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Preface

This book is a significant update of the first four chapters of Symmetries and Differential
Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki
Kumei.  Since 1989 there have been considerable developments in symmetry methods
(group methods) for differential equations as evidenced by the number of research
papers, books, and new symbolic manipulation software devoted to the subject.  This is,
no doubt, due to the inherent applicability of the methods to nonlinear differential
equations.  Symmetry methods for differential equations, originally developed by Sophus
Lie in the latter half of the nineteenth century, are highly algorithmic and hence amenable
to symbolic computation.  These methods systematically unify and extend well-known ad
hoc techniques to construct explicit solutions for differential equations, especially for
nonlinear differential equations.  Often ingenious tricks for solving particular differential
equations arise transparently from the symmetry point of view, and thus it remains
somewhat surprising that symmetry methods are not more widely known.  Nowadays it is
essential to learn the methods presented in this book to understand existing symbolic
manipulation software for obtaining analytical results for differential equations. For
ordinary differential equations (ODEs), these include reduction of order through group
invariance or integrating factors.  For partial differential equations (PDEs), these include
the construction of special solutions such as similarity solutions or nonclassical solutions,
finding conservation laws, equivalence mappings, and linearizations.

A large portion of this book discusses work that has appeared since the above-
mentioned book, especially connected with finding first integrals for higher-order ODEs
and using higher-order symmetries to reduce the order of an ODE.  Also novel is a
comparison of various complementary symmetry and integration methods for an ODE.

The present book includes a comprehensive treatment of dimensional analysis.
There is a full discussion of aspects of Lie groups of point transformations (point
symmetries), contact symmetries, and higher-order symmetries that are essential for
finding solutions of differential equations.  No knowledge of group theory is assumed.
Emphasis is placed on explicit algorithms to discover symmetries and integrating factors
admitted by a given differential equation and to construct solutions and first integrals
resulting from such symmetries and integrating factors.

This book should be particularly suitable for applied mathematicians, engineers,
and scientists interested in how to find systematically explicit solutions of differential
equations.  Almost all examples are taken from physical and engineering problems
including those concerned with heat conduction, wave propagation, and fluid flow.

Chapter 1 includes a thorough treatment of dimensional analysis.  The well-
known Buckingham Pi-theorem is presented in a manner that introduces the reader
concretely to the notion of invariance.  This is shown to naturally lead to generalizations
through invariance of boundary value problems under scalings of variables.  This
prepares the reader to consider the still more general invariance of differential equations
under Lie groups of transformations in the third and fourth chapters.  Basically, the first



chapter gives the reader an intuitive grasp of some of the subject matter of the book in an
elementary setting.

Chapter 2 develops the basic concepts of Lie groups of transformations and Lie
algebras that are necessary in the following two chapters.  By considering a Lie group of
point transformations through its infinitesimal generator from the point of view of
mapping functions into functions with their independent variables held fixed, we show
how one is able to consider naturally other local transformations such as contact
transformations and higher-order transformations.  Moreover, this allows us to prepare
the foundation for consideration of integrating factors for differential equations.

Chapter 3 is concerned with ODEs. A reduction algorithm is presented that
reduces an nth-order ODE, admitting a solvable r-parameter Lie group of point
transformations (point symmetries), to an (n – r)th-order differential equation and r
quadratures.  We show how to find admitted point, contact, and higher-order symmetries.
We also show how to extend the reduction algorithm to incorporate such symmetries.  It
is shown how to find admitted first integrals through corresponding integrating factors
and to obtain reductions of order using first integrals.  We show how this simplifies and
significantly extends the classical Noether’s Theorem for finding conservation laws (first
integrals) to any ODE (not just one admitting a variational principle).  In particular, we
show how to calculate integrating factors by various algorithmic procedures analogous to
those for calculating symmetries in characteristic form where only the dependent variable
undergoes a transformation. We also compare the distinct methods of reducing order
through admitted local symmetries and through admitted integrating factors.  We show
how to use invariance under point symmetries to solve boundary value problems.  We
derive an algorithm to construct special solutions (invariant solutions) resulting from
admitted symmetries.  By studying their topological nature, we show that invariant
solutions include separatrices and singular envelope solutions.

Chapter 4 is concerned with PDEs.  It is shown how to find admitted point
symmetries and how to construct related invariant solutions.  There is a full discussion of
the applicability to boundary value problems with numerous examples involving scalar
PDEs and systems of PDEs.

Chapters 2 to 4 can be read independently of the first chapter.   Moreover, a
reader interested in PDEs can skip the third chapter.

Every topic is illustrated by examples.  All sections have many exercises.  It is
essential to do the exercises to obtain a working knowledge of the material. The
Discussion section at the end of each chapter puts its contents into perspective by
summarizing major results, by referring to related works, and by introducing related
material.

Within each section and subsection of a given chapter, we number separately, and
consecutively, definitions, theorems, lemmas, and corollaries.  For example, Definition
2.3.3-1 refers to the first definition and Theorem 2.3.3-1 to the first theorem in Section
2.3.3.  Exercises appear at the conclusion of each section; Exercise 2.4-2 refers to the
second problem of Exercises 2.4.

We thank Benny Bluman for the illustrations and Cecile Gauthier for typing
several drafts of Sections 3.5 to 3.8.

Vancouver, British Columbia, Canada     George W. Bluman
St. Catharines, Ontario, Canada         Stephen C. Anco




