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Angular Momentum in General Relativity: A New Definition
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(Received 25 March 1998)

Although considerable progress has been made in generalizing the concept of angular mome
to general relativity, until now no satisfactory definition that allows for the exchange of angu
momentum has been given. I here give the first such definition. It is a definition at null infinity, t
place and time where gravity waves reach in the limit far from all masses. The definition applies
any isolated system of massesincluding those that change their angular momentumL by emitting
gravity waves. ÙL is given solely in terms of parameters in principle measurabledirectly by Michelson
interferometer gravitational wave detectors such as LIGO or LISA. [S0031-9007(98)06673-3]

PACS numbers: 04.20.Cv, 04.20.Ha
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Introduction.—Soon after Einstein conceived relativity
in 1916, he addressed the problem of energy-moment
conservation and the related problem of angular mom
tum. It became clear that a local definition (that includ
gravity) of these quantities was not possible in gene
relativity. Nonlocal spatial definitions of all three con
served quantities were found. Spatial definitions apply
a time slice far from an isolated source. However, sp
tial definitions do not allow for exchange of the conserve
quantity. The spatial definition of angular momentum, f
instance, doesnot allow one to say that when a body with
angular momentumL emits a pulse of gravity waves with
angular momentumDL, the body will then haveL 2 DL
(cf. Fig. 1). In the 1960s, the first definitions of energ
and linear momentum at null infinity, i.e., definitions tha
allow an isolated system to change itsE or P

!
by emitting

gravity waves, were given by Bondi, Van der Burg, an
Metzger [1], Sachs [2], and others. Penrose and Ne
man [3,4] and others (listed in [5]) made advances towa
a definition of angular momentum at null infinity, bu
no satisfactory definition was found. More recently, th
work of Christodoulou and Klainerman [6] shed a powe
ful light on null infinity. We will utilize the power of the
Christodoulou formalism especially as in [6–8].

Angular momentum at null infinity.—The two prob-
lems responsible for the difficulty in defining conserve
quantities in general relativity are the inability to lo
calize the gravitational field and the general lack
Poincaré symmetries in general relativity. One ove
comes these problems by, respectively, integrating ove
sphere around the source and working far from all ma
in a strongly asymptotically flat [6] space-time. The la
ter is the mathematical formulation of the intuitive con
cept of an “isolated system.” Such a space-time is dev
oped from an initial Cauchy hypersurface surfaceS, in
which all the mass is in a compact region and in whic
the space-time metric onS, gij , and extrinsic curvature
of S, kij , fall off far from the source in a prescribed
way (cf. p. 11 [6]), giving a well behaved Arnowitt-
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Desser-Misner (ADM) energy, momentum, and angul
momentum.

We want the definition to be the limit of an integra
over a sphere as that sphere approaches null infinity.
facilitate this limit, we foliate the space-time near nu
infinity with two-spheres. We use a foliation, called a
affine foliation, made of constant affine parameter slices

The foliation is created in the following way which
is illustrated in Fig. 2. Start with an initial maximal
(that is, with trskijd ­ 0, making it as close to “flat”
as possible) hypersurfaceS. Solve Laplace’s equation
for an electric charge onS; as one proceeds away, fa
from all mass, the surfaces of constant potential beco
more and more nearly spherical till “at infinity” they are
precisely so. Take one of these surfaces far from
mass, call itS2k, and send out light rays into the space
time with initial tangent vector given byl ­ T 2 N ,
where T is the time direction unit normal toS and N
is the unit normal inS perpendicular toS2k. These
light rays form a cone (topologyS2 3 R) calledC2

s ; the
tangents to the null rays definel on the cone. Define
an affine parameteru such thatlu ­ 1 and u ­ 2k on
S2k with k large. All the S2 surfaces that foliate the

FIG. 1. The definition allows one, for the first time, to specif
unambiguously the angular momentumL of a star before,
during, and after gravity waves carry awayDL to null infinity
leaving the star withL 2 DL.
© 1998 The American Physical Society
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FIG. 2. The construction of the affine foliation. Letk, s ! `.
C2

` is null infinity. S2` is spatial infinity. ActualS2 surfaces
Su,` foliate null infinity.

cone are labeled by the same affine parameters such that
ls ­ 1 and s ­ r ;

p
ssurface area ofS0,sdy4p, that is,

using the areal radius of theu ­ 0 surface,S0,s. Next,
define the outgoing null vectorl at each point on the cone
by requiring l ? l ­ 22. For each constantu surface
on C2

s , Su,s, use l to send light rays into the space
time to generate a new coneC1

u . The topologicallyS2

surfaces given bys and u constant constitute leafs of a
foliation of space-time nearC2

s . C2
s becomes null infinity

as the radius coordinate defined by Laplace’s equat
goes to infinity [9]. Hence, the foliation is a “near nu
infinity” foliation. Finally, on each point of each leaf,
we put a set of appropriately normalized null tetrads; tw
spatial vectors,eA, whereA [ h1, 2j and we already have
two null vectors:e3 ­ l, e4 ­ l (tangent vector of the
appropriate geodesic ofC1

u ). The connection coefficients
Gabc ­ ea ? =ec eb , where = is the covariant derivative
with respect to the space-time metricgmn and a, b, c [
h1, 2, 3, 4j, are called the Christoffel symbols when
coordinate basis is used. With a null tetrad system, th
are called the null Ricci rotation coefficientsgabc. In an
affine foliation they are [5]

HAB ­ kDAe4, eBl ­ xAB , HAB ­ kDAe3, eBl ­ x
AB

,

ZA ­
1
2 kD3e4, eAl ­ zA , ZA ­

1
2 kD4e3, eAl ­ 2zA ,

YA ­
1
2 kD4e4, eAl ­ 0 , YA ­

1
2 kD3e3, eAl ­ 0 , (1)

V ­
1
4 kD4e4, e3l ­ 0 , V ­

1
4 kD3e3, e4l ­ 0 ,

VA ­
1
2 kDAe4, e3l ­ zA .

By inspection, it is clear that these quantities exist on
S2 leaf.

One can now incorporate the Einstein equations
using a Newman-Penrose-like formalism [6,10]. The
equations, the structure equations (Ref. [6], p. 168), a
Bianchi identities (Ref. [6], p. 161) consist of man
coupled differential equations relating the variousgabc

and Riemann curvature terms. To simplify, we use t
diffeomorphismfu,s: S2 ° Su,s to pull back all quantities
from the space-time’s topologicallyS2 leaf to an actual
-
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two-sphere. Hereafter, we work only on actual two-
spheres by using these “pulled back quantities.” Thes
then are the tools; we now look for the definition.

We begin by defining properties that are essential to th
concept of angular momentum. The properties are give
in pedagogical order not in order of importance. (1) It
should tell the rate of “twist.” (2) At null infinity,ÙL should
be expressible solely in terms of measurable parameters
gravity waves [11] (where the dot over theL refers to the
derivative with respect to the affine parameteru, which
can also be considered as the retarded time). (3) It shou
give the intuitive answer expected in Minkowski and Kerr
space-times and in the radiative quadrupole approximatio
(4) It should be unique up to an initial choice of origin and
rest frame. (5) It should, in some sense, be conserved.

The abstract definition and the pulled back quanti-
ties.—In an affine foliation, the rate of twisting is given
by the null Ricci rotation coefficient called the torsion,
zA ­

1
2 kDAe4, e3l. To get the appropriate components

of L, one must project out one of the three independen
components of the angular momentum by dotting with
one of the three independent rotation vector fieldsVsid
(cf. Fig. 3) on the given actual two-sphere and integrat
that over the sphere. Mathematically, the definition is

LsVsidd ­
1

8p
lim
s!`

Z
S2

zA V
A
sid dSg . (2)

Here,s is the affine parameter taking one to null infinity
shown in Fig. 2. dSg is the area element associated with
the S2 metric g. The A ­ h1, 2j on zA and VA means
theeAth component on theS2 surface. To work on actual
spheres of unit radius at null infinity, in terms of the pulled
back quantities, we use the appropriate diffeomorphism
divide by the appropriate power of the luminosity radius
defined byr ;

p
ssurface aready4p and takes ! `. For

example, the metricg becomes the standard one on the
unit sphereg0; this can be done for each two-sphere
foliating null infinity [7] showing that it is foliated by
actual two-spheres. The important variables and the
pulled back quantities are shown in Table I.

L and ÙL in terms of measurable parameters.—One
uses the structure equations, cf. Sect. 3.5 [5], that rela
the pulled back quantities at null infinity to writeL and ÙL

FIG. 3. The three rotation vector fields on a two-sphere.
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TABLE I. Pulled back quantities.

Pulled back limit
Name Description lims!` fp

u,ss d
g Metric on two-surface sr22gd ! g0

x̂ Traceless part of sx̂d ! S

extrinsic curvature (l) l shear

h r tr x 2 2 rh ! H

x̂ Traceless part of sr21x̂d ! J

extrinsic curvatures l d l shear

z Torsion srz d ! Z

b bA ; 1
2 RseA, l, l, ld r3b ! I (Kerr)

in terms of measurable parameters. ForL one obtains

LsVsidd ­
1

8p

Z
sSABy=C ? SCB 1 IAd V

A
sid dSg0 . (3)

We can use the Bianchi identities, cf. Sect. 3.5 [5], t
obtain ÙL in terms of measurable parameters.

≠LsVd
≠u

­
1

8p

Z
S

dSg0 h2JABy=CSCB

1
1
2

sSABy=CJCB 2 SC
By=BJCAdj VA

y= is the derivative intrinsic to the sphere. (4)

The new symbols above are defined in Table I. In
free-fall Fermi-normal frame, changes inS correspond
to changes in separation of the Michelson interferomet
test masses of a gravity wave detector shown in Fig.
and J is proportional to the speed of that separatio
Mathematically, one has

SAB ­
r
d0

DxA
sBd and JAB ­

2r
d0

D ÙxA
sBd (5)

which follows fromDSAB ­ rhAB, ÙSAB ­ 2
1
2 JAB, and

SABs2`d ­ JABs2`d ­ 0. hAB is the perturbation to

FIG. 4. A Michelson interferometer gravity wave detector
similar to LIGO or LISA, is shown. The masses begin
distanced0 from the center mass.
1152
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the Minkowski metric. Using Eqs. (3) and (4), one ca
show that the correct results are obtained for the three t
cases.

An ambiguity in the definition and its resolution.—We
have not picked the surface over which to do this integr
At each point in time, one must know what surface o
null infinity to do the integral over. We will now find the
two conditions that will pick the correct surface. The firs
condition restrictsS. That is, one can show that theS
can be decomposed as

y=B ? SBA ­ y=Afodd 1 ´ABy=Bfeven , (6)

where thefodd, feven are functions onS2.
Substituting into the appropriate structure equations f

pulled back quantities at null infinity (Sect. 4.1.2 [5]
gives

2Dyfeven ­ Q 2
1
2 S ^ J , (7)

Dysfodd 2
1
2 Hd ­ N 1 P 2

1
2 S ? J . (8)

HereP andQ are Riemann curvature terms, andN is
a mass term. In Minkowski space-time, these equatio
imply that feven is constant and, hence,Seven is forced
to zero by the space-time structure, but because of
H freedomSodd is free. Hence, to create a shear fre
surface one sets the only free variable:Sodd ­ 0. We
can generalize this condition to a curved space-time sin
Sodd remains free, leavingSeven again to be fixed by
the space-time structure. In Minkowski space-time, th
surface obtained by settingSodd ­ 0 can be thought
of as emanating from a point in the space-time.
curved space-time, the point of emanation becomes
abstract point. In short, the rotation vector fields on ea
Sodd ­ 0, S2 surface induce a unique origin. For th
integral above to represent angular momentum, it mu
be the sum of angular momenta all taken with respect
the same point. Hence, we pick out a single origin b
requiringSodd ­ 0 [12]. So if, for example, we start at
spatial infinity with this condition, we must now find a
prescription for going to the next slice such thatSodd is
kept constant. The lapse functioncsu, fd sud ­ duydu0,
which tells us, for a given angular point on the spher
how muchdu0 must elapse for a givendu to get to the
nextS2 slice (cf. Fig. 5), is the variable to be determined
Using the structure equation “l” in Appendix I of [5], with
l ! c21l andl ! cl, gives pulled back coordinates:

2
≠SAB

≠u0
­ 2y=Ay=Bc 2 g0

ABDyc 2 cJAB , (9)

FIG. 5. The lapse functionc defines how to get from one leaf
of a foliation of null infinity to the next.
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whereS, J are with respect to affine frame.
One finds c must satisfy the following equation if

Sodd ­ 0 along eachu0 ­ constant surface:

Dy2c 1 2Dyc ­ y=Ay=Bsc ? JABd . (10)

J is the news function. It can be proved [13] that thi
equation has a solution with four constants of integratio
ctsud, cxsud, cysud, czsud, at least when jJj2 , 16,
i.e., [14],

≠Misolated-system

≠u
, 106MØys . (11)

By analogy from Minkowski space, one can show tha
eachci is related to a boost in thêi direction. Hence, we
make an initial choice of origin and of rest frame; then w
choose not to boost off this choice by keepingcx,y,z ­ 0
and ct ­ 1. This second condition makes the surface
mathematically unique by noting that angular momentu
requires one to pick an origin and stay with that choice.

Conclusion.—Hence, the definition given in Eq. (3),
coupled with the gauge conditions on the cuts of nu
infinity: (1) The odd parity part of the shear is zero
and (2)cx,y,z ­ 0 andct ­ 1, satisfies all five properties
one wants for angular momentum. With the existenc
of the definition established comes interesting questio
about the definition’s relation to the spatial definition
to the Bondi momentum, and to an invariance of th
action; it also incites an interest in more general tha
quadrupole tests of the definition. Many new piece
come together to make the new definition, but two ar
key. First, the identification of the torsion dotted with a
chosen rotation vector field as the local rate of twistin
(per unit surface area) in the chosen direction gives t
definition sound physical footing. Second, the gaug
condition is physically required and not extraneous o
arbitrary since it is necessary to ensure that essen
aspects of angular momentum are respected. The n
definition fully incorporates the Einstein equations an
involves no approximations. Also, the major impedimen
to previous definition, the supertranslation ambiguity,
resolved.
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