dass an der Oberfliche von S sei

(20%.) &.cosa+7n.cosb+E.cosc = 0,
wo a, b, ¢ die Winkel sind, welche die Normale N der Oberfliche von S
mit den Coordinatenaxen macht.
Aus den ersten drei Gleichungen des Systems (20°.) folgt namlich

direct, dass es eine Function ¥ von x, y, 5 geben miisse, von der Be-
schaffenheit, dass

ar ay ay
§= = By’ = ds
Dann ergiebt die letzte der Gleichungen (20°.)
4% =0,
und die Gleichung (20°.), dass an der ganzen Oberfliche des Raumes S
aw

o =0
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Da der Raum S der Voraussetzung nach einfach zusammenhingend,
und die Grossen §, 7, § iberall endlich und stetig sein sollen, so geniigen
diese Bedingungen nach bekannten Gesetzen iber die Potentialfunctionen, um
zu zeigen, dass im ganzen Raume S

¥ = Const.,

(20) E=n=C(=0.

Wenden wir diese Siize auf das System der Gleichungen (19‘%), und
dann auch auf das der Gleichungen (197.) an, betrachten wir dabei den un-
endlichen Raum als den Raum S, und beriicksichtigen wir, dass aus (19°),
(192.) und (19°*.) folgt:

Tm—_*—.d_y—l——gz— ==X
so erhalten wir folgende Systeme von Gleichungen:

L)L) = By B

3 dt dzs ?
0y 400y 42y < et e
L) (1) = Lrpnd g 0 ) ax

@) ZB+gO+aE )=—4¢+A’ T+ D+,
(0) =5 =4 [dm b —an G274,
a0y LAY - ALt ty]
d‘i’(%)“; > 4 [dz dt & 4n ]

@) ()4 3)%;(%) =~

Dazu kommen noch die Bedingungen fiir die unendlich entfeynte Grenzfliche
des Raumes:

t=Yy=j=i=p=rv=9=x=0.
Ferner die Bedingung, dass die in (19‘.) und (197.) gleich Null gesetzien
Grossen iberall stetig und endlich seien. Da nun dies fir die Grossen U,
V, W, L, M, N und ihre Differentialquotienten schon nach der fir sie vor-
16 *
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geschriebenen Bildungsweise durch Integration der Fall ist, so oft v, v, w,

A, m, v iberall endlich sind, so reduciren sich die Bedingungen der Stetigkeit
darauf, dass die sechs Grossen:

X, de Ay
e+dw 0+7d-;’
bH , de po, dy
+ dy -9, —5+7y—a
. de- v o, dy
K] £+W '8’ 19‘ dz

iiberall stetig seien, namentlich auch an solchen Flachen, wo &, & und x
unstetig sind. 4
Da x an solchen Flachen stetig ist so ist

d
-z (X—x) = cosa—= (,f x1)
u s W
Wir haben ferner nach der Gleichung (19°%*.)
1 d
(20%.) (A—4,).cosa+(u—u,).cosb+(v—w,).cosc = TIFW(X—X‘)
und nach den Stetigkeitsbedingungen somit

A_ A _ 1 d
FTI, T T 0se gy (x—z),
Z p_wo_ 1 4
(20 ') _‘77'_—‘9'1 = y/p COSé* dN (Z—XI)’
v, 1 d
FT9, T T am cose gy (x—a)

1

Aus den Gleichungen (20%.) und (20".) kann y—y, unmittnlbar eliminirt
werden. Dann kommt x nur noch in der Gleichung (207.) vor. Es konnen also
aus den Gleichungen (20°.), (20%), (20°.) und den Stetigkeitshedingungen die
anderen unbekannten Grossen bestimmt werden, ohne auf y Riicksicht zu nehmen.

Sind die Krafte X, 9), 3 an der betreffenden Flache stetig, oder ist
nur ihre senkrecht zur Fliche gerichtete Resultante P unstetig, so erhalten
wir fir die ¢, 9, 3 ein éhnliches System von Gleichungen:

, 1 d
e =T -cosa B — P+ g5 (9= ],
; T, 1 d,
(20) 2_2 = T dn 'COSb[sB"'s‘Bl‘*" dN((p—-(’ol)]’

1 d
bobo L cose[ BBt (o—9w) ]
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Dass die Gleichungen (20°.) bis (20°.) mit Ausschluss von (20") die Losung
eindeutig bestimmen, wenn k nicht negativ ist, ergiebt sich aus der Gleichung
der lebendigen Kraft, die wir deshalb hier zunichst aufstellen wollen.

Fir den Fall, dass keine ausseren Kréfte wirken, also

E=9=3=0,
erhalt man die Gleichung der lebendigen Kraft, indem man die Gleichungen
(20°.) der Reihe nach mit %, %, '{;— multiplicirt und addirt, dann ebenso die

Gleichungen (20°.) der Reihe nach mit —i—-, %, % multiplicirt und addirt, die
letztere Summe von der ersteren abzieht. Die Glieder der linken Seite lassen
sich dann integriren, und ihr Integral wird wegen der Stetigkeitsbedingungen
(20".) und (20".) gleich Null. Die Glieder der rechten Seite, welche ¢ ent-
halten, konnen durch eine partielle Integration mit Riicksicht auf (20%) um-
geformt werden, und man erhélt endlich:

v PR e R
(20-) +[( dey (L )+(d"’)]+A2k( |.de.dy.ds

///—[@ +9 5] de.dy.ds = ff % [ua+oi+wi]. de . dy . ds.,

Aus dieser Gleichung sind entsprechende Folgerungen, wie aus der
friheren (5.) zu ziehen. Bezeichnen wir das Integral, dessen nach der Zeit
genommener Differentialquotient die linke Seite der Gleichung (20".) bildet,
mit &, so ist & nothwendig immer positiv, wenn k positiv ist. Sein Werth
muss aber wihrend des Ablaufs der Bewegung nothwendig immer kleiner
werden. Ist derselbe Null, so muss er Null bleiben.

Daraus folgt, dass, wenn ausser den Kriften X, ¥) und 3 die Anfangs-
werthe von

d
LYy 3 4w, v, @, (P

durch den ganzen Raum gegeben sind, die Glelchungen (20°.) bis (20%.) die
Bewegung eindeutig bestimmen.

Ist 5=0, so fallt —%:i aus diesen Bestimmungssticken weg.

Um die Art der durch diese Gleichungen angezeigten Bewegungszu—
stinde anschaulicher zu machen, wollen wir sie auf einen Korper S anwenden,
in dessen Innerem ¢ und 9 constant sind und xz=oo ist; ferner ¥=9=3=0.
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‘Wir erhalten dann:

Ay 14+4n 9 di
oy AT
. S T 1 +4nd du
(21.) dz dz A.e 9 dt ?
dy  dy 14-4nd dv
w =T Ta
a 1 dx dt’ d‘ — 9 d,(p
(21°.) T[%"’d—y ol = —det Ak
dv  du A.9. e
Oy T dw.dt ’
. b dl dv — dt’
(21%) ‘E"‘ iz A"*[d @ "'7.!7 :
du
TTay T 4.9 [d dt

Wenn wir aus (21.) neue Gleichungen bilden, nach der Weise wie (20°.)
aus (20.) gebildet ist, so erhalten wir

Ay =
c . d (1+4m9)(1+4m) d
(21°) 4ne(1+4n3)A T + [1 ] dx [ Z +71%

etc.

Die entsprechenden Gleichungen fiir v und 3 erhilt man, indem man
in (21°) ¢ und = beziehlich mit % und y, oder mit 3 und z vertauscht.
In dhnlicher Weise erbidlt man fir die magnetischen Momente:

A1 = dne(144n9) A S0,

(1) {du = dne(1+4n8) 4" 2K

dy = 47t£(1—}-47z~9)A2 Zt:/ ,

dv
3 +*a;+'a; = 0.

In den Gleichungen (21°.) sind die elekirischen Verschiebungen in
einem diélektrischen Isolator durch ganz dieselben Gleichungen gegeben, wie
die Verschiebungen der wégbaren Theilchen in einem festen elastischen Korper,
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in welchem die Fortpflanzungsgeschwindigkeit betrigt

1
fir di . S —
iir die Transversalwellen AVIne (I 2n0)
. . . M . 1 —'———1 +4n£
fiir die Longitudinalwellen: AV e

Die Gleichungen (21%) dagegen fir die magnetischen Verschiebungen
entsprechen denen im Innern eines incompressiblen elastischen Korpers, in
welchem die Geschwindigkeit der Transversalwellen dieselbe ist, wie die an-
gegebene der elekirischen Verschiebungen, die Geschwindigkeit der longitudi-
nalen Schwingungen dagegen unendlich gross. Es ergeben diese Gleichungen,
wie schon Herr Maxwell fir den von ihm behandelien Grenzfall (=0, ¢ und 9
unendlich gross) gezeigt hat, dass bei den Transversalwellen die elektrische Os-
cillation in der einen Polarisationsebene, die magnetische in der darauf senk-
rechten geschieht. |

Um zu ermitteln, was unter Annahme eines diélektrischen Raumes der
gemessene Werth der Constante A bedeute, miissen wir noch den Fall der
gut leitenden Korper untersuchen, wenn x so klein ist, dass die durch die

Polarisation entstehende Geschwindigkeit % gegen die von der Leitung ab-

hingende % verschwindet. Unter dieser Annahme ergeben die Gleichungen
(20°.) bis (20°.) bei eben solcher Behandlung, wie fir den Isolator

d d d’
xdu = (14+479) 4 St — =N Ao+ (14 409 — k) 42 F

ete.
Die beiden andern erhilt man, indem man » und o mit » und y, oder mit w
und z vertauscht.
Vergleicht man diese mit denen, welche durch die Operation # aus
(8%.) gebildet werden:

i _ 2 du d

dz
etc.

{ap+1—naLs)

so sieht man, dass nur die Constanten verschieden sind. Statt A4* der letzteren
steht in der ersten A’(1+479), und statt & der letzteren steht
k
1+4n9 .
in der ersteren. Ist also das Medium magnetisirbar, so erscheint der Werth
der Constante k darin verkleinert in dem angegebenen Verhdltniss.
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Andererseits erscheint die Constante A’, wenn in einem magnetisir-
baren: Medium experimentirt wird, vergrossert durch ihre Multiplication mit dem
Factor (1+4n3). Da wir nun durch alle statischen Versuche iiber magnetische
Vertheilung nur immer das Verhaltniss der Werthe von (14-478) fir ver-
schiedene Stoffe zu einander, oder zu dem nur mit Lichtither gefiillten so-
genannten Vacuum ermitteln konnen, so finden wir durch Versuche im Luft-
raum oder Vacuum immer nur das Product der Constanie A mit dem Factor
(14+4n9,), wenn wir mit &, den unbekannten Werth dieses Coefficienten fiir
den Lufiraum bezeichnen.

Ferner ist schon oben nachgewiesen worden, dass die Quantititen
Elektricitat, welche stromen, nach elektrostatischen Einheiten bestimmt im Ver-
héltniss y1+47e: 1 verkleinert erscheineri, und ebenso alle nach elektrostati-
scher Einheit gemessenen Stromeinheiten. Dagegen erscheint der Widerstand
# im Verhiltniss 1 :(1+4n¢,) vergrossert und ebenso die Constante A% Ist
also % der im Luftraum gefundene, der Lichtgeschwindigkeit nahe gleiche
Werth von —:1—, so ist der wahre Werth

|
- = 2[}/1+4n8(,.]/1+47119415

und der Werth der Fortpflanzungsgeschwindigkeiten in einem isolirenden Me-
dium wird

longitudinal: % l/ A+ 4n8) (A4 dne,) (A 4nF,)

4nek ?
. A+4ne)(AF4nd)
transversal: A Tl dns
In der Luft selbst werden diese Werthe:

e 14,
longitudinal: 2 (14 47s,) —%:%L,
transversal: 91/ L1 3%%

4ne,

Fir die elekirodynamische Induction erweist es sich also nicht als gleich-
giltig, wie es bei den elektrostatischen Phanomenen der Fall war, ob der
Luftraum ein Diélektricum ist oder nicht, sondern es hingt die Fortpflanzungs-
geschwindigkeit der inducirenden Wirkung von der absoluten Grosse von &
ab, und & wirde durch experimentelle Bestimmung dieser Fortpflanzungs-
geschwindigkeit der elektrischen Transversalwellen im Luftraum bestimmt wer-
den konnen. Diese Geschwindigkeit misste dgr vorliegenden Theorie nach
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grosser sein, als die aus Herrn VV. Webers Versuchen bestimmte Geschwindig-
keit 2, und dieser nur gleich werden konnen, wenn die diélektrische Polari-
sationsconstante der Luft & unendlich gross gegen ‘Iif—t. wiire. Es geht daraus
hervor, dass die bisher vorliegenden Erfahrungen auch ohne wesentliche
Aenderungen in den Grundziigen der acceptirten Theorie der Elektrodynamik
eine Ausbreitung der elektrischen Fernwirkungen mit endlichen Geschwindig-
keiten als moglich erscheinen lassen; und zwar wiirden sich die elektromagne-
tischen Wirkungen dabei mit einer der Lichtgeschwindigkeit gleichen oder
grosseren Geschwindigkeit ausbreiten, wihrend die Ausbreitung der elektro-
statischen von der unbekannten Constante %k abhingig bliebe.

Heidelberg, 1870.

Corrigenda.
Seite 79, Zeile 4 v. o. statt Ds lese man Do.
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