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Angular Momentum in General Relativity: A New Definition
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Although considerable progress has been made in generalizing the concept of angular momentum
to general relativity, until now no satisfactory definition that allows for the exchange of angular
momentum has been given. | here give the first such definition. It is a definition at null infinity, the
place and time where gravity waves reach in the limit far from all masses. The definition applies to
any isolated system of massewluding those that change their angular momentinby emitting
gravity waves. L is given solely in terms of parameters in principle measurdbiectly by Michelson
interferometer gravitational wave detectors such as LIGO or LISA. [S0031-9007(98)06673-3]

PACS numbers: 04.20.Cv, 04.20.Ha

Introduction—Soon after Einstein conceived relativity Desser-Misner (ADM) energy, momentum, and angular
in 1916, he addressed the problem of energy-momentumnomentum.
conservation and the related problem of angular momen- We want the definition to be the limit of an integral
tum. It became clear that a local definition (that includesover a sphere as that sphere approaches null infinity. To
gravity) of these quantities was not possible in generafacilitate this limit, we foliate the space-time near null
relativity. Nonlocal spatial definitions of all three con- infinity with two-spheres. We use a foliation, called an
served quantities were found. Spatial definitions apply iraffine foliation, made of constant affine parameter slices.
a time slice far from an isolated source. However, spa- The foliation is created in the following way which
tial definitions do not allow for exchange of the conserveds illustrated in Fig. 2. Start with an initial maximal
quantity. The spatial definition of angular momentum, for(that is, with tfk;;) = 0, making it as close to “flat”
instance, doenot allow one to say that when a body with as possible) hypersurface. Solve Laplace’s equation
angular momentunh emits a pulse of gravity waves with for an electric charge oX; as one proceeds away, far
angular momentum L, the body will then havd. — AL  from all mass, the surfaces of constant potential become
(cf. Fig. 1). In the 1960s, the first definitions of energy more and more nearly spherical till “at infinity” they are
and linear momentum at null infinity, i.e., definitions that precisely so. Take one of these surfaces far from all
allow an isolated system to change fior P by emitting  mass, call itS—;, and send out light rays into the space-
gravity waves, were given by Bondi, Van der Burg, andtime with initial tangent vector given by =T — N,
Metzger [1], Sachs [2], and others. Penrose and Newwhere T is the time direction unit normal t& and N
man [3,4] and others (listed in [5]) made advances towards the unit normal inX perpendicular toS_,. These
a definition of angular momentum at null infinity, but light rays form a cone (topolog§? X R) calledC; ; the
no satisfactory definition was found. More recently, thetangents to the null rays defineon the cone. Define
work of Christodoulou and Klainerman [6] shed a power-an affine parametex such that/lu = 1 andu = —k on
ful light on null infinity. We will utilize the power of the S_; with k large. All the S? surfaces that foliate the
Christodoulou formalism especially as in [6-8].

Angular momentum at null infinit=The two prob- Time
lems responsible for the difficulty in defining conserved
quantities in general relativity are the inability to lo-
calize the gravitational field and the general lack of

L(u')=L-AL

Poincaré symmetries in general relativity. One over-

comes these problems by, respectively, integrating over a

sphere around the source and working far from all mass

in a strongly asymptotically flat [6] space-time. The lat- e L(u)y=L

ter is the mathematical formulation of the intuitive con- "

cept of an “isolated system.” Such a space-time is devel- Becomes |
e . . Null Infinity*

oped from an initial Cauchy hypersurface surfagin < !:D

mhwh all ”:.e masstl_s InEa C(‘)'mpagt retg!on' and in tWhIChFIG. 1. The definition allows one, for the first time, to specify
€ Space-lime metric ok, g;;, and extrnsic curvature unambiguously the angular momentum of a star before,

of %, k;;, fall off far from the source in a prescribed during, and after gravity waves carry away. to null infinity
way (cf. p. 11 [6]), giving a well behaved Arnowitt- leaving the star with. — AL.
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FIG. 2. The construction of the affine foliation. Ligts — oo,
C; is null infinity. S_.. is spatial infinity. ActualS? surfaces
S.. foliate null infinity.

cone are labeled by the same affine paramesarch that
Is =1 ands = r = /(surface area af,)/4, that is,
using the areal radius of the = 0 surface,Sy;. Next,

define the outgoing null vectdrat each point on the cone

by requiring! - I = —2. For each constant surface

two-sphere. Hereafter, we work only on actual two-
spheres by using these “pulled back quantities.” These
then are the tools; we now look for the definition.

We begin by defining properties that are essential to the
concept of angular momentum. The properties are given
in pedagogical order not in order of importance. (1) It
should tell the rate of “twist.” (2) At null infinity should
be expressible solely in terms of measurable parameters of
gravity waves [11] (where the dot over tlierefers to the
derivative with respect to the affine parametgrwhich
can also be considered as the retarded time). (3) It should
give the intuitive answer expected in Minkowski and Kerr
space-times and in the radiative quadrupole approximation.
(4) 1t should be unigue up to an initial choice of origin and
rest frame. (5) It should, in some sense, be conserved.

The abstract definition and the pulled back quanti-
ties.—In an affine foliation, the rate of twisting is given
by the null Ricci rotation coefficient called the torsion,
iy = %(DAe4,e3>. To get the appropriate components
of L, one must project out one of the three independent

on Cy,Sus, usel to send |i(_+;ht rays into the space- components of the angular momentum by dotting with
time to generate a new corg; . The topologicallyS®  one of the three independent rotation vector fiefdis)
surfaces given by and u constant constitute leafs of a (cf. Fig. 3) on the given actual two-sphere and integrate

foliation of space-time neaf; . C; becomes nullinfinity  that over the sphere. Mathematically, the definition is
as the radius coordinate defined by Laplace’s equation

goes to infinity [9]. Hence, the foliation is a “near null L(Qu) = 1 lim / L Q) ds, . )
infinity” foliation. Finally, on each point of each leaf, 8 s—= Jg Dy
we put a set of appropriately normalized null tetrads; two Here, s is the affine parameter taking one to null infinity
spatial vectorse,, whereA € {1,2} and we already have shown in Fig. 2. ds, is the area element associated with
two null vectors:e; = [,e4 = [ (tangent vector of the the §2 metric y. The A = {1,2} on {4, and Q4 means
appropriate geodesic @f;). The connection coefficients the ¢,th component on th§? surface. To work on actual
Labe = ea = Veep, whereV is the covariant derivative spheres of unit radius at null infinity, in terms of the pulled
with respect to the space-time metgg, anda,b,c €  pack quantities, we use the appropriate diffeomorphism,
{1,2,3,4}, are called the Christoffel symbols when adivide by the appropriate power of the luminosity radius
affine foliation they are [5] unit spherey?; this can be done for each two-sphere
foliating null infinity [7] showing that it is foliated by
actual two-spheres. The important variables and their
pulled back quantities are shown in Table I.

L and L in terms of measurable parametersOne
uses the structure equations, cf. Sect. 3.5 [5], that relate
the pulled back quantities at null infinity to writeand L

Hyp = (Daes,ep) = X >
%<D4€3,6A> = —{a,

3(Dses eq) =0, (1)

Q= %<D4€4,€3> =0, Q= %<D3€3,€4> =0,

1
Va = 3(Daes,e3) = {a.

By inspection, it is clear that these quantities exist on an
S? leaf.

One can now incorporate the Einstein equations by
using a Newman-Penrose-like formalism [6,10]. These
equations, the structure equations (Ref. [6], p. 168), and
Bianchi identities (Ref. [6], p. 161) consist of many
coupled differential equations relating the varioyg,.
and Riemann curvature terms. To simplify, we use the
diffeomorphisme, : S? — S, to pull back all quantities
from the space-time’s topologicall§? leaf to an actual

Hap = (Daes,ep) = XaB,
1
Zy = 5(Dzes,en) = {a, Zy =

1
Yy = 5(Dses,eq) =0, Y, =

Q(X )

FIG. 3. The three rotation vector fields on a two-sphere.
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TABLE I. Pulled back quantities. the Minkowski metric. Using Egs. (3) and (4), one can
Pulled back limit iggévsthat the correct results are obtained for the three test
Name Description limy_. ¢F ) C N . .
. P 'm_‘z (’l)“"(o) An ambiguity in the definition and its resolutierWe
Y Metric on two-surface (ry) =y have not picked the surface over which to do this integral.
X Traceless part of X)) —2 At each point in time, one must know what surface on
extrinsic curvaturel) [ shear null infinity to do the integral over. We will now find the
h rtry —2 rh — H two conditions that will pick the correct surface. The first
P Traceless part of ry)— = condition restricts%. That is, one can show that the
extrinsic curvature [ ) l “shear can be decomposed as
I4 Torsion (r&)— 2z WB “ 24 = Vacoda + 8ABWB¢evens (6)
B Ba = %R(eA,l,L 1) BB —1 (Ker) where thepqd, deven are functions ors?.

Substituting into the appropriate structure equations for
pulled back quantities at null infinity (Sect. 4.1.2 [5])

. . ives
in terms of measurable parameters. Eavne obtains 9
1 =]
1 - =0 - 32AE, 7
L(Q(i)) = g /(EABWC . ECB + 1) Q(}) dSyo . (3) 4x¢even Q 2 ( )
1 1 =]
We can use the Bianchi identities, cf. Sect. 3.5 [5], to Klpoaa = 3H) =N +P -3 E. (8)
obtainL in terms of measurable parameters. Here P and Q are Riemann curvature terms, andis
AL(Q) 1 _ B a mass term. In Minkowski space-time, these equations
—— = | dSy{—EaVc2 imply that ¢even is constant and, henc&... is forced
Ju 87 Js 8
| to zero by the space-time structure, but because of the
= =CB _ SCyBE . 1A H freedom3,,44 is free. Hence, to create a shear free
2 (2as¥e B¥ Ecalt surface one sets the only free variab¥;qq = 0. We

can generalize this condition to a curved space-time since
2.4a remains free, leavin@.... again to be fixed by
The new symbols above are defined in Table I. In ahe space-time structure. In Minkowski space-time, the
free-fall Fermi-normal frame, changes & correspond surface obtained by settind,qa = 0 can be thought
to changes in separation of the Michelson interferometesf as emanating from a point in the space-time. In
test masses of a gravity wave detector shown in Fig. 4curved space-time, the point of emanation becomes an
and E is proportional to the speed of that separation.abstract point. In short, the rotation vector fields on each
Mathematically, one has Soad = 0, §? surface induce a unique origin. For the
Foooa . 2r .4 integral above to represent angular momentum, it must
2ap = do Axipy and Zap = do Ax(g) (®)  be the sum of angular momenta all taken with respect to
. . | the same point. Hence, we pick out a single origin by
which followi fromAZp = rhap, 2ap = —7 Eap, and requiring Soqq = 0 [12]. So if, for example, we start at
2ap(=%) = Eap(—%) = 0. hap is the perturbation to  gpaiial infinity with this condition, we must now find a
prescription for going to the next slice such tlafyy is
kept constant. The lapse functign(é, ¢) (u) = du/du’,
which tells us, for a given angular point on the sphere,
how muchdu’ must elapse for a givedu to get to the
nextS? slice (cf. Fig. 5), is the variable to be determined.
Using the structure equation “I" in Appendix | of [5], with
I — 'l andl — I, gives pulled back coordinates:

Y is the derivative intrinsic to the spherd4)

03 _
208 = Vst — Viph — YEan. ()
null infinity du

T

Gravity Wave

FIG. 4. A Michelson interferometer gravity wave detector,
similar to LIGO or LISA, is shown. The masses begin aFIG. 5. The lapse functiogr defines how to get from one leaf
distanced,, from the center mass. of a foliation of null infinity to the next.
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whereX, E are with respect to affine frame. | would like to acknowledge Demetrios Christodoulou,
One finds ¢ must satisfy the following equation if my thesis [5] advisor, for his invaluable assistance
2.0dd = 0 along each:’ = constant surface: through the use of his personal notes and through insight-
—_ ful conversations.
Ky + 284 =¥V - Ean). (10)

E is the news function. It can be proved [13] that this
equation has a solution with four constants of integration,
ci(w), cx(u), c,(u), c.(u), at least when |E|* < 16,

i.e., [14], [1] H. Bondi, M.G.J. Van der Burg, and A.W.K. Metzner,
IM i solated-syst Proc. R. Soc. London R69, 21-52 (1962).
% < 106Mo/5- (11) [2] R.K. Sachs, Proc. R. Soc. London A70, 103-126

(1962).

: . [3] E.T. Newman and R. Penrose, J. Math. Phys. (N.X.)
By analogy from Minkowski space, one can show that 863-870 (1966).

eachc; is _re_l_ated to_ a bOOSt. In thedirection. Hence, we [4] B. Aronson, R. Lind, J. Messmer, and E. Newman,
make an initial choice of origin and of rest frame; then we * * j \jath. phys. (N.Y.)1L2, 2462-2467 (1971).

choose not to b_OOSt off this Cho_"?e by keeping, . = 0 [5] A. Rizzi, Ph.D. thesis, Princeton University, 1997.

and ¢, = 1. This second condition makes the surfaces [6] D. Christodoulou and S. Klainermaithe Global Nonlin-
mathematically unique by noting that angular momentum  ear Stability of the Minkowski Spa¢Brinceton University

requires one to pick an origin and stay with that choice. Press, Princeton, NJ, 1993).
Conclusion—Hence, the definition given in Eq. (3), [7] D. Christodoulou, Phys. Rev. Lett67, 1486-1489
coupled with the gauge conditions on the cuts of null  (1991).

infinity: (1) The odd parity part of the shear is zero [8] D. Christodoulou, in Proceedings of the 6th Mar-
and (2)c,,. = 0 and¢, = 1, satisfies all five properties cel Grossmann MeetindWorld Scientific, Singapore,
one wants for angular momentum. With the existence 1992). . . )
- . . . . ~[9] Taking the limit makes all the previous construction
of the definition established comes interesting questions precise. One also lets_, — S*., so that—o < u <
about the d(_aflnltlon’s relation to the Spat'al definition, on null infinity. Further, note the foliation construction
to the Bondi momentum, and to an invariance of the picks out an origin on the initial spatial slice.
action; it also incites an interest in more general thanig] S. ChandrasekhaThe Mathematical Theory of Black
quadrupole tests of the definition. Many new pieces Holes (Oxford University Press, 1983).
come together to make the new definition, but two arg11] As soon as one has an expression fgra conservation
key. First, the identification of the torsion dotted with a law is established. Hence, properties 1 and 5 are interre-
chosen rotation vector field as the local rate of twisting lated. _ _ _ _
(per unit surface area) in the chosen direction gives thél2] This induction from Minkowski to curved space is
definition sound physical footing. Second, the gauge  Strongly motivated and leaves little, if any, room for
condition is physically required and not extraneous or maneuvering, but nonetheless remains an induction not a
arbitrary since it is necessary to ensure that essenti deduction.

3] See Appendix Il of [5]; the fundamentals of this proof
aspects of angular momentum are respected. The ne are due to D. Christodoulou.

definition fully incorporates the Einstein equations and14] |t can be shown by order of magnitude calculation that this
involves no approximations. Also, the major impediment condition is roughly equivalent to saying that there is not
to previous definition, the supertranslation ambiguity, is sufficient concentration of gravity wave energy anywhere
resolved. near null infinity to result in the formation of a black hole.
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