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For the general central force equations of motion in n > 1 dimensions, a complete
set of 2n first integrals is derived in an explicit algorithmic way without the use of
dynamical symmetries or Noether’s theorem. The derivation uses the polar formula-
tion of the equations of motion and yields energy, angular momentum, a generalized
Laplace-Runge-Lenz vector, and a temporal quantity involving the time variable
explicitly. A variant of the general Laplace-Runge-Lenz vector, which generalizes
Hamilton’s eccentricity vector, is also obtained. The physical meaning of the general
Laplace-Runge-Lenz vector, its variant, and the temporal quantity is discussed for
general central forces. Their properties are compared for precessing bounded trajec-
tories versus non-precessing bounded trajectories, as well as unbounded trajectories,
by considering an inverse-square force (Kepler problem) and a cubically perturbed
inverse-square force (Newtonian revolving orbit problem). Published by AIP Pub-
lishing. [http://dx.doi.org/10.1063/1.4952643]

I. INTRODUCTION

Classical central force dynamics have been long studied from both physical and mathemat-
ical viewpoints. On one hand, many basic physical models are described by central forces, e.g.,
planetary motion and Coulomb scattering, which have inverse-square radial forces; vibrations of
atoms in a crystal, which have linear radial forces; interactions between a pair of neutral atoms or
molecules, which have complicated nonlinear radial forces. On the other hand, the general equa-
tions of motion for central forces have a rich mathematical structure and are important examples of
completely integrable Hamiltonian systems that possess the maximal number of constants of motion
in involution.

The constants of motion for central force dynamics in three spatial dimensions are well-known
to consist of the energy, the angular momentum vector, and an additional vector1,2 which is a
generalization of the usual Laplace-Runge-Lenz vector known for inverse-square central forces.3

These constants of motion comprise altogether 7 first integrals of the equations of motion for
a general central force. Only 5 of these first integrals are independent, since the generalized
Laplace-Runge-Lenz vector is orthogonal to the angular momentum vector, while its magnitude
can be expressed in terms of the energy and the magnitude of angular momentum, so thus there
are two relations among the 7 first integrals. The derivation of energy and angular momentum
can be done in a simple way through Noether’s theorem3 based on symmetries of the Lagrangian
formulation of the equations of motion. Noether’s theorem (in its most general form4,5) shows that
every group of symmetry transformations under which the Lagrangian is invariant (to within a total
derivative term) gives rise to a first integral of the equations of motion, and conversely, every first
integral arises from a group of symmetry transformations of the Lagrangian. Energy is given by
the group of time-translations, and the components of angular momentum are given by the SO(3)
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group of rotations, where these symmetry groups each act as point transformations on the position
variables and the time variable. The components of the Laplace-Runge-Lenz vector, in contrast,
arise from a hidden SO(3) group of symmetry transformations which are not point transformations
but instead turn out to be dynamical (first-order) symmetries when acting on the position and time
variables. Indeed, a simple, explicit formulation of these hidden symmetry group transformations
is hard to find in the literature6 and typically only the generators are presented.1,7 Moreover, while
the set of all point symmetries of the central force equations of motion is finite-dimensional, the
set of all dynamical symmetries is infinite-dimensional since a general first-order symmetry will
necessarily involve arbitrary functions of all of the first integrals.4 (In particular, for any dynamical
system, multiplication of any symmetry by any function of first integrals automatically yields a
symmetry, since first integrals are constants for all solutions of the system.) Therefore, any direct
calculation of the hidden SO(3) symmetry group of the central force equations of motion starting
from the determining equations for dynamical symmetries will require, at some step, the calculation
of all first integrals, which undercuts the entire approach of using Noether’s theorem to obtain the
Laplace-Runge-Lenz vector. See Refs. 8–10 for some alternative approaches using symmetry ideas.

The purpose of the present paper is to take a fresh, comprehensive look at how to derive all
of the first integrals for the general central force equations of motion, without the use of dynamical
symmetries or Noether’s theorem. This problem will be studied in an arbitrary number of dimen-
sions, n > 1. Several interesting main new results will be obtained, which include deriving a general
n-dimensional Laplace-Runge-Lenz vector as a first integral in two explicit algorithmic ways, and
showing a complete set of 2n first integrals is generated from this general Laplace-Runge-Lenz
vector, energy, angular momentum, and a temporal quantity involving the time variable explicitly.
This temporal quantity provides a first integral that is not a constant of motion. A new variant of
the general Laplace-Runge-Lenz vector will also be introduced, which arises naturally from these
derivations and provides a generalization of Hamilton’s eccentricity vector. The physical meaning
of the general Laplace-Runge-Lenz vector, its variant, and the temporal quantity will be discussed
for general central forces, and their properties will be compared for precessing bounded trajectories
versus non-precessing bounded trajectories, as well as unbounded trajectories.

In general, a constant of motion of n-dimensional dynamical equations of motion with position
variable r⃗ and time t is a function C of r⃗ and dr⃗/dt = v⃗ whose time derivative vanishes,

dC
dt

(r⃗(t), v⃗(t))�soln. = 0 (1.1)

for all solutions r⃗(t) of the equations of motion. Similarly, a first integral is a function I of r⃗ , v⃗ , and t
such that

dI
dt

(t, r⃗(t), v⃗(t))�soln. = 0 (1.2)

holds for all solutions r⃗(t). Note that if a first integral does not involve t explicitly, then it is a
constant of motion. Because dynamical equations of motion in n dimensions comprise a set of n
second-order differential equations for r⃗(t), the number of functionally independent first integrals is
equal to 2n, while the number of functionally independent constants of motion is equal to 2n − 1.

Our starting point is the well-known fact that3 every solution r⃗(t) of the central force equations
of motion in n > 1 dimensions

m
d2r⃗
dt2 =

F(|r⃗ |)
|r⃗ | r⃗ (1.3)

lies in a 2-dimensional plane that is spanned by the initial position vector r⃗(0) and the initial veloc-
ity vector v⃗(0). Thus, the dynamics can be described by polar variables r, θ in this time-independent
plane. The reduced equations of motion

d2r
dt2 = ω

2r + m−1F(r), d2θ

dt2 = −2ωv/r (1.4)

comprise a pair of coupled second-order nonlinear differential equations for the dynamical variables
r(t), θ(t), where v = dr/dt is the radial speed and ω = dθ/dt is the angular speed. A first integral of
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polar equations of motion (1.4) is a function I(t,r, θ, v,ω) satisfying

dI
dt

(t,r(t), θ(t), v(t),ω(t))�soln. = It + v Ir + ωIθ + (ω2r + m−1F(r))Iv − (2ωv/r)Iω = 0. (1.5)

This is the determining equation for all first integrals of these equations of motion.
In Sec. II, we will briefly review some aspects of this reduction of the n-dimensional prob-

lem, including the Lagrangian formulation of the polar equations of motion. We also review the
point symmetries of the polar equations of motion and show that for a general central force these
symmetries comprise only time-translations and rotations.

In Sec. III, we directly derive the general solution of the determining equation (1.5) for polar
first integrals, which yields four functionally-independent first integrals. Two of these first integrals
are the energy E and the scalar angular momentum L. The third first integral is an angular quantity
Θ which corresponds to the angular direction of a general Laplace-Runge-Lenz vector in the plane
of motion. These three first integrals E,L,Θ are constants of motion. The fourth first integral is a
temporal quantity T which involves t explicitly. It is related to the angular quantity by the property
that t = T when θ(t) = Θ, for all non-circular solutions r(t) , const. These two first integrals are not
widely known or explicitly discussed in much of the literature. We conclude Sec. III with a detailed
discussion of some general aspects of the quantities Θ and T , especially their connection to apsides
(turning points) on trajectories (r(t), θ(t)) determined by solutions of the polar equations of motion
(1.4). We also discuss a variant of Θ which is connected to other distinguished points on trajectories.

Next, in Sec. IV, we illustrate the physical meaning of Θ and T for two important examples
of central force dynamics: (1) inverse-square force F = −k/r2, e.g., Kepler problem; (2) cubically
perturbed inverse-square force F = −k/r2 − κ/r3, e.g., Newtonian revolving orbit problem (which
has precessing trajectories).

In Sec. V, we discuss Noether’s theorem for the polar equations of motion, and we use it to
derive the symmetries corresponding to the first integrals. For the Θ and T first integrals, these
symmetries are found to be dynamical (first-order) symmetries which involve both v and ω, while
for the L and E first integrals, the symmetries consist of time-translations and polar rotations, which
are point symmetries. We show that this entire set of symmetries generates an abelian algebra
(namely, all of the symmetries commute with each other). We derive the corresponding groups of
transformations in an explicit form and work out how each group acts on all of the first integrals.
In particular, these symmetry groups are shown to act in a simple way as point transformations
on (t,r, θ,L,E). We use this new result to formulate a novel method employing extended point
symmetries to derive the first integrals Θ and T as well as the hidden dynamical symmetry group
connected with them.

In Sec. VI, we express the first integrals E, L, Θ, T in an n-dimensional geometric form in
terms of the position vector r⃗ and velocity vector v⃗ in Rn. Through this geometrical correspondence,
L is shown to yield an antisymmetric angular momentum tensor in the plane of motion, and Θ is
shown to yield a directional unit vector in the plane of motion. We discuss the general properties of
this unit vector and show how it naturally gives rise to a general Laplace-Runge-Lenz vector and a
variant vector.

In Sec. VII, we write out the general Laplace-Runge-Lenz vector and its variant in n dimen-
sions for the two examples of central force dynamics considered previously, and we look at the
physical and geometrical properties of the resulting n-dimensional vectors.

Finally, in Sec. VIII, we make some concluding remarks and outline avenues for future work.

II. PRELIMINARIES

The central force equations of motion (1.3) in Rn can be expressed equivalently as a first-order
system,

dr⃗
dt
= v⃗ ,

d v⃗
dt
= m−1|r⃗ |−1F(|r⃗ |)r⃗ (2.1)
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for position r⃗ and velocity v⃗ when n > 1. If these two vectors are collinear for all times t in a
solution (r⃗(t), v⃗(t)), then the position vector r⃗(t) is clearly confined to a straight line in Rn. In this
case the motion trivially lies in any time-independent plane that contains this line. If instead the
vectors r⃗ and v⃗ are not collinear at some time t in a solution, then span(r⃗ , v⃗) at time t defines a
2-dimensional plane in Rn. To see that this plane is time-independent, we note that the equations of
motion (2.1) yield span(dr⃗/dt,d v⃗/dt) = span(⃗v, λr⃗) = span(⃗v, r⃗), where λ = F(|r⃗ |)|r⃗ |−1. Hence the
span is time-independent, which immediately implies that the motion lies in a time-independent
plane in Rn spanned by the initial position r⃗(0) and initial velocity v⃗(0).

Let

{ê1, ê2} (2.2)

be any fixed (time-independent) orthonormal basis for the plane of motion. Then we have

r⃗ = (r cos θ)ê1 + (r sin θ)ê2, v⃗ = (v cos θ − ωr sin θ)ê1 + (v sin θ + ωr cos θ)ê2 (2.3)

where r and θ are polar variables, and v = dr/dt and ω = dθ/dt are their time derivatives. Substi-
tution of this polar representation into the equations of motion (2.1) yields the polar equations of
motion (1.4) in which r and θ are the dynamical variables. This reduces the number of degrees of
freedom from n > 1 to 2.

The polar equations of motion (1.4) arise from the well-known Lagrangian

L = 1
2 m(v2 + r2ω2) −U(r), (2.4)

where U(r) is the radial potential determined (up to an additive constant) by the central force

F(r) = −U ′(r). (2.5)

In particular, we have

δL
δr
= mω2r + F(r) − m

d2r
dt2 ,

δL
δθ
= −2mωvr − mr2 d2θ

dt2 . (2.6)

Hereafter, we will put m = 1 without loss of generality (via rescaling the physical units of the
dynamical variables).

In polar variables, a point transformation is an invertible mapping of the coordinate space
(t,r, θ) into itself. We will be interested in Lie groups of point transformations. A one-dimensional
Lie group of point transformations, with group parameter ϵ , consists of

t → t(ϵ)(t,r, θ), r → r(ϵ)(t,r, θ), θ → θ(ϵ)(t,r, θ), ∞ < ϵ < ∞ (2.7)

such that ϵ = 0 yields the identity transformation. The generator of the group is an infinitesimal
transformation

δt =
∂t(ϵ)
∂ϵ

���ϵ=0
= τ(t,r, θ), δr =

∂r(ϵ)
∂ϵ

���ϵ=0
= ξ(t,r, θ), δθ =

∂θ(ϵ)
∂ϵ

���ϵ=0
= ψ(t,r, θ) (2.8)

which can be viewed as defining a vector field

X = τ∂t + ξ∂r + ψ∂θ (2.9)

on the space of variables (t,r, θ). From this infinitesimal generator, the point transformations (2.7)
can be obtained by exponentiation of the vector field (2.9).

Point transformations have a natural action on functions (r(t), θ(t)). In infinitesimal form, this
action is given by

δr(t) = ξ(t,r(t), θ(t)) − v(t)τ(t,r(t), θ(t)), δθ(t) = ψ(t,r(t), θ(t)) − ω(t)τ(t,r(t), θ(t)), (2.10)

where v(t) = dr(t)/dt and ω(t) = dθ(t)/dt. The corresponding generator can be expressed as a
vector field

X̂ = Pr∂r + Pθ∂θ, Pr = ξ − vτ, Pθ = ψ − ωτ. (2.11)

This vector field is called the characteristic form4,5 associated to the generator (2.9).
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Both vector fields (2.11) and (2.9) can be prolonged to act on time-derivatives of the polar
variables. The prolongation of the vector field (2.11) is very simple,

prX̂ = X̂ +
dPr

dt
∂v +

dPθ

dt
∂ω + · · · (2.12)

while the prolongation of the vector field (2.9) takes the related form

prX = prX̂ + τ
d
dt
, (2.13)

where the total time derivative is viewed as a vector field

d
dt
= ∂t + v∂r + ω∂θ + · · · (2.14)

by the chain rule. Note these prolonged vector fields are defined in the coordinate space
(t,r, θ, v,ω, . . .), which is called the jet space of the polar equations of motion.

A point symmetry of the polar equations of motion (1.4) is a Lie group of point transformations
(2.7) that leaves invariant the solution space of the equations. Infinitesimal invariance of the solution
space is expressed in terms of the prolonged generator (2.9) of the transformation acting on the
polar equations of motion by

prX
(

d2r
dt2 − ω

2r − F(r)
) �����soln.

= 0, prX
(

d2θ

dt2 + 2ωv/r
) �����soln.

= 0 (2.15)

which is required to hold for all solutions of the equations. This invariance condition can be ex-
pressed more simply through the characteristic generator (2.11), which has an equivalent action on
the equations of motion because of the relation (2.14). In particular, since a total time-derivative of
the equations of motion necessarily vanishes on solutions of the equations, the invariance condition
becomes

prX̂
(

d2r
dt2 − ω

2r − F(r)
) �����soln.

=
d2Pr

dt2 − ω
2Pr − 2ωr

dPθ

dt
− F ′(r)Pr = 0,

prX̂
(

d2θ

dt2 + 2ωv/r
) �����soln.

=
d2Pθ

dt2 + 2
dPθ

dt
vr−1 + 2ωr−1 dPr

dt
− 2ωvr−2Pr = 0,

(2.16)

where d2r/dt2, d2θ/dt2, and all higher-order time derivatives are eliminated through use of the
equations of motion (1.4). Thus, the generator of a point transformation (2.9) will be an infinites-
imal symmetry of the polar equations of motion iff the associated characteristic generator (2.11)
satisfies the invariance condition (2.16). For this reason the two generators (2.9) and (2.11) are
commonly referred to as equivalent symmetry vector fields, and the invariance condition (2.16) is
called the determining equation4,5 for point symmetries.

The determining equation (2.16) is a straightforward linear partial differential equation to be
solved for the infinitesimal symmetry components τ(t,r, θ), ξ(t,r, θ), and ψ(t,r, θ). In particular, this
equation will split with respect to v and ω in the jet space (t,r, θ, v,ω), yielding a linear overdeter-
mined system on the functions τ(t,r, θ), ξ(t,r, θ), and ψ(t,r, θ). If we regard the force F(r) as an
additional unknown, then we can also determine any infinitesimal point symmetries that hold only
for special force expressions F(r). In all cases, the set of admitted infinitesimal point symmetries
forms a Lie algebra.

By a direct calculation (using Maple), we obtain the following result.
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Theorem 1. The infinitesimal point symmetries (2.9) admitted by the polar equations of motion
(1.4) with a nonlinear force F(r) are spanned by the generators:

(a) general F(r)
X1 = ∂θ X2 = ∂t,

(2.17)

(b) F(r) = kr p, p , 1.

X1 = ∂θ, X2 = ∂t, X3 = t∂t +
2

1 − p
r∂r .

(2.18)

(c) F(r) = kr + k̃r−3, k , 0, k̃ , 0.
X1 = ∂θ, X2 = ∂t, X4 = exp(2k1/2t) �∂t + k1/2r∂r

�
.

(2.19)

The point symmetry transformations generated by X1, X2, X3, and X4 are, respectively, given by

(1) θ → θ + ϵ . polar rotation. (2.20)

(2) t → t + ϵ . time-translation. (2.21)

(3) t → exp(ϵ)t, r → exp (2ϵ/(1 − p)) r, scaling. (2.22)

(4) t → t + k−1/2 ln
��

1 − 2k1/2ϵ exp(2k1/2t)�−1/2�
, r → r

�
1 − 2k1/2ϵ exp(2k1/2t)�−1/2

,

time-dependent dilation. (2.23)

Notice that only two point symmetries are admitted for a general central force F(r), whereas
the equations of motion possess four functionally independent first integrals. Hence, point symme-
tries of the equations of motion are not rich enough to capture all of the first integrals.

An important generalization of point symmetries is provided by dynamical symmetries. A
dynamical symmetry12 of the polar equations of motion (1.4) consists of an infinitesimal transforma-
tion of the general form (2.9) in which the components τ, ξ, ψ are allowed to depend on the radial
speed v and angular speed ω (in addition to the variables t,r, θ) such that the invariance condition
(2.15) holds for all solutions of the equations of motion. As in the case of point symmetries, it is
simpler to work with the equivalent characteristic generator (2.11) for dynamical symmetries, which
satisfies the determining equation (2.16).

Similarly to point symmetries, dynamical symmetries can be exponentiated to obtain a group
of transformations acting on solutions of the polar equations of motion. These transformations take
the form of point transformations acting on the dynamical variables (r(t), θ(t), v(t),ω(t)) given by
any solution (r(t), θ(t)), but they cannot be extended off solutions to act on the coordinate space
(t,r, θ, v,ω).

Moreover, in further contrast to point symmetries, the determining equation (2.16) for dynam-
ical symmetries no longer splits with respect to v and ω in the jet space (t,r, θ, v,ω), since these
variables now appear in the dynamical symmetry components τ(t,r, θ, v,ω), ξ(t,r, θ, v,ω), and
ψ(t,r, θ, v,ω). This means that the determining equation is a coupled pair of linear partial differential
equations, and in general we cannot solve these equations without already knowing how to inte-
grate the polar equations of motion themselves. In particular, the general solution of the dynamical
symmetry determining equation will involve arbitrary functions of all first integrals of the polar
equations of motion.

Therefore, it will be more useful to derive the first integrals directly from the equations of
motion, rather than use a symmetry approach. Nevertheless, dynamical symmetries have a direct
connection to first integrals through Noether’s theorem, which can be used to find the specific
dynamical symmetries that correspond to the first integrals in Theorem 2.

III. DERIVATION AND PROPERTIES OF POLAR FIRST INTEGRALS

For the polar equations of motion (1.4) of central force dynamics, all first integrals are func-
tions I(t,r, θ, v,ω) determined by Equation (1.5). With m = 1 and F(r) = −U ′(r), this determining
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equation becomes

dI
dt

���soln.
= It + v Ir + ωIθ + (ω2r −U ′(r))Iv − (2ωvr−1)Iω = 0, (3.1)

which is a linear first-order partial differential equation. Its general solution can be obtained through
the method of characteristics11 by integrating the system of differential equations

dt
1
=

dr
v
=

dθ
ω
=

dv
ω2r −U ′(r) =

dω
−2ωvr−1 =

dI
0
. (3.2)

This system can be arranged in a triangular form

dω
dr
=
−2ω

r
, (3.3)

dv
dr
=
ω2r −U ′(r)

v
, (3.4)

dθ
dr
=
ω

v
, (3.5)

dt
dr
=

1
v
, (3.6)

dI
dr
= 0, (3.7)

whereby the successive integration of these differential equations (3.3)–(3.6) is achieved by separa-
tion of variables. Each constant of integration will then be a particular first integral satisfying the
determining equation (3.1).

Separating variables in Equation (3.3), we obtain the first integral

I1 = ωr2. (3.8)

We can now express ω in terms of I1 and r ,

ω = I1r−2. (3.9)

Then Equation (3.4) is separable,

dv
dr
=

I1
2r−3 −U ′(r)

v
. (3.10)

Hence we obtain a second first integral

I2 =
1
2 v

2 + 1
2 I2

1r−2 +U(r). (3.11)

We can next express the magnitude of v in terms of I1, I2, and r ,

|v | =


2(I2 −U(r)) − I1
2r−2. (3.12)

Both Equations (3.5) and (3.6) now become separable,

dθ
dr
=

sgn(v)I1

r2


2(I2 −U(r)) − I1
2r−2

(3.13)

and

dt
dr
=

sgn(v)
2(I2 −U(r)) − I1

2r−2
. (3.14)

Hence we obtain two more first integrals

I3 = θ − I1


sgn(v)

2(I2 −U(r))r4 − I1
2r2

dr ≡ Θ (3.15)
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and

I4 = t −


sgn(v)
2(I2 −U(r)) − I1

2r−2
dr ≡ T. (3.16)

Finally, the remaining differential equation (3.7) shows that I is an arbitrary function of the previous
four first integrals (3.8), (3.11), (3.15), and (3.16). The following result is now immediate.

Proposition 1. The general solution of the determining equation (3.1) for first integrals of the
polar equations of motion (1.4) is given by I = f (I1, I2, I3, I4) where f is an arbitrary differentiable
function and where I1, I2, I3, I4 have physical units of angular momentum, energy, radians, and time,
respectively.

Note that these first integrals I1, I2, I3, I4 are functionally independent because they each have
different physical units. Hence, I1, I2, I3, I4 provide the complete quadrature of the polar equations
of motion.

A. Normalization (“zero-point” values)

Any first integral I remains conserved if an arbitrary constant is added to it. This freedom
represents the choice of a “zero-point” value for the physical quantity defined by the first integral. In
particular, we can write

I1 = L + L0, (3.17)
I2 = E + E0, (3.18)
I3 = Θ + Θ0, (3.19)
I4 = T + T0, (3.20)

where L0, E0, Θ0, T0 will denote the zero-point constants, and L, E, Θ, T will be the normalized
physical quantities, which have units of angular momentum, energy, radians, and time, respectively.

The zero-point constants in the first integrals need to be specified by some additional consid-
erations such that the resulting quantities L, E, Θ, T are physically meaningful and mathematically
well-defined for all solutions of the polar equations of motion (1.4). It is clear how we can do
this for the angular momentum constant L0 and the energy constant E0, by adopting the standard
Newtonian expressions for the physical angular momentum L and the physical energy E for motion
under a central force. But since the physical interpretation of Θ and T is not obvious just from their
expressions, we will instead use a different argument to determine all four constants L0, E0, Θ0, T0
based on general properties of the effective potential for the equations of motion. Normalization
of Θ is often overlooked in the literature yet is crucial for understanding its relationship with the
Laplace-Runge-Lenz vector.

From the first integrals (3.8) and (3.11), written in the respective forms (3.17) and (3.18), the
effective potential is defined by

Ueff.(r) = 1
2 (L + L0)2r−2 +U(r) − E0. (3.21)

This potential determines the types of trajectories admitted for solutions of the polar equations of
motion (1.4). In all cases of physical interest, we may suppose that the effective potential has at
least one equilibrium point, r = req., defined by the condition that the central force −U ′(r) vanishes
at r = req. (which can include r = 0 or r = ∞). This condition coincides with the effective force
−U ′eff.(r) being zero when both the radial and angular speeds are zero. Thus, the set of equilibrium
points is given by the roots of the equation

0 = −U ′(req.) = −U ′eff.(req.)�L+L0=0. (3.22)

The physical meaning of an equilibrium point is that it corresponds to a static solution of the polar
equations of motion (1.4), with r = req. = const. (and θ = const.).

A natural condition to determine L0 and E0 is that both L |r=req. and E |r=req. must be zero when
these two first integrals are evaluated for static solutions of the polar equations of motion (1.4)
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given by an equilibrium point (3.22) away from the origin, r = req. , 0. Since a static solution has
ω = v = 0, the condition L |r=req. = 0 directly implies

L0 = 0 (3.23)

in the first integral (3.17), while the condition E |r=req. = 0 together with L |r=req. = L0 = 0 yields

E0 = U(req.) (3.24)

in the first integral (3.18). This gives

L = ωr2 (3.25)

and

E = 1
2 v

2 + 1
2 L2r−2 +U(r) −U(req.) (3.26)

which are the usual Newtonian definitions of physical angular momentum and physical energy for
central force dynamics. Note the effective potential now simplifies,

Ueff.(r) = 1
2 L2r−2 +U(r) −U(req.). (3.27)

This equilibrium point argument, however, will not extend directly to Θ0 and T0, because Θ and
T can have any value at an equilibrium point r = req.. To determine Θ0 and T0, we will consider,
more generally, distinguished points of the effective potential other than equilibrium points. Two
natural distinguished points are inertial points and turning points, as these points are defined solely
in terms of Ueff.(r) and E.

An inertial point is a finite radial value r = r∗ at which the effective force vanishes. The set of
all inertial points is thus given by the roots (if any) of the effective force equation

0 = −U ′eff.(r∗) = L2r∗−3 −U ′(r∗), 0 ≤ r∗ < ∞. (3.28)

This is a generalization of the definition (3.22) of an equilibrium point if L , 0. Hence, a solution
of the polar equations of motion (1.4) possesses an inertial point if (and only if) both dv/dt = 0 and
ω = L/r2 , 0 hold at a point on the trajectory where r = r∗.

A turning point is a finite radial value r = r∗ at which the effective potential is equal to the
energy E. Hence the set of all turning points is given by the roots (if any) of the energy equation

0 = Ueff.(r∗) − E = 1
2 L2r−2

∗ +U(r∗) − E −U(req.), 0 ≤ r∗ < ∞. (3.29)

A solution of the polar equations of motion (1.4) possesses a turning point if (and only if) v = 0
holds at a point on the trajectory where r = r∗, since E −Ueff.(r) = 1

2 v
2 from Equations (3.26) and

(3.27). Note that a turning point r = r∗ will coincide with an inertial point r = r∗ whenever the
energy has the value E = Ueff.(r∗).

For all potentials U(r) of physical interest, at least one turning point or one inertial point
can be assumed to exist for every solution of the polar equations of motion (1.4). However, if a
solution is circular, then the integral expressions (3.19) and (3.20) cannot even be defined since r is
constant, and therefore only the first integrals for angular momentum (3.25) and energy (3.26) exist.
Consequently, the question of determining the constants Θ0 and T0 needs to be considered only for
non-circular solutions.

A natural way to determine Θ0 and T0 is by requiring that the respective values of the first
integrals (3.19) and (3.20) for each non-circular solution of the polar equations of motion (1.4) are
given by the conditions Θ|r=r0 = θ0 and T |r=r0 = t0 where either r(t0) = r0 = r∗ and θ(t0) = θ0 is an
inertial point on the trajectory, or r(t0) = r0 = r∗ and θ(t0) = θ0 is a turning point on the trajectory.
These conditions lead directly to the expressions

Θ = θ − L
 r

r0

sgn(v)
2(E +U(req.) −U(r))r4 − L2r2

dr (3.30)
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and

T = t −
 r

r0

sgn(v)
2(E +U(req.) −U(r)) − L2r−2

dr, (3.31)

where

r0 = r∗, r2
∗(U(r∗) − E −U(req.)) = 1

2 L2 (3.32)

or

r0 = r∗, r∗3U ′(r∗) = L2. (3.33)

Note that the choice of r0 in these integrals corresponds to specifying the values for the constants Θ0
and T0.

Thus, we have proved the following main result.

Theorem 2. For the polar equations of motion (1.4) of general central force dynamics:
(1) L and E are well-defined first integrals for all solutions. (L depends solely on r,ω; E depends
solely on v and Ueff.(r)).
(2) Θ and T are well-defined first integrals for all non-circular solutions. (Both Θ and T depend
solely on L, E, sgn(v), and Ueff.(r).)
(3) L, E, Θ are functionally independent constants of motion.
(4) Every first integral is a function of L, E, Θ, T, and every constant of motion is a function of L,
E, Θ.

We emphasize that these four first integrals, given by Equations (3.25), (3.26), (3.30), (3.31),
can be directly verified to obey

dL
dt

�
soln. =

dE
dt

�
soln. =

dΘ
dt

�
soln. =

dT
dt

�
soln. = 0. (3.34)

We will see later that the first integral Θ is directly related to the angle of the Laplace-Runge-
Lenz vector in the plane of motion for non-circular solutions.

B. Evaluation using turning points

Each solution (r(t), θ(t)) of the polar equations of motion (1.4) describes a trajectory in the
plane of motion. The shape of a trajectory is a curve θ = f (r,L,E,Θ) parameterized by the values
of the angular momentum L and the energy E, as well as the angle Θ, with r belonging to some
specified radial domain rmin ≤ r ≤ rmax.

The angular first integral (3.30) gives an algebraic (quadrature) equation for the curve,

θ = f (r,L,E,Θ) = Θ + L
 r

r0

sgn(v)
2(E +U(req.) −U(r))r4 − L2r2

dr, (3.35)

while the motion along the curve is implicitly given by the temporal first integral (3.31),

t = T +
 r

r0

sgn(v)
2(E +U(req.) −U(r)) − L2r−2

dr. (3.36)

If the angular momentum L = r2ω is equal to zero, then the trajectory is purely radial, since
ω = 0 implies θ(t) = θ(0) is constant. The equation of the curve (3.35) thereby reduces to an un-
bounded radial line θ = Θ = const. through r = 0, where the angular first integral (3.30) evaluated
on the radial trajectory (r(t), θ(t)) is given by Θ = θ(0), independently of the choice of r0. Thus, in
this case, Θ is the angle of the radial trajectory in the plane of motion.

The physically more interesting trajectories are non-radial, which occur if the angular mo-
mentum has a non-zero value, L = r2ω , 0, so then θ(t) is no longer constant. There are two
different primary types of non-radial trajectories: bounded and unbounded. A bounded trajectory
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has a radial domain given by 0 ≤ rmin ≤ rmax < ∞, whereas the radial domain for an unbounded
trajectory is given by 0 ≤ rmin < rmax = ∞. A crucial feature of both types of trajectories is the
number of turning points that occur in the radial domain. When a trajectory has rmin > 0, any
point with r = rmin on the trajectory corresponds to a turning point given by r∗ = rmin. Similarly,
when a trajectory has rmax < ∞, any point with r = rmax on the trajectory corresponds to a turning
point given by r∗ = rmax. Bounded non-radial trajectories are thus characterized by a radial domain
having precisely two turning points, r∗ = rmin and r∗ = rmax, when the trajectory is non-circular, or a
single turning point, r∗ = rmin = rmax, in the special case when the trajectory is circular. Unbounded
non-radial trajectories are characterized by having a radial domain with either only one turning
point, r∗ = rmin, or no turning points.

Any turning point that occurs on a non-circular trajectory (r(t), θ(t)) is a radial extremum which
is either a periapsis of the trajectory where r = r∗ = rmin > 0, or an apoapsis of the trajectory where
r = r∗ = rmax < ∞. These apses may occur at any number of distinct angles (with the same radial
distance r = r∗) depending on the shape of the trajectory. When a non-circular trajectory (r(t), θ(t))
passes through any apsis, (r∗, θ∗), the radial speed v(t) will change its sign. From Equation (3.35) we
then have the following result.

Proposition 2. For any solution of the polar equations of motion (1.4) yielding a non-circular
trajectory, the curve (3.35) determined by the shape of the trajectory is locally symmetric (under
reflection) around the radial line connecting the origin r = 0 to any apsis point in the plane of
motion.

We will refer to the radial line θ = θ∗ determined by a given apsis (r∗, θ∗) on a non-circular
trajectory as an apsis line. Note that every apsis on a given trajectory is a turning point of the
effective potential, but the set of turning points (3.29) may include points that do not occur on the
trajectory.

It is clear that turning points are important in the evaluation of the angular and temporal first
integrals (3.30) and (3.31) since the expression

2(E +U(req.) −U(r)) − L2r−2 = |v | (3.37)

appearing in these integrals will vanish at all turning points r = r∗ that occur on a given non-circular
trajectory (r(t), θ(t)).

C. Piecewise property (“multiplicities”) and trajectory shapes

There are three different types of non-circular trajectories which may arise, depending on the
number of apsis points. The physical and mathematical properties of the angular and temporal first
integrals (3.30) and (3.31) differ in each case.

First, suppose a non-circular trajectory (r(t), θ(t)) possesses no apsis. This implies that the
radial domain of the trajectory contains no turning points and hence the trajectory is unbounded.
Consequently, the equation (3.35) of the curve describing the shape of the trajectory will be valid
on the whole radial domain, and similarly the angular first integral (3.30) will give a unique value
for Θ when it is evaluated on any part of the trajectory, regardless of the choice of r0 in the integral.
The most physically meaningful and mathematically simple choice for r0 will be an inertial point,
r0 = r∗, given by either the maximum or the minimum extremum of the effective potential. With this
choice, the value of Θ will be the angle θ = θ∗ = Θ of the point on the trajectory at which the radial
speed v is an extremum, while the value of T given by the temporal first integral (3.31) will be the
time t = t∗ = T at which this point is reached on the trajectory.

Next, suppose a non-circular trajectory possesses a single apsis point, (r, θ) = (r∗, θ∗). The radial
domain therefore contains exactly one turning point, r = r∗, and the trajectory is thus unbounded.
In this case the first integrals (3.30) and (3.31) are most naturally defined by having r0 = r∗ chosen
to be the turning point (corresponding to the apsis). Then the equation (3.35) of the curve which
describes the shape of the trajectory will be valid on the whole radial domain. Because this domain
contains a single turning point, r = r∗, the curve will be globally reflection-symmetric around the
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corresponding apsis line θ = θ∗, and the resulting two halves of the curve will come from separately
putting sgn(v) = +1 and sgn(v) = −1 in Equation (3.35). Moreover, the angular first integral (3.30)
will give a unique value for Θ when it is evaluated on any part of the trajectory. The physical mean-
ing of this value is that it will be the angle θ = θ∗ = Θ at which the apsis occurs on the trajectory in
the plane of motion. The same argument shows that the temporal first integral (3.31) gives a unique
value for T which will be the time t = t∗ = T at which the apsis r = r∗ is reached on the trajectory.

Finally, suppose a non-circular trajectory (r(t), θ(t)) possesses multiple apsis points (apsides).
The radial domain of the trajectory thereby contains exactly two turning points, which are the
endpoints of the domain. Correspondingly, the trajectory is bounded. The equation (3.35) of the
curve then will divide up into separate pieces that are determined in the following way by the
apsis points. Since r(t) is increasing nearby any periapsis point, the trajectory must pass through an
apoapsis point before reaching another periapsis point. Likewise, since r(t) is decreasing nearby any
apoapsis point, the trajectory must pass through a periapsis point before reaching another apoapsis
point. Hence, multiple apsis points come in pairs consisting of both a periapsis and an apoapsis.
Let (r, θ) = (r∗1, θ∗1) and (r, θ) = (r∗2, θ∗2) be any pair of adjacent periapsis and apoapsis points on
the trajectory, whereby 0 < rmin = r∗1 < r∗2 = rmax < ∞. Consider the piece of the curve starting
at the periapsis point, as defined by choosing r0 = r∗1 in the curve equation (3.35), with Θ = θ∗1.
This piece of the curve has the radial domain r∗1 ≤ r ≤ r∗2, where the other endpoint r = r∗2 is an
apoapsis point. Since the curve is locally reflection-symmetric around the apoapsis line θ = θ∗1 in
the plane of motion, the next piece of the curve is defined by choosing r0 = r∗2 in Equation (3.35),
with Θ = θ∗2, where the radial domain is r∗2 ≥ r ≥ r∗1. Note that sgn(v) differs on these two pieces
of the curve. Clearly, this process can be continued to piece together the entire curve, which yields
the complete trajectory (r(t), θ(t)).

Thus, for any bounded non-circular trajectory with multiple apsis points, it follows that the
angular first integral (3.30) will be multi-valued when it is evaluated on different parts of the trajec-
tory, corresponding to the piecewise composition of the curve (3.35). The same property will hold
for the temporal first integral (3.31), since it uses the same value of r0 that is chosen in the angular
first integral (3.30). Each pair of values Θ and T given by these first integrals is the angle and time at
which the trajectory reaches each apsis.

As a consequence of Proposition 2, the angular separation between two successive apsis points
on a bounded non-circular trajectory is the same on all parts of the trajectory. From the curve
equation (3.35), it is straightforward to get an integral expression for this angular separation.

Proposition 3. For any solution of the polar equations of motion (1.4) yielding a bounded
non-circular trajectory, the angular separation between any two successive periapsis points or
apoapsis points on the trajectory is given by

∆θ = 2L
 rmax

rmin

1
2(E +U(req.) −U(r))r4 − L2r2

dr (modulo 2π), (3.38)

and the corresponding time interval is given by

∆t = 2
 rmax

rmin

sgn(v)
2(E +U(req.) −U(r)) − L2r−2

dr. (3.39)

These expressions are related to the first integrals Θ and T by

1
2∆θ = sgn(v)(Θ|r0=rmax − Θ|r0=rmin), 1

2∆t = sgn(v)(T |r0=rmax − T |r0=rmin). (3.40)

If the angular separation ∆θ is a rational multiple of 2π, then the angular first integral (3.30)
will yield a finite number of distinct values Θ modulo 2π. In this case, the curve describing the
shape of the trajectory is closed. Note that the apsis points of the trajectory in the plane of motion
are precessing unless ∆θ is exactly equal to 2π.

In contrast, if the angular separation ∆θ is an irrational multiple of 2π, then the angular first
integral (3.30) will yield an infinite number of distinct values Θ modulo 2π. This means that the



062901-13 Anco, Meadows, and Pascuzzi J. Math. Phys. 57, 062901 (2016)

curve describing the shape of the trajectory is open, such that the apsis points of the trajectory are
precessing in the plane of motion.

For both kinds of (bounded non-circular) trajectories, the temporal first integral (3.31) yields a
periodic infinite sequence of values T .

IV. EXAMPLES

The results in Theorem 2, Propositions 2 and 3, will now be illustrated for two examples of
central forces.

A. Inverse-square force

Consider the central force

F = −kr−2 (4.1)

with the potential

U(r) = −kr−1. (4.2)

This force will be attractive if k > 0, e.g., planetary motion, or repulsive if k < 0, e.g., Coulomb
scattering of charged particles. In either case, the potential has only one equilibrium point, req. = ∞.
Since U(req.) = 0, the effective potential is given by

Ueff.(r) = 1
2 L2r−2 − kr−1, L , 0. (4.3)

Thus

E = 1
2 v

2 + 1
2 L2r−2 − kr−1 (4.4)

is the energy first integral (3.26). All trajectories can be classified qualitatively from the equation
E = Ueff.(r).

In the repulsive case k < 0, Ueff.(r) has no extremum, and E is non-negative. Hence all trajec-
tories are unbounded.

In the attractive case k > 0, Ueff.(r) has one extremum, which is a negative minimum, Umin
eff. =

− 1
2 (k/L)2. Hence, for L , 0, all trajectories with E ≥ 0 are unbounded, while all trajectories with

0 > E ≥ Umin
eff. are bounded, and bounded trajectories with E = Umin

eff. are circular.
We now evaluate the angular and temporal first integrals (3.30) and (3.31) for the case k > 0,

L , 0, i.e., the Kepler problem. We will need the relation

|v | = √2E − L2r−2 + 2kr−1. (4.5)

1. Turning points for the Kepler problem

The turning points r = r∗ of the effective potential (4.3) are obtained from the energy
equation (3.29). This is a quadratic equation

0 = 2Er2 + 2kr − L2 (4.6)

with the discriminant D = 4(k2 − 2EL2). Turning points exist only when D ≥ 0, where D = 0
determines the minimum energy

Emin = −
k2

2L2 < 0. (4.7)

Since the trajectories with E = Emin are circular, only the trajectories with E > Emin need to be
considered (as the first integrals Θ and T exist only for non-circular trajectories).

For 0 > E > Emin, the turning points are given by

r∗± =
k ±


k2 − 2|E |L2

2|E | . (4.8)
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The angular first integral (3.30) with r0 = r∗± can be straightforwardly evaluated to yield

Θ± = θ + arctan
(

L2 − kr
Lvr

)
± sgn(vL)π

2
(4.9)

after use of the relation (4.5). Similarly, the temporal first integral (3.31) with r0 = r∗± yields

T± = t − rv
2|E | +

k
(2|E |)3/2

(
arctan *

,

2|E |r − k
2|E |vr

+
-
∓ sgn(v)π

2

)
. (4.10)

From the first integral (4.9), trajectories with 0 > E > Emin are algebraically described by curves

r(θ) = L2

k ∓


k2 − 2|E |L2 cos(Θ± − θ)
(4.11)

on the angular domain

− 1
2∆θ + Θ± ≤ θ ≤

1
2∆θ + Θ±, (4.12)

where, as shown by Proposition 3,

1
2∆θ = sgn(v)(Θ+ − Θ−) = π (4.13)

is the angular separation between the two turning points on the curve. These curves are el-
lipses,3 which are bounded and have rmax = r∗+ and rmin = r∗−, such that r = 0 is one focus of
the ellipse in the plane of motion. Moreover, in accordance with Proposition 2, each ellipse is
reflection-symmetric around a radial line connecting the origin r = 0 to either of the points r = r∗±.
The resulting two pieces of the ellipse are each defined on the radial domain rmin ≤ r ≤ rmax and
differ by sgn(v) ≷ 0 (where sgn(v) = 0 at each turning point).

On each elliptic trajectory, both first integrals Θ± and T± are piecewise functions. Their physical
and geometrical meaning depends on the choice of the radial value r0 = r+ or r0 = r−. If r0 = r+
then (r(T+), θ(T+)) = (rmax,Θ+) is an apoapsis point on the trajectory, or instead if r0 = r− then
(r(T−), θ(T−)) = (rmin,Θ−) is a periapsis point. In both cases, Θ± and T± are continuous at the apsis
point r = r∗±, but have a jump discontinuity at the opposite apsis r = r∗∓. The jump in Θ± is equal to

∆θ = 2π (4.14)

which is the angular separation (3.38) between two successive periapsis points or two successive
apoapsis points on the trajectory. Since ∆θ is exactly 2π, these trajectories are not precessing, and
hence both of the angular first integrals Θ± are single-valued modulo 2π. The jump in T± is simply
the period of a single closed orbit,

∆t =
πk
2|E |3 . (4.15)

Both of the temporal first integrals T± thus yield a sequence of times such that the time interval
(3.39) is the period ∆t.

Therefore, when the angular first integral Θ− and temporal first integral T− are evaluated at any
point (r(t), θ(t)) on an elliptic trajectory (4.11), we obtain the angle of the radial line that intersects
the periapsis point and the time at which this point is reached on the trajectory. Likewise, the
angular first integral Θ+ and temporal first integral T+ evaluated at any point (r(t), θ(t)) yield the
angle of the radial line that intersects the apoapsis point and the time at which this point is reached
on the elliptic trajectory.

Next, for E = 0, there is just a single turning point

r∗ =
L2

2k
. (4.16)

The angular first integral (3.30) with r0 = r∗ is straightforward to evaluate,

Θ = θ + arctan
(

L2 − kr
Lvr

)
− sgn(vL)π

2
. (4.17)
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Similarly, evaluation of the temporal first integral (3.31) with r0 = r∗ yields

T = t − rv(L2 − kr)
3k2 . (4.18)

From the first integral (4.17), trajectories with E = 0 are algebraically described by curves

r(θ) = L2

k(1 + cos(Θ − θ)) (4.19)

on the angular domain

− π + Θ ≤ θ ≤ π + Θ. (4.20)

These curves (4.19) are parabolas3 with the focus at r = 0, such that rmin = r∗. In accordance with
Proposition 2, each parabola is reflection-symmetric around the radial line connecting the origin
r = 0 to the periapsis point r = r∗ on the trajectory. The resulting two pieces of the parabola are each
defined on the radial domain rmin ≤ r < ∞ and differ by sgn(v) ≷ 0 (where sgn(v) = 0 at the turning
point).

The first integrals Θ and T are piecewise functions on each parabola, such that (r(T), θ(T)) =
(rmin,Θ) is the periapsis point. Both Θ and T are continuous at this point. Thus, when these first
integrals are evaluated at any point (r(t), θ(t)) on a parabolic trajectory (4.19), we obtain the angle
of the radial line that intersects the periapsis point and the time at which this point is reached on the
trajectory.

Last, for E > 0, there is again a single turning point

r∗ =

√
k2 + 2EL2 − k

2E
. (4.21)

Evaluation of the angular first integral (3.30) with r0 = r∗ straightforwardly yields the same expres-
sion (4.17) as in the case E = 0. The temporal first integral (3.31) with r0 = r∗ gives

T = t − 1
2E

(
rv +

k
√

2E
arctanh *

,

√
2Evr

2Er + k
+
-

)
. (4.22)

From the first integral (4.17) combined with the relation (4.5), trajectories with E > 0 are algebrai-
cally described by curves

r(θ) = L2

k +
√

k2 + 2EL2 cos(Θ − θ)
(4.23)

on the angular domain

− π
2
− arctan

(√
2E |L |/k

)
+ Θ ≤ θ ≤ π

2
+ arctan

(√
2E |L |/k

)
+ Θ. (4.24)

These trajectories are hyperbolas,3 which are unbounded and have r = 0 as the focus. The properties
of the angular first integral Θ and temporal first integral T for a hyperbolic trajectory are the same as
in the parabolic case.

2. Inertial points for the Kepler problem

The inertial points r = r∗ of the effective potential (4.3) are obtained from the effective force
equation (3.28). This reduces to a linear equation

0 = L2 − kr (4.25)

giving

r∗ =
L2

k
. (4.26)
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From Proposition 2, every trajectory with L , 0 will contain two inertial points r = r∗, differing by
sgn(v) ≷ 0. In particular, the radial speed at the these points is given by

v∗ =
±


k2 − 2|E |L2

|L | (4.27)

by combining Equations (4.26) and (4.5).
For 0 > E > Emin, the angular first integral (3.30) with r0 = r∗ can be straightforwardly evalu-

ated to yield

Θ = θ + arctan
(

L2 − kr
Lvr

)
. (4.28)

Similarly, the temporal first integral (3.31) with r0 = r∗ gives

T = t +
rv

2|E | −
sgn(v)|L |k2 − 2|E |L2

2|E |k
+

k
(2|E |)3/2

(
arctan *

,

k − 2|E |r
2|E |vr

+
-
− sgn(v) arctan *

,


k2 − 2|E |L2

2|E |L
+
-

)
.

(4.29)

From the first integral (4.28), the curves describing trajectories with E > 0 are algebraically given
by

r(θ) = L2

k +


k2 − 2|E |L2 sin(Θ − θ) . (4.30)

These curves are ellipses (4.11), with a different angular parameterization compared to the turning
point case.

On each elliptic trajectory, both first integrals Θ and T are piecewise functions which are
continuous at the two inertial points r = r∗ but have a jump discontinuity at the two apsis points
r = rmin and r = rmax. The jump in Θ is equal to

∆Θ = 1
2∆θ = π (modulo2π), (4.31)

which is the angular separation between the two apsis points. Similarly, the jump in T is half of the
period of a single closed orbit,

∆T = 1
2∆t =

πk
4|E |3 . (4.32)

The physical and geometrical meaning of these jumps is directly related to the division of an elliptic
trajectory into two reflection-symmetric pieces around the radial line (semi-major axis) through the
two apsis points. Note that the two inertial points r = r∗ lie on a perpendicular line (semi-minor
axis) with respect to the apsis points. Therefore, when the first integrals Θ and T are evaluated at any
point (r(t), θ(t)) on the piece with sgn(v) ≷ 0, we obtain (r(T), θ(T)) = (r∗,Θ) which yields the angle
of the radial line that intersects the inertial point on that piece of the trajectory, and the time at which
this point is reached.

Next, for E = 0, the angular first integral (3.30) with r0 = r∗ is again given by the expression
(4.28), while the temporal first integral (3.31) with r0 = r∗ yields

T = t − sgn(v)
(

r |v |(L2 + kr) − 2|L |3
3k2

)
. (4.33)

The resulting curves that describe trajectories with E = 0 are algebraically given by

r(θ) = L2

k(1 + sin(Θ − θ)) . (4.34)

These curves are parabolas (4.11), with an angular parameterization that is shifted by π/2 compared
to the turning point case. The two inertial points on each parabola are related by reflection symmetry
through the radial line that connects the periapsis point r = rmin to the origin r = 0.
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On each parabolic trajectory, both first integrals Θ and T are piecewise functions which are
continuous at the two inertial points r = r∗ but have a jump discontinuity at the periapsis point
r = rmin, corresponding to the division of the trajectory into two reflection-symmetric pieces. The
jumps in Θ and T are given by the same respective values (4.31) and (4.32) as in the elliptic case.
Therefore, when the first integrals Θ and T are evaluated at any point (r(t), θ(t)) on the piece of a
parabolic trajectory with sgn(v) ≷ 0, we obtain (r(T), θ(T)) = (r∗,Θ) which yields the angle of the
radial line that intersects the inertial point on that piece of the trajectory, and the time at which this
point is reached.

Last, for E > 0, the same expression (4.28) is obtained for the angular first integral (3.30) with
r0 = r∗, while the expression for the temporal first integral (3.31) with r0 = r∗ is given by

T = t +
rv
2E
− sgn(v)|L |√k2 + 2EL2

2kE

+
k

(2E)3/2

(
arctanh *

,

√
2Evr

2Er + k
+
-
− sgn(v)arctanh *

,

√
2E |L |

√
k2 + 2EL2

+
-

)
.

(4.35)

Trajectories with E > 0 are algebraically described by the curves

r(θ) = L2

k +
√

k2 + 2EL2 sin(Θ − θ)
, (4.36)

which are hyperbolas (4.23), with an angular parameterization that is shifted by π/2 compared to
the turning point case. The two inertial points on each hyperbola are related by reflection symmetry
through the radial line that connects the periapsis point r = rmin to the origin r = 0.

The physical and geometrical meaning of the first integrals Θ and T is similar to the parabolic
case. Evaluation of Θ and T at any point (r(t), θ(t)) on the piece of a hyperbolic trajectory with
sgn(v) ≷ 0 yields the angle of the radial line that intersects the inertial point on that piece of the
trajectory, and the time at which this point is reached. At the periapsis point r = r∗, Θ jumps by the
value (4.31), while the jump in T is given by

∆T =
k
√

2E3
arctanh *

,

√
2E |L |

√
k2 + 2EL2

+
-
. (4.37)

B. Inverse square force with cubic corrections

Consider an inverse-cube correction to the inverse-square central force (4.1),

F(r) = −kr−2 − κr−3 (4.38)

which has the potential

U(r) = − k
r
− κ

2r2 . (4.39)

Both terms in this force will be attractive if k > 0 and κ > 0, in which case the potential has only
one equilibrium point, req. = ∞. Since U(req.) = 0, the effective potential is given by

Ueff.(r) = L2 − κ
2r2 − k

r
. (4.40)

Then

E = 1
2 v

2 + 1
2 (L2 − κ)r−2 − kr−1 (4.41)

is the energy first integral (3.26). All trajectories can be classified qualitatively from the equation
E = Ueff.(r).

If κ ≥ L2, the correction term will dominate the angular momentum term. In this case, the
effective potential will have no extrema, and consequently there are no bounded trajectories, while
all unbounded trajectories pass through the origin r = 0.
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Thus, hereafter we will take

0 < κ < L2. (4.42)

In this case, the properties of the effective potential are similar to the Kepler case. There is one
extremum, which is a negative minimum, Umin

eff. = −
1
2 k2/(L2 − κ)2. As a consequence, all trajectories

with E ≥ 0 are unbounded, while all trajectories with 0 > E ≥ Umin
eff. are bounded, and bounded

trajectories with E = Umin
eff. are circular. The main difference compared to Kepler case will be that

here the unbounded trajectories are open and precessing. This is called the Newtonian revolving
orbit problem.

We now evaluate the angular and temporal first integrals (3.30) and (3.31). Note these first
integrals exist only for non-circular trajectories. We will need the relation

|v | =


2E + (κ − L2)r−2 + 2kr−1. (4.43)

1. Turning points for the Newtonian revolving orbit problem

The turning points r = r∗ of the effective potential (4.40) are given by replacing L2 with L2 − κ
in the expressions for the turning points in the Kepler case. Likewise, the minimum energy becomes

Emin = −
k2

2(L2 − κ) < 0. (4.44)

Only the trajectories with E > Emin need to be considered, since the trajectories with E = Emin are
circular (in which case the first integrals Θ and T do not exist).

For 0 > E > Emin, there are two turning points

r∗± =
k ±


k2 − 2|E |(L2 − κ)

2|E | . (4.45)

The angular first integral (3.30) with r0 = r∗± can be straightforwardly evaluated to yield

Θ± = θ +
L

√
L2 − κ

arctan
(

L2 − κ − kr

rv
√

L2 − κ

)
± sgn(v)L
√

L2 − κ
π

2
(4.46)

after use of the relation (4.43). Similarly, the temporal first integral (3.31) with r0 = r∗± yields

T± = t − rv
2|E | +

k
(2|E |)3/2

(
arctan *

,


2|E |r − k

2|E |rv
+
-
∓ π

2
sgn(v)) . (4.47)

From the first integral (4.46), trajectories with 0 > E > Emin are algebraically described by curves

r(θ) = L2 − κ
k ∓


k2 − 2|E |(L2 − κ) cos(1 − κ/L2 (Θ± − θ))

, (4.48)

which are bounded and have rmax = r∗+ and rmin = r∗−. The angular domain of these curves is given
by

− 1
2∆θ + Θ± ≤ θ ≤

1
2∆θ + Θ±, (4.49)

where, as shown by Proposition 3,

1
2∆θ = sgn(v)(Θ+ − Θ−) = πL

√
L2 − κ

> π (4.50)

is the angular separation between the two turning points. Since ∆θ is greater than 2π, the curves are
composed of pieces, such that the angular separation (3.38) between two successive periapsis points
r = r∗− or two successive apoapsis points r = r∗− on adjacent pieces is given by

∆θ =
2πL
√

L2 − κ
. (4.51)
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Moreover, by Proposition 2, adjacent pieces are reflection-symmetric around a radial line connect-
ing the origin r = 0 to either of the points r = r∗± where the pieces join. If ∆θ/(2π) is a rational
number, then the curve is closed, consisting of a finite number of pieces. If instead ∆θ/(2π) is an
irrational number, then the curve is open, consisting of an infinite number of pieces. In either case,
the curve describes a precessing bounded trajectory.

On each bounded trajectory, both first integrals Θ± and T± are piecewise functions. Their
physical and geometrical meaning depends on the choice of the radial value r0 = r+ or r0 = r−. If
r0 = r+, then (r(T+), θ(T+)) = (rmax,Θ+) is an apoapsis point on the trajectory, or instead if r0 = r−
then (r(T−), θ(T−)) = (rmin,Θ−) is a periapsis point. In both cases, Θ± and T± are continuous at the
apsis point r = r∗±, but have a jump discontinuity at the opposite apsis r = r∗∓.2 The jump in Θ±
is equal to the angular separation (4.51) between two successive periapsis points or two successive
apoapsis points on the trajectory. The jump in T± is the corresponding time interval between these
points,

∆t =
πk
2|E |3 , (4.52)

which represents the period of a single open orbit. Both of the temporal first integrals T± thus yield a
sequence of times such that the time interval (3.39) is the period ∆t.

Therefore, when the angular first integral Θ− and temporal first integral T− are evaluated at any
point (r(t), θ(t)) on a piece of the bounded trajectory (4.48), we obtain the angle of the radial line
that intersects the periapsis point on that piece, and the time at which this point is reached. Likewise
the angular first integral Θ+ and temporal first integral T+ evaluated at any point (r(t), θ(t)) on a piece
of the bounded trajectory yield the angle of the radial line that intersects the apoapsis point on that
piece, and the time at which this point is reached.

Next, for E = 0, there is a single turning point,

r∗ =
L2 − κ

2k
. (4.53)

The angular first integral (3.30) with r0 = r∗ is straightforward to evaluate,

Θ = θ +
L

√
L2 − κ

arctan
(

L2 − κ − kr

rv
√

L2 − κ

)
− sgn(v)L
√

L2 − κ
π

2
. (4.54)

Similarly, evaluation of the temporal first integral (3.31) with r0 = r∗ yields

T = t − rv(L2 − κ − kr)
3k2 . (4.55)

From the first integral (4.54), trajectories with E = 0 are algebraically described by curves

r(θ) = L2 − κ
k(1 + cos(1 − κ/L2 (Θ± − θ)))

(4.56)

on the angular domain

− πL
√

L2 − κ
+ Θ ≤ θ ≤ +Θ + πL

√
L2 − κ

. (4.57)

These curves (4.56) are unbounded and have rmin = r∗. By Proposition 2, each curve is reflection-
symmetric around the radial line connecting the origin r = 0 to the periapsis point r = r∗, where the
two pieces differ by sgn(v) ≷ 0 (with sgn(v) = 0 at the turning point).

On each unbounded trajectory, the first integrals Θ and T are piecewise functions such that
(r(T), θ(T)) = (rmin,Θ) is the periapsis point. Both Θ and T are continuous at this point. Thus, when
these first integrals are evaluated at any point (r(t), θ(t)) on the trajectory, we obtain the angle of
the radial line that intersects the periapsis point and the time at which this point is reached on the
trajectory. This is qualitatively the same as the Kepler case.
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Last, for E > 0, there is again a single turning point,

r∗ =


k2 + 2E(L2 − κ) − k

2E
. (4.58)

Evaluation of the angular first integral (3.30) with r0 = r∗ straightforwardly yields the same expres-
sion (4.54) as in the case E = 0. The temporal first integral (3.31) with r0 = r∗ gives

T = t − 1
2E

(
rv +

k
√

2E
arctanh *

,

√
2Evr

2Er + k
+
-

)
. (4.59)

From the first integral (4.54) combined with the relation (4.5), trajectories with E > 0 are algebrai-
cally described by curves

r(θ) = L2 − κ
k +


k2 − 2|E |(L2 − κ) cos(1 − κ/L2 (Θ± − θ))

(4.60)

on the angular domain

− π
2
− arctan

(√
2E
√

L2 − κ |/k
)
+ Θ ≤ θ ≤ π

2
+ arctan

(√
2E
√

L2 − κ/k
)
+ Θ. (4.61)

The properties of these curves as well as the angular first integral Θ and temporal first integral T are
the same as in the case E = 0.

2. Inertial points for the Newtonian revolving orbit problem

The effective potential (4.40) has a single inertial point r = r∗, which is given by replacing L2

with L2 − κ in the expression (4.26) for the inertial point in the Kepler case,

r∗ =
L2 − κ

k
. (4.62)

All of the earlier discussion of the first integrals Θ and T using r0 = r∗ in the Kepler case carries
over here in the same way as the discussion using turning points. In particular, the main qualitative
difference compared to the Kepler case is that for 0 > E > Emin the trajectories are composed of
more than two pieces, so consequently Θ± is multi-valued even when the trajectories are closed.

V. SYMMETRY FORMULATION

The general form of Noether’s theorem4,5 provides a one-to-one explicit correspondence be-
tween first integrals and dynamical symmetries of a Lagrangian. This correspondence arises from
two variational identities as follows.

We start with the polar Lagrangian (2.4) for the central force equations of motion (1.4), using
the polar variables t, r , θ, v , ω. Now consider any vector field (2.9), with the characteristic form
(2.11), given by components τ(t,r, θ, v,ω), ξ(t,r, θ, v,ω), and ψ(t,r, θ, v,ω). The action of this vector
field on the Lagrangian can be expressed in terms of the equations of motion, through the variational
derivatives (2.6) after integration by parts, yielding the identity

prX̂(L) = Pr δL
δr
+ Pθ δL

δθ
+

dS
dt
, S = PrLv + PθLω. (5.1)

From this identity, a necessary and sufficient condition for the Lagrangian to be invariant modulo
a total time derivative is that the components Pr and Pθ of the vector field have to satisfy the
condition

Pr δL
δr
+ Pθ δL

δθ
=

dR
dt

(5.2)

for some function R(t,r, θ, v,ω). A vector field (2.11) having this property is called a variational
symmetry. Because any total time derivative is annihilated by a variational derivative, the extremals
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of the Lagrangian are preserved by variational symmetries, and hence every variational symmetry is
an infinitesimal symmetry of the equations of motion. Thus, variational symmetries have the char-
acterization as infinitesimal symmetries of the equations of motion (1.4) such that the invariance
condition

prX̂(L) = d(S + R)
dt

, S = PrLv + PθLω (5.3)

holds for some function R(t,r, θ, v,ω). Note that a variational symmetry will be an infinitesimal
point transformation if (and only if) τ, ξ, ψ have no dependence on v and θ, or equivalently, Pr and
Pθ satisfy

Pr
vv = 0, Pθ

ωω = 0, Pr
ω = 0, Pθ

v = 0. (5.4)

To connect the invariance condition (5.3) to first integrals, consider the time derivative of a
general first integral I(t,r, θ, v,ω) of the central force equations of motion (1.4). The chain rule
combined with the determining equation (1.5) directly yields the identity

dI
dt
= − δL

δr
Iv −

δL
δθ

r−2Iω. (5.5)

Note the variational derivatives will vanish precisely for solutions of the equations of motion. The pair
of coefficients of these derivatives is called the multiplier of the first integral, which we will denote

Qr = −Iv, Qθ = −r−2Iω. (5.6)

From determining equation (1.5), it is simple to see that there are no first integrals depending only
on the variables t, r , θ. Consequently, any two first integrals that differ by at most a constant will
have the same multiplier, as given by Equation (5.6). Conversely, any multiplier determines a first
integral to within an additive constant through inverting Equation (5.6) by a line integral,

I =

C

�
−Qrdv − r2Qθdω

�
, (5.7)

where C denotes any curve in the coordinate space (v,ω), starting at an arbitrary point and ending at
a general point (v,w).

A comparison of identities (5.5) and (5.1) combined with the invariance condition (5.3) now
leads to the following general form of Noether’s theorem.

Proposition 4. For the polar equations of motion (1.4), variational symmetries in characteristic
form X̂ = Pr∂r + Pθ∂θ and multipliers (Qr ,Qθ) for first integrals have a one-to-one correspondence
given by

Pr = Qr , Pθ = Qθ, (5.8)

and

R = I + const. (5.9)

In particular, through the relations (5.6) and (5.8), variational point symmetries correspond to first
integrals that are at most quadratic in v and ω.

From this result, it is straightforward to obtain the symmetries that correspond to the first
integrals (3.25), (3.26), (3.30), and (3.31) admitted by the polar equations of motion.

The first integrals (3.25) for angular momentum and (3.26) for energy have the respective
multipliers

(Qr ,Qθ)(L) = (0,−1), (Qr ,Qθ)(E) = (−v,−ω), (5.10)

which yield the infinitesimal symmetries (in characteristic form)

X̂(L) = −∂θ, X̂(E) = −v∂r − ω∂θ. (5.11)

From the relation (2.11), these symmetries clearly correspond to infinitesimal point transformations

X(L) = −∂θ, X(E) = ∂t . (5.12)
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Compared with the point transformations found earlier in Theorem 1 for a general central force, we
see that −X(L) = X1 is the generator of a group of rotations (2.20) and X(E) = X2 is the generator of
a group of time-translations (2.21).

The multiplier of the first integral (3.30) for the angular quantity Θ is given by

(Qr ,Qθ)(Θ) = (−vΘE,−ΘL − ωΘE). (5.13)

This yields the infinitesimal symmetry (in characteristic form)

X̂(Θ) = −vΘE∂r − (ΘL + ωΘE)∂θ. (5.14)

Since Θ depends on L and E which themselves depend on the variables v and ω, the symmetry X̂(Θ)
is not an infinitesimal point transformation (namely, its components do not satisfy condition (5.4)).
However, this symmetry can be converted into a simpler form by putting τ = ΘE in the relations
(2.11) and (2.9), giving the equivalent dynamical symmetry

X(Θ) = ΘE∂t − ΘL∂θ. (5.15)

The first integral (3.31) for the temporal quantity T has the analogous multiplier

(Qr ,Qθ)(T ) = (−vTE,−TL − ωTE). (5.16)

This yields the infinitesimal symmetry (in characteristic form)

X̂(T ) = −vTE∂r − (TL + ωTE)∂θ (5.17)

which, similarly to X̂(Θ), is not an infinitesimal point transformation (since its components do
not satisfy condition (5.4)). A simpler equivalent symmetry is obtained by putting τ = TE in the
relations (2.11) and (2.9), yielding the dynamical symmetry

X(T ) = TE∂t − TL∂θ. (5.18)

Proposition 5. Through Noether’s theorem for the polar equations of motion (1.4), the first
integrals for angular momentum (3.25) and energy (3.26) correspond to the infinitesimal point
symmetries (5.12), while the first integrals given by the angular quantity (3.30) and the temporal
quantity (3.31) correspond respectively to the infinitesimal dynamical symmetries (5.15) and (5.18).

The infinitesimal dynamical symmetries given by X(Θ) and X(T ) each generate a group of
transformations acting on the dynamical variables (r(t), θ(t), v(t),ω(t)) for any solution (r(t), θ(t))
of the polar equations of motion (1.4). We will see later that there is a simple way to derive the
transformations by first looking at how X(Θ) and X(T ) act on the first integrals L and E. This will
also lead to a simple way to find the structure of the four-dimensional group of transformations
generated by all of the infinitesimal symmetries X(L), X(E), X(Θ), and X(T ).

A. Transformation of first integrals under dynamical symmetries

We now work out how the infinitesimal symmetries X(L), X(E), X(Θ), and X(T ) act on all of the
first integrals L, E, Θ, and T . Since every first integral is a function of the variables t,r, θ, v,ω, the
symmetries need to be prolonged to the coordinate space (t,r, θ, v,ω). This is most easily carried out
through the prolongation relations (2.13) and (2.12) which use the equivalent symmetries X̂(L), X̂(E),
X̂(Θ), and X̂(T ). For a general dynamical symmetry given by a generator (2.9), its action on a first
integral I(t,r, θ, v,ω) is thus given by

prX(I)�soln. =
(
prX̂(I) + dI

dt

) �
soln. = prX̂|soln.(I), (5.19)

which involves only the prolongation of the characteristic generator (2.11) evaluated on solutions of
the polar equations of motion (1.4).

In the case of the infinitesimal point symmetries X(L) and X(E), the prolongation of their charac-
teristic generators (5.11) evaluated on the equations of motion (1.4) is straightforwardly given by

prX̂(L)
�
soln. = −∂θ, prX̂(E)

�
soln. = −v∂r − ω∂θ − (ω2r + F(r))∂v + (2ωv/r)∂ω. (5.20)
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A direct calculation (using Maple) then yields

prX̂(L)
�
soln.(L) = prX̂(E)

�
soln.(L) = 0, prX̂(L)

�
soln.(E) = prX̂(E)

�
soln.(E) = 0. (5.21)

This result means that L and E can be treated as constants under the action of the symmetries X̂(L)
and X̂(E). Hence the action of these symmetries on Θ and T becomes simple to calculate, yielding
the result

prX̂(L)
�
soln.(T) = prX̂(E)

�
soln.(Θ) = 0, prX̂(L)

�
soln.(Θ) = −prX̂(E)

�
soln.(T) = −1. (5.22)

The prolongation of the characteristic generators (5.14) and (5.17) of the infinitesimal dynam-
ical symmetries X(Θ) and X(T ) is more involved to calculate:

prX̂(Θ)
�
soln. =X̂(Θ) +

(
v

dΘE

dt
�
soln. + (ω2r + F(r))ΘE

)
∂v

+

(
dΘL

dt
�
soln. + ω

dΘE

dt
�
soln. − (2ωv/r)ΘE

)
∂ω,

(5.23)

prX̂(T )
�
soln. =X̂(T ) +

(
v

dTE

dt
�
soln. + (ω2r + F(r))TE

)
∂v

+

(
dTL

dt
�
soln. + ω

dTE

dt
�
soln. − (2ωv/r)TE

)
∂ω.

(5.24)

One simplification is that, since L and E are constants of motion, the time-derivative terms can
be calculated just by using the chain rule expression (2.14). This leads to the simple result (using
Maple)

prX̂(Θ)
�
soln.(E) = prX̂(T )

�
soln.(L) = 0, prX̂(Θ)

�
soln.(L) = −prX̂(T )

�
soln.(E) = 1. (5.25)

From these expressions, it is straightforward to calculate the action of the symmetries X̂(Θ) and X̂(T )
on Θ and T . The final result (using Maple) is again simple,

prX̂(Θ)
�
soln.(Θ) = prX̂(T )

�
soln.(Θ) = 0, prX̂(Θ)

�
soln.(T) = −prX̂(T )

�
soln.(T) = 1. (5.26)

By applying Equation (5.19) to the previous expressions, we now have the following useful
result.

Theorem 3. For the first integrals L, E, Θ, and T of the polar equations of motion (1.4), the
action of the infinitesimal point symmetries X(L), X(E) consists of

prX(L)
�
soln.(L) = prX(L)

�
soln.(E) = prX(L)

�
soln.(T) = 0, prX(L)

�
soln.(Θ) = −1, (5.27)

prX(E)
�
soln.(L) = prX(E)

�
soln.(E) = prX(E)

�
soln.(Θ) = 0, prX(E)

�
soln.(T) = 1, (5.28)

and the action of the infinitesimal dynamical symmetries X(Θ) and X(T ) consists of

prX(Θ)
�
soln.(E) = prX(Θ)

�
soln.(Θ) = prX(Θ)

�
soln.(T) = 0, prX(Θ)

�
soln.(L) = 1, (5.29)

prX(T )
�
soln.(L) = prX(T )

�
soln.(Θ) = prX(T )

�
soln.(T) = 0, prX(T )

�
soln.(E) = −1. (5.30)

Hence the four first integrals are canonical coordinates for these four infinitesimal symmetries.

We will next use this result to give a simple derivation of the group of transformations gener-
ated by each of the infinitesimal dynamical symmetries X(Θ) and X(T ).

The components of these two symmetries are functions only of r , L, and E, where L and E are
the first integrals (3.25) and (3.26). Hence, the group of transformations can be found by integrating
a system of equations involving only the basic variables t, r , θ, along with L and E regarded as
auxiliary variables. From the expression (5.15) for X(Θ), this system is given by

∂t(ϵ)
∂ϵ
= ΘE(r(ϵ),L(ϵ),E(ϵ)), ∂θ(ϵ)

∂ϵ
= ΘL(r(ϵ),L(ϵ),E(ϵ)), (5.31)

∂r(ϵ)
∂ϵ

= 0,
∂L(ϵ)
∂ϵ

= 1,
∂E(ϵ)
∂ϵ

= 0, (5.32)
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where ϵ is the group parameter. Integration of Equation (5.32) easily gives

r(ϵ) = r, L(ϵ) = L + ϵ, E(ϵ) = E. (5.33)

Equation (5.31) then becomes

∂θ(ϵ)
∂ϵ

= ΘL(r,L + ϵ,E) = −∂Θ0(r,L + ϵ,E)
∂ϵ

, (5.34)

∂t(ϵ)
∂ϵ
= ΘE(r,L + ϵ,E) = − (L + ϵ)ΘL(r,L + ϵ,E)

2(E −U(r))
= −∂Θ0(r,L + ϵ,E)

∂ϵ

L + ϵ
2(E −U(r)) ,

(5.35)

which can be straightforwardly integrated. This yields

θ(ϵ) = θ + Θ0(r,L,E) − Θ0(r,L + ϵ,E) = Θ − Θ0(r,L + ϵ,E),
t(ϵ) = t +

L(Θ0(r,L,E) − Θ0(r,L + ϵ,E))
2(E −U(r)) ,

(5.36)

which is the transformation group generated by X(Θ). Similar steps applied to the expression (5.18)
for X(T ) lead to the transformation group

t(ϵ) = t + T0(r,L,E) − T0(r,L,E − ϵ) = T − T0(r,L,E − ϵ),
θ(ϵ) = θ + r2(T0(r,L,E) − T0(r,L,E − ϵ))

L
,

(5.37)

with

r(ϵ) = r, L(ϵ) = L, E(ϵ) = E − ϵ . (5.38)

Recall that the respective transformation groups generated by X(L) and X(E) are simply

θ(ϵ) = θ − ϵ (5.39)

t(ϵ) = t + ϵ (5.40)

with

r(ϵ) = r, L(ϵ) = L E(ϵ) = E. (5.41)

Finally, we can use the same approach to obtain the Lie algebra generated by the infinitesimal
dynamical symmetries X(Θ) and X(T ), together with the infinitesimal point symmetries X(L) and
X(E). Through Theorem 3, we extend these symmetries to act on L and E as auxiliary variables,

Xext
(L) = −∂θ, Xext

(E) = ∂t, (5.42)

Xext
(Θ) = ΘE∂t − ΘL∂θ + ∂L, Xext

(T ) = TE∂t − TL∂θ − ∂E. (5.43)

This extension can be viewed as a prolongation that is restricted to the variables (t,r, θ,L,E)
appearing in the first integrals.

The extended generators (5.42) and (5.43) have the form of infinitesimal point transformations
on the space (t,r, θ,L,E). A straightforward calculation (using Maple) shows that the commutators
of these generators vanish. Thus, we have the following new result.

Theorem 4. For the polar equations of motion (1.4), the infinitesimal dynamical symme-
tries X(Θ) and X(T ), and infinitesimal point symmetries X(L) and X(E), together generate a four-
dimensional abelian group of transformations (5.36), (5.37), (5.39), (5.40). When these transforma-
tions are extended in the form (5.33), (5.38), and (5.41), then the extended group acts as commuting
point transformations on (t,r, θ,L,E) under which r is invariant.
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B. Method of extended point symmetries for finding first integrals and hidden
dynamical symmetries

The results in Theorems 4 and 3 have the important consequence that we can now formulate an
algorithmic symmetry method to obtain all of the first integrals along with their underlying hidden
symmetry group by using only point symmetries combined with Noether’s theorem. The method
has four steps.

First, we find the variational point symmetries of the polar equations of motion (1.4), and
through Noether’s theorem, we obtain the corresponding first integrals. This will give X = ∂θ and
X = ∂t, yielding L and E. For later use, we also identify the joint invariant of these point symmetries
in the space (t,r, θ), which is r .

Second, we re-write the polar equations of motion in the form of an equivalent first-order sys-
tem using only the basic dynamical variables r , θ, plus the two first integrals, L, E (after elimination
of v and ω in terms of L and E). This system consists of the dynamical equations

dL
dt
= 0,

dE
dt
= 0,

dθ
dt
= r−2L,

dr
dt
= ±


2E − r−2L2 − 2U(r). (5.44)

Third, we find point symmetries of this first-order dynamical system under the restrictions that
they commute with the variational point symmetries of the original equations of motion and that
they preserve the joint invariant of those symmetries. The form of the symmetry generators being
sought is thus

X = η t(r,L,E)∂t + ηθ(r,L,E)∂θ + ηL(r,L,E)∂L + ηE(r,L,E)∂E. (5.45)

This will give the four symmetries (5.42) and (5.43), up to expressions which are arbitrary functions
of L and E.

Last, we find the canonical coordinates of these point symmetries in the space (t,r, θ,L,E). This
will reproduce the first integrals L and E as well as yield the two additional first integrals Θ and T .

It is important to emphasize that the determining equations for point symmetries with the
special form (5.45) will be a linear system of four equations in four unknowns, whose solution will
not involve the first integrals Θ and T . In particular, the system simply consists of

∂rη
L = 0, ∂rη

E = 0, (5.46)

∂rη
t =

r−2LηL − ηE

(2(E −U(r)) − r−2L2)3/2 , ∂rη
θ =

r−2(2(E −U(r))ηE − LηL)
(2(E −U(r)) − r−2L2)3/2 . (5.47)

This is in contrast to the case of general point symmetries, where the determining equations will be
an underdetermined system whose solution will necessarily contain expressions which are arbitrary
functions of all of the first integrals.

VI. FIRST INTEGRALS IN n DIMENSIONS

We return to the central force equations of motion in the n-dimensional form (2.1) given in
terms of the position vector r⃗ and velocity vector v⃗ in Rn. Hereafter, we will put m = 1 without loss
of generality (via rescaling the physical units of the dynamical variables).

We recall that all solutions (r⃗(t), v⃗(t)) of the equations of motion lie in a time-independent plane
spanned by these two vectors. Let r̂ be the unit vector along r⃗ and θ̂ be the unit vector orthogonal to
r⃗ in the plane of motion, such that {r̂ , θ̂} is a right-handed orthonormal basis in this plane R2 ⊂ Rn.
Then the vectors r⃗ and v⃗ are related to the polar variables (r, θ, v,ω) by

r⃗ = rr̂ , v⃗ = v r̂ + rωθ̂ (6.1)

and

ê1 = cos(θ)r̂ − sin(θ)θ̂, ê2 = sin(θ)r̂ + cos(θ)θ̂, (6.2)
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where {ê1, ê2} is a fixed (time-independent) orthonormal basis aligned with the respective directions
given by θ = 0 and θ = π/2 in the plane of motion. Thus we have

r = |r⃗ | = r̂ · r⃗ , v = r̂ · v⃗ , ω = r−1θ̂ · v⃗ (6.3)

and

cos(θ) = r̂ · ê1 = θ̂ · ê2, sin(θ) = r̂ · ê2 = −θ̂ · ê1. (6.4)

From the equations of motion (2.1) for (r⃗ , v⃗), we easily derive

dr̂
dt
= ωθ̂,

dθ̂
dt
= −ωr̂ (6.5)

which implies that the antisymmetric product of r̂ and θ̂ is time-independent,

d
dt
(r̂ ∧ θ̂) = 0. (6.6)

Thus

L̂ = r̂ ∧ θ̂ (6.7)

is an antisymmetric tensor (bi-vector) in Rn, satisfying

dL̂
dt
= 0, L̂ ∧ L̂ = 0, L̂ = ê1 ∧ ê2 (6.8)

and

r̂ · L̂ = θ̂, θ̂ · L̂ = −r̂ , L̂ · L̂ = 2. (6.9)

There is a one-to-one correspondence between this tensor and the plane of motion. It follows that
L̂ is a first integral of the n-dimensional equations of motion and determines the orientation of the
plane of motion. Note that this first integral does not appear among the polar first integrals since it
has no dynamical content for the motion within that plane.

Using these preliminaries, we now will express the polar first integrals (3.25), (3.26), (3.30),
and (3.31) in a geometric n-dimensional form.

We start with the energy (3.26). We re-write this first integral by noting

|⃗v |2 = v2 + L2/r2 (6.10)

so thus

E = 1
2 |⃗v |2 +U(|r⃗ |) (6.11)

is directly in an n-dimensional form.
Next we consider the angular momentum (3.25). This first integral can be written as

L = |r⃗ |θ̂ · v⃗ (6.12)

by using the vector θ̂. A more physically and geometrically natural formulation is given by combin-
ing L and L̂ into the first integral

L = LL̂ = Lr̂ ∧ θ̂ . (6.13)

From relation (6.1), we can express

θ̂ = L−1(|r⃗ |⃗v − (⃗v · r⃗)r̂) (6.14)

in terms of r⃗ and v⃗ , yielding

L = r⃗ ∧ v⃗ . (6.15)

This first integral is an antisymmetric tensor (bi-vector) in Rn having the properties

dL
dt
= 0, |L|2 = 2|L |2, L ∧ L = 0. (6.16)
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We next turn to the angular quantity (3.30), which can be expressed as

Θ = θ + Φ (6.17)

in terms of the integral expression

Φ = −L
 |r⃗ |

r0

sgn(v)
2(E +U(req.) −U(r))r4 − L2r2

dr. (6.18)

Since Θ is an angle in the plane of motion in Rn, it can be geometrically formulated as a unit vector

Θ̂ = cos(Θ)ê1 + sin(Θ)ê2. (6.19)

This vector is a first integral and has the properties

dΘ̂
dt
= 0, |Θ̂| = 1, Θ̂ ∧ L = 0. (6.20)

We can write it in terms of the unit vectors r̂ and θ̂, or equivalently the position and velocity vectors
r⃗ and v⃗ , by substituting the expressions (6.17) and (6.2), followed by using the relations (6.3) and
(6.14), which gives

Θ̂ = cos(Φ)r̂ + sin(Φ)θ̂ = 1
|r⃗ |

(
cos(Φ) − r⃗ · v⃗

L
sin(Φ)) r⃗ +

|r⃗ |
L

sin(Φ)⃗v, (6.21)

where the integral expression Φ involves L, E, |r⃗ |, and also sgn(v). Note the dependence on sgn(v)
drops out of cos(Φ) = cos |Φ| (since it is an even function). It is useful to re-write − sin(Φ) =
sgn(v)sgn(L) sin |Φ| so that sgn(v) appears as an overall factor. After re-writing these terms in the
expression cos(Φ)r̂ + sin(Φ)θ̂, and using the relation (6.9), we obtain

Θ̂ = |r⃗ |−1
(
cos(φ0)r⃗ −

√
2sgn(⃗v · r⃗)|L|−1 sin(φ0)r⃗ · L

)
(6.22)

which has a geometrically simple form, where

φ0 = |Φ| = |L|
 |r⃗ |

r0


4(E +U(req.) −U(r))r4 − |L|2r2

−1
dr (6.23)

is a time-dependent angle. Here req. is an equilibrium point (3.22) of the central force potential
U(|r⃗ |), and r0 is a turning point (3.29) or an inertial point (3.28) of the effective potential

Ueff.(|r⃗ |) = |L|2/(2|r⃗ |)2 +U(|r⃗ |) −U(req.). (6.24)

We remark that another vector first integral can be formed from Θ by rotating Θ̂ by the angle
π/2 in the plane of motion. This yields

Θ̂
⊥
= − sin(Θ)ê1 + cos(Θ)ê2 = − sin(Φ)r̂ + cos(Φ)θ̂, (6.25)

which we can write equivalently in the geometrical form

Θ̂
⊥
= Θ̂ · L̂ = (|r⃗ |L)−1

(
cos(φ0)r⃗ · L + 1√

2
sgn(⃗v · r⃗)|L| sin(φ0)r⃗

)
. (6.26)

It has the properties

dΘ̂
⊥

dt
= 0, |Θ̂⊥| = 1, Θ̂

⊥ ∧ L = 0, Θ̂
⊥ · Θ̂ = 0. (6.27)

Finally, we consider the temporal quantity (3.31). This first integral has the n-dimensional form

T = t −
√

2sgn(⃗v · r⃗)τ0 (6.28)

with

τ0 =

 |r⃗ |

r0


4(E +U(req.) −U(r)) − |L|2r−2

−1
dr, (6.29)
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which we obtain through the relations (6.3). Note τ0 is a time-dependent geometrical expression,
where req. and r0 are the same radial points used in the first integral Θ̂.

In summary, the four polar first integrals (3.25), (3.26), (3.30), and (3.31) give rise to corre-
sponding n-dimensional first integrals (6.15), (6.11), (6.22), and (6.28) which each have a geomet-
rical form given in terms of the position and velocity vectors r⃗ and v⃗ . Note that the energy (3.26)
and the temporal quantity (3.31) are scalar first integrals, whereas the angular momentum (6.15) is a
tensor first integral and the angular quantity (6.22) is a vector first integral. We will show later that
this vector first integral can be used to define a general Laplace-Runge-Lenz vector.

The total number of time-independent quantities defined by all of these n-dimensional first
integrals is n(n − 1)/2 from the components of L, and n from the components of Θ̂ (as defined
with respect to any fixed orthonormal basis of Rn), plus 2 given by E and T . However, not all
of these quantities are independent, due to the algebraic properties L ∧ L = 0, Θ̂ ∧ L = 0, |Θ̂| = 1.
In particular, L has only 2n − 3 independent components, corresponding to the orientation of the
2-dimensional plane of motion in Rn (which accounts for 2n − 4 components) and the magnitude of
the angular momentum in this plane (which accounts for a single component); Θ̂ has n − 1 indepen-
dent components, corresponding to a 2-dimensional cone in Rn (which accounts for n − 2 compo-
nents) and an angle of a unit vector in this cone (which accounts for a single component), where the
cone is tangent to the plane of motion. Consequently, together L and Θ̂ determine a total of 2n − 2
independent quantities. Since there are 2 independent quantities given by E and T , this yields 2n
independent quantities altogether, which is precisely the number of functionally independent first
integrals allowed for a second-order system with n independent dynamical variables.

Thus we have the following result.

Theorem 5. For the equations of motion (1.3) of general central force dynamics in n > 1
dimensions:
(1) L and E are well-defined first integrals for all solutions r⃗(t).
(2) Θ̂ and T are well-defined first integrals for all non-circular solutions r⃗(t).
(3) Altogether, L, E, Θ̂ yield 2n − 1 functionally independent constants of motion, while T is a first
integral which is not a constant of motion.
(4) Every first integral is a function of L, E, Θ̂, T, and every constant of motion is a function of L,
E, Θ̂.

We emphasize that each of L, E, Θ̂, T can be directly verified to obey the defining equation
(1.2) for first integrals of the central force equations of motion (1.3). We also emphasize that the
integral expressions (6.23) and (6.29) appearing respectively in L and T are well-defined because
we have specified the endpoint value r0 directly in terms of the effective potential (6.24). If the
endpoint were omitted or allowed to be arbitrary, then the resulting first integrals would be defined
only to within an arbitrary additive constant and would lose an important part of their physical
meaning, which we will discuss next.

A. General Laplace-Runge-Lenz vector

The vector first integral Θ̂ has physical properties similar to the angular first integral Θ dis-
cussed in Sec. III C. These properties depend on the particular choice made for the radial endpoint
r0 in the integral expression (6.23) appearing in Θ̂.

There are two different possibilities for r0, which are tied to the shape of trajectories in the
plane of motion for solutions r⃗(t) of the central force equations of motion (1.3). Recall, for a given
non-circular trajectory, a turning point is a radial value at which the radius |r⃗ | of the trajectory is a
local extremum (i.e., an apsis), and an inertial point is a radial value at which the radial speed r̂ · v⃗
is a local extremum. For all central force potentials U(|r⃗ |) of physical interest, at least one turning
point or one inertial point can be assumed to exist on each non-circular trajectory.

When a trajectory has no turning points, then we choose r0 to be the radius of an inertial point
on the trajectory in the plane of motion. In this case, Θ̂ will be the direction vector of the radial line
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that intersects the trajectory at this point. Similarly, the first integral T will be the time t at which the
trajectory reaches this point.

When a trajectory instead has at least one turning point, then we can choose r0 to be this turning
point on the trajectory in the plane of motion. Then Θ̂ will be the direction vector of the radial line
that intersects the trajectory at this point, and the first integral T will be the time t at which the
trajectory reaches this point. If the trajectory possesses a single turning point, this point will be a
periapsis point (i.e., a local minimum of the radius |r⃗ |), and Θ̂ is then uniquely defined. In contrast,
if the trajectory possesses multiple turning points, then the trajectory will have apses that occur in
pairs consisting of a periapsis point and an apoapsis point (i.e., a local maximum of the radius |r⃗ |).
In this case, Θ̂ will be single-valued only on each part of the trajectory between pairs of successive
periapsis points or successive apoapsis points. This is caused by the sign factor sgn(⃗v · r⃗) appearing
in Θ̂, which produces a jump in the value of Θ̂ when the trajectory passes through the next apsis
point occurring after the apsis point that corresponds to the radius r0. From Proposition 3, this jump
is equal to the angular separation (3.38) between each pair successive periapsis points or successive
apoapsis points on the trajectory.

If this angular separation (3.38) is a rational multiple of 2π, then the shape of the trajectory
is closed. In this case the first integral Θ̂ will yield a finite number of distinct vectors in the plane
of motion, corresponding to the finite number of periapsis points or apoapsis points. When the
angular separation is exactly 2π, there will be exactly two apsis points and then the trajectory is not
precessing in the plane of motion. Otherwise, there will be more than two apsis points, and then the
trajectory is precessing.

In contrast, if the angular separation (3.38) is an irrational multiple of 2π, then the curve
describing the shape of the trajectory is open. In this case the first integral Θ̂ will yield an infinite
number of distinct vectors in the plane of motion, corresponding to the infinite number of periapsis
points or apoapsis points, and the trajectory is then precessing in the plane of motion.

In either case, the temporal first integral T yields a periodic infinite sequence of values, which
are the times at which the trajectory passes through successive periapsis or apoapsis points.

Based on these properties, it is natural to view the vector Θ̂ as defining the directional part
of a general Laplace-Runge-Lenz vector for arbitrary central forces in n > 1 dimensions. We first
re-write the expression (6.21) for Θ̂ in the following way, which will make contact with the usual
Laplace-Runge-Lenz vector expression for an inverse-square central force.3,1,2

From expression (6.23), we have the relation ∂|r⃗ | cos(φ0) = −|L∥r⃗ |−1|⃗v · r⃗ |−1 sin(φ0) which yields

sgn(⃗v · r⃗) sin(φ0) = − |r⃗ |⃗v · r⃗|L | ∂|r⃗ | cos(φ0). (6.30)

By using expressions (6.1) and (6.13), we also get the relation

(⃗v · r⃗)r̂ · L = |r⃗ |⃗v · L + L2r̂ . (6.31)

These relations (6.31) and (6.30) can be combined with expression (6.22), yielding

Θ̂ =
∂|r⃗ |(|r⃗ | cos(φ0))

|r⃗ | r⃗ +
2|r⃗ |2∂|r⃗ |(cos(φ0))

|L|2 v⃗ · L. (6.32)

Thus, we obtain the general Laplace-Runge-Lenz vector

A⃗ = A(E,L)( ∂|r⃗ |(|r⃗ | cos(φ0))
|r⃗ | r⃗ +

2|r⃗ |2∂|r⃗ |(cos(φ0))
|L|2 v⃗ · L

)
, (6.33)

where A(E,L) > 0 is an arbitrary normalization factor, and φ0 is the (time-dependent) angle expres-
sion (6.23). This vector satisfies

d A⃗
dt
= 0, A⃗ ∧ L = 0. (6.34)

From the preceding discussion, we have the following main result.

Theorem 6. For all non-circular solutions of the equations of motion (1.3) of general central
force dynamics in n > 1 dimensions, the vector quantity (6.33) is a well-defined first integral A⃗
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whose geometrical properties are determined by the radial value r0 > 0 appearing in the angular
quantity φ0.
(1) A⃗ lies along the direction of the radial vector r⃗(T) in the plane of motion of the trajectory r⃗(t),
where T is the temporal first integral (6.28) using the radial value r0.
(2) For an unbounded trajectory r⃗(t) with no radial turning points, T yields the times t when
|r⃗(t)| = r0 is the radius of the two inertial points on the trajectory (where the radial speed v⃗(t) · r̂ is
a positive or negative extremum); thereby A⃗ is double-valued.
(3) For an unbounded trajectory r⃗(t) with one radial turning point, T yields the time t when
|r⃗(t)| = r0 is the radius of the periapsis point on the trajectory (where the radius |r⃗(t)| is a mini-
mum); thereby A⃗ is single-valued.
(4) For a bounded trajectory r⃗(t) with multiple radial turning points, T yields the times t when
|r⃗(t)| = r0 is the radius of either the periapsis point(s) or the apoapsis point(s) on the trajec-
tory (where the radius |r⃗(t)| is, respectively, either a minimum or a maximum); therefore, A⃗ is
single-valued if the angular separation between successive periapsis and apoapsis points is π, and
otherwise A⃗ is multi-valued.

An interesting variant of the general Laplace-Runge-Lenz vector A⃗ can be obtained by choos-
ing the radial value r0 to be the radius of an inertial point for any non-circular trajectory. As we will
see in Sec. VII, this variant generalizes Hamilton’s eccentricity vector13 which is known to be a first
integral for inverse-square central forces.

VII. EXAMPLES OF n-DIMENSIONAL GENERAL LAPLACE-RUNGE-LENZ VECTOR

We will now examine the general Laplace-Runge-Lenz vector (6.33) and its variant for two
important examples of central force dynamics in n dimensions, using the results from Sec. IV.

For comparison with previous results in the literature on central force dynamics in n = 3
dimensions, it will be useful to note some 3-dimensional identities relating the antisymmetric
product of vectors and the cross-product of vectors,

C⃗ · (A⃗ ∧ B⃗) = (C⃗ · A⃗)B⃗ − (C⃗ · B⃗)A⃗ = (A⃗ × B⃗) × C⃗, (7.1)

(A⃗ ∧ B⃗) · (C⃗ ∧ D⃗) = 2(A⃗ · B⃗)(C⃗ · D⃗) − 2(A⃗ · D⃗)(B⃗ · C⃗) = 2(A⃗ × B⃗) · (C⃗ × D⃗). (7.2)

A. Inverse-square force

An inverse-square force (4.1) has three different types of non-radial trajectories, depending on
the first integrals (6.15) and (6.11) for angular momentum L and energy E: elliptic trajectories, with
0 > E > Emin; parabolic trajectories, with E = 0; and hyperbolic trajectories, with E > 0.

Parabolic and hyperbolic trajectories respectively have a single turning point (4.16) and (4.21),
which is the periapsis on the trajectory. Using the radius of the turning point for the radial value r0 to
evaluate the angular expression (6.18), we have

Φ = arctan
(

L2 − kr
Lvr

)
− sgn(vL)π

2
, (7.3)

where L = 1
2 L · L̂ is the angular momentum scalar and v = v⃗ · r̂ is the radial speed. This yields

cos(Φ) = L2 − kr

r
√

2EL2 + k2
= cos(φ0), sin(Φ) = −Lv

√
2EL2 + k2

. (7.4)

Hence the vector first integral (6.32) is given by

Θ̂ =
1

r2
√

2EL2 + k2

�(L2 − kr)r⃗ − (⃗v · r⃗)r⃗ · L� = −1
E |L|2 + k2

((k/|r⃗ |)r⃗ + v⃗ · L) (7.5)
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in terms of the energy E and the angular momentum L. The expression (6.33) for the general
Laplace-Runge-Lenz vector thereby yields

A⃗∗ = − ((k/|r⃗ |)r⃗ + v⃗ · L) , (7.6)

where we have chosen the normalization factor to be A(E,L) = 
E |L|2 + k2. (Note that the

subscript ∗ indicates the use of a turning point for r0 in defining the vector.) This vector (7.6) lies
along the radial line connecting the origin to the periapsis point on the trajectory.

Elliptic trajectories have two turning points (4.8), which are the periapsis and apoapsis on the
trajectory. Evaluating the angular expression (6.18) by using the radius r∗± of the turning points for
the radial value r0, we obtain

Φ± = arctan
(

L2 − kr
Lvr

)
± sgn(vL)π

2
. (7.7)

This yields

cos(Φ±) = ∓ L2 − kr

r
√

2EL2 + k2
= cos(φ0), sin(Φ±) = ± Lv

√
2EL2 + k2

(7.8)

with 2EL2 + k2 > 0 for E > Emin. Hence the vector first integral (6.32) is given by

Θ̂± =
∓1

r2
√

2EL2 + k2

�(L2 − kr)r⃗ − (⃗v · r⃗)r⃗ · L� = ±1
E |L|2 + k2

((k/|r⃗ |)r⃗ + v⃗ · L) . (7.9)

Then the expression (6.33) for the general Laplace-Runge-Lenz vector gives

A⃗∗± = ± ((k/|r⃗ |)r⃗ + v⃗ · L) (7.10)

where we have again chosen A(E,L) = 
E |L|2 + k2 as the normalization factor. This vector (7.10)

lies along the semi-major axis of the trajectory, such that A⃗∗− points toward the periapsis point and
A⃗∗+ points toward the apoapsis point.

Notice the relationship A⃗∗− = A⃗∗. This means that the expression (7.6) provides a general
Laplace-Runge-Lenz vector that points toward the periapsis point for all three types of trajectories.
In n = 3 dimensions, this vector is exactly the usual Laplace-Runge-Lenz vector3,13

A⃗∗ = v⃗ × L⃗ − k |r⃗ |−1r⃗ , (7.11)

where | A⃗| = √2EL2 + k2.
An interesting variant of the n-dimensional general Laplace-Runge-Lenz vector (7.6) is given

by choosing the radial value r0 to be an inertial point on a trajectory. All three types of trajectories
each have two inertial points (4.26) differing by sgn(v) ≷ 0 on the trajectory. Using the radius of the
inertial points for the radial value r0 in evaluating the angular expression (6.18), we have

Φ = arctan
(

L2 − kr
Lvr

)
, (7.12)

which yields

cos(Φ) = |L∥v |
√

2EL2 + k2
= cos(φ0), sin(Φ) = sgn(Lv) L2 − kr

r
√

2EL2 + k2
. (7.13)

The vector first integral (6.22) is then given by

Θ̂ =
|L |

r2
√

2EL2 + k2

�
r |v |r⃗ + sgn(v)(1 − kr/L2)r⃗ · L�

=
1

2(E + k2/|L|2)
1

|⃗v · r⃗ |
�(2E + k/|r⃗ |)r⃗ + (1 − 2k |r⃗ |/|L|2)⃗v · L� .

(7.14)

Hence the expression (6.33) for the general Laplace-Runge-Lenz vector gives

A⃗∗ =
1

|⃗v · r⃗ |
�(2E + k/|r⃗ |)r⃗ + (1 − 2k |r⃗ |/|L|2)⃗v · L� , (7.15)
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where we have chosen A(E,L) = 
2(E + k2/|L|2). (Note that the superscript ∗ indicates the use

of an inertial point for r0 in defining the vector.) This vector (7.15) is related to the previous
vector A⃗∗ by

A⃗∗ · L̂ = sgn(v)A⃗∗, (7.16)

which represents a rotation of sgn(⃗v · r⃗)π/2 in the plane of motion.
Thus, the variant Laplace-Runge-Lenz vector (7.15) lies along a line that is perpendicular to

the Laplace-Runge-Lenz vector in the plane of motion. (In the case of elliptic trajectories, this
line is the semi-minor axis.) Most interestingly, it is double-valued since it changes sign around
the periapsis point on a trajectory. In n = 3 dimensions, this vector is a multiple of Hamilton’s
eccentricity vector13

e⃗ = v⃗ + k |L⃗ |−2|r⃗ |−1r⃗ × L⃗ = |L⃗ |−2L⃗ × A⃗∗ = sgn(v)|L⃗ |−1A⃗∗. (7.17)

Although the eccentricity vector e⃗ is usually defined only for elliptic trajectories, the variant vector
A⃗∗ exists for parabolic and hyperbolic trajectories as well.

B. Inverse-square force with cubic corrections

For an inverse-square force with cubic corrections (4.38), there are again three different types
of non-radial trajectories, depending on the first integrals (6.15) and (6.11) for angular momentum
L and energy E: bounded precessing elliptic-like trajectories, with 0 > E > Emin; unbounded
parabolic-like trajectories, with E = 0; and unbounded hyperbolic-like trajectories, with E > 0.

Bounded trajectories have turning points (4.45) given by the periapsis and apoapsis points on
the trajectory. Using the radius of the turning points for the radial value r0 to evaluate the angular
expression (6.18), we have

Φ± =
L

√
L2 − κ

(
arctan

(
L2 − κ − kr

rv
√

L2 − κ

)
± sgn(v)π

2

)
, (7.18)

where L = 1
2 L · L̂ is the angular momentum scalar and v = v⃗ · r̂ is the radial speed. This yields

cos(Φ±) = ∓ cos
( L
√

L2 − κ
arccos

( L2 − κ − kr

r


2E(L2 − κ) + k2

))
= cos(φ0),

sin(Φ±) = ± sin
( L
√

L2 − κ
arcsin

( v
√

L2 − κ
2E(L2 − κ) + k2

))
.

(7.19)

In terms of these expressions, the vector first integral (6.21) is given by

Θ̂± = ∓
(

cos
( L
√

L2 − κ
arccos

( L2 − κ − kr

r


2E(L2 − κ) + k2

))
r̂

− sin
( L
√

L2 − κ
arcsin

( v
√

L2 − κ
2E(L2 − κ) + k2

))
r̂ · L̂

)
.

(7.20)

The alternative formulation (6.32) of this first integral is most easily obtained by re-writing the two
terms in the expression (7.20) by the following steps. First, we use the relations and (6.1) and (6.9)
to express the second term in the form

sin(Φ±)r̂ · L̂ = L
rv

sin(Φ±)r̂ + 1
v

sin(Φ±)⃗v · L̂. (7.21)

Next, we combine the coefficients of the r̂ terms in expressions (7.20) and (7.21) to get

cos(Φ±) + L
rv

sin(Φ±) =
√

r2v2 + L2

rv
cos(Φ± − Υ), (7.22)

where

Υ = arctan
( L
rv

)
. (7.23)
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We then obtain

Θ̂± =
1
v

(√r2v2 + L2

r2 cos(Φ± − Υ)r⃗ + 1
L

sin(Φ±)⃗v · L
)
, (7.24)

which can be written out in an explicit form with the use of the relation (4.43). The expression
(6.33) for the general Laplace-Runge-Lenz vector thereby yields

A⃗∗± =
A(E,L)
v⃗ · r⃗

(
2(E + k/|r⃗ |) + κ/|r⃗ |2×

cos
( L
√

L2 − κ
arccos

( ∓(L2 − κ − k)|r⃗ |
r


2E(L2 − κ) + k2

)
− arccos

( v⃗ · r⃗
2(E + k/|r⃗ |) + κ/|r⃗ |2

))
r⃗

± L−1|r⃗ | sin
( L
√

L2 − κ
arcsin

( v⃗ · r⃗
√

L2 − κ
|r⃗ |2E(L2 − κ) + k2

))
v⃗ · L

) (7.25)

in terms of the energy E and the scalar angular momentum L. (Note the subscript ∗ indicates the use
of a turning point for r0 in defining the vector.) One possible choice for the normalization factor, in
analogy to the Kepler case, is A(E,L) = 

2E(L2 − κ) + k2. The properties of this vector (7.25) are,
however, quite different compared to the Kepler case. Since unbounded trajectories are precessing,
A⃗∗± is multi-valued such that, on a trajectory r⃗(t), A⃗∗− points toward the periapsis point closest to
r⃗(t) and A⃗∗+ points toward the apoapsis point closest to r⃗(t). This means A⃗∗± is jump discontinuous
when r⃗(t) passes through each periapsis and apoapsis, respectively.

Unbounded trajectories have a single turning point (4.53) in the parabolic-like case and (4.58)
in the hyperbolic-like case. In both cases, the turning point is the periapsis on the trajectory. Eval-
uating the angular expression (6.18) by using the radius r∗± of the periapsis for the radial value r0,
we obtain Φ = Φ−. Hence the vector first integral (6.32) is given by Θ̂ = Θ̂−. Then A⃗ = A⃗− is the
expression for the general Laplace-Runge-Lenz vector (6.33). This vector lies along the radial line
connecting the origin to the periapsis point on the trajectory.

The expression

A⃗∗ =
A(E,L)
v⃗ · r⃗

(
2(E + k/|r⃗ |) + κ/|r⃗ |2×

cos
( L
√

L2 − κ
arccos

( L2 − κ − k |r⃗ |
|r⃗ |2E(L2 − κ) + k2

)
− arccos

( v⃗ · r⃗
2(E + k/|r⃗ |) + κ/|r⃗ |2

))
r⃗

− L−1|r⃗ | sin
( L
√

L2 − κ
arcsin

( v⃗ · r⃗
√

L2 − κ
|r⃗ |2E(L2 − κ) + k2

))
v⃗ · L

) (7.26)

thereby provides a general Laplace-Runge-Lenz vector that points toward the periapsis point closest
to r⃗(t), for all three types of trajectories.

Similarly to the Kepler case, there is a variant of the n-dimensional general Laplace-Runge-
Lenz vector (7.26), which arises from choosing the radial value r0 to be an inertial point on a
trajectory. All three types of trajectories each have two inertial points (4.62) differing by sgn(v) ≷ 0
on each part trajectory. Using the radius of the inertial points for the radial value r0 in evaluating the
angular expression (6.18), we have

Φ =
L

√
L2 − κ

arctan
(

L2 − κ − kr

rv
√

L2 − κ

)
, (7.27)

which yields

cos(Φ) = cos
( L
√

L2 − κ
arccos

( |v |√L2 − κ
2E(L2 − κ) + k2

))
= cos(φ0),

sin(Φ) = sgn(v) sin
( L
√

L2 − κ
arcsin

( L2 − κ − kr

r


2E(L2 − κ) + k2

))
.

(7.28)
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The vector first integral (6.22) is then given by

Θ̂± = cos
( L
√

L2 − κ
arccos

( |v |√L2 − κ
2E(L2 − κ) + k2

))
r̂

+ sgn(v) sin
( L
√

L2 − κ
arcsin

( L2 − κ − kr

r


2E(L2 − κ) + k2

))
r̂ · L̂.

(7.29)

By the same steps as in Kepler case, this leads to the expression

A⃗∗ =
A(E,L)
v⃗ · r⃗

(
2(E + k/|r⃗ |) + κ/|r⃗ |2×

cos
( L
√

L2 − κ
arccos

( |⃗v · r⃗ |√L2 − κ
|r⃗ |2E(L2 − κ) + k2

)
− arccos

( v⃗ · r⃗
2(E + k/|r⃗ |) + κ/|r⃗ |2

))
r⃗

+ sgn(v)L−1|r⃗ | sin
( L
√

L2 − κ
arcsin

( L2 − κ − k |r⃗ |
|r⃗ |2E(L2 − κ) + k2

))
v⃗ · L

)
.

(7.30)

(Note the superscript ∗ indicates the use of an inertial point for r0 in defining the vector.) The variant
vector A⃗∗ is related to the previous vector A⃗∗ by a rotation through an angle
sgn(⃗v · r⃗)(L/√L2 − κ)π/2 in the plane of motion. Hence, in contrast to the general Laplace-Runge-
Lenz vector A⃗∗, this variant vector A⃗∗ changes sign when r⃗(t) passes through each periapsis on a
trajectory.

VIII. CONCLUDING REMARKS

The results presented in Secs. III and VI provide a simple direct derivation of all 2n first
integrals for general central force dynamics in n > 1 dimensions. This derivation is based on solving
the determining equations for first integrals of the equations of motion in a polar formulation and
does not involve any use of symmetry. The first integrals are shown to be generated by an anti-
symmetric tensor (bi-vector) L̂ determining the plane of motion, the angular momentum L in this
plane, and the energy E, which are defined for all solutions r⃗(t), plus an angular quantity Θ and a
temporal quantity T both of which are defined only for non-circular solutions r⃗(t). The quantities
L̂, L, E comprise 2n − 2 functionally independent first integrals, which constitute a complete set
for all circular solutions, while the quantities Θ, T together with L̂, L, E comprise 2n functionally
independent first integrals, which constitute a complete set for all non-circular solutions.

The angular quantity Θ is used to define a general Laplace-Runge-Lenz vector whose geomet-
rical and physical properties are discussed in detail in Sec. VI. In particular, Θ is shown to be
single-valued if a trajectory r⃗(t) has at most one apsis (turning point) in the plane of motion. In this
case the general Laplace-Runge-Lenz vector has a unique direction aligned with the apsis on the
trajectory. If instead a trajectory has multiple apses in the plane of motion, then Θ is shown to be
single-valued when it is evaluated between pairs of successive periapsis points or apoapsis points
on the trajectory. In this case, Θ defines a unique direction only if the angular separation between
any pair of successive periapsis points or apoapsis points on the trajectory is an integer multiple of
2π, corresponding to the trajectory being closed. If the angular separation is not an integer multiple
of 2π, then the direction defined by Θ undergoes a discontinuous jump when the next successive
periapsis or apoapsis point is reached on the trajectory, corresponding to the trajectory being either
open or precessing.

A variant of the general Laplace-Runge-Lenz vector is also defined in Sec. VI, by using a
different form of the angular quantity Θ based on the inertial points of a trajectory r⃗(t). In this case,
Θ is single-valued only on each piece of a trajectory where the radial speed has a definite sign, while
at each apsis point on the trajectory, Θ has a discontinuous jump. This variant is a generalization of
Hamilton’s eccentricity vector, which applies to general central forces.

These properties are explicitly illustrated in Secs. IV and VII for an inverse-square central
force, where bounded trajectories are closed and non-precessing, and for inverse-cube corrections to
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an inverse-square central force, where bounded trajectories are precessing and either open or closed
(depending on the correction parameter).

A symmetry interpretation of the first integrals Θ and T is also obtained, using the Lagrangian
formulation of the central force equations of motion. In contrast to the well-known origin of L
and E from point symmetries given by polar rotations and time translations, the quantities Θ and
T are shown to arise from hidden dynamical (first-order) symmetries. The explicit transformations
generated by these symmetries are derived by utilizing the action of the symmetries on the first
integrals L, E, Θ, and T . These transformations are shown to form a four-dimensional abelian Lie
group. This leads to a novel method for directly deriving the first integrals by use of extended point
symmetries outlined in Sec. V.

All of these new results will be further developed in future work. We plan to apply the method
of extended point symmetries to give a new symmetry derivation of the 2n first integrals for the
central force equations of motion in n dimensions and also to obtain the explicit hidden symmetry
group underlying the general n-dimensional Laplace-Runge-Lenz vector.
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