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Abstract: This article is a detailed history of the Gibbs paradox, with philosophical morals. It purports
to explain the origins of the paradox, to describe and criticize solutions of the paradox from the early
times to the present, to use the history of statistical mechanics as a reservoir of ideas for clarifying
foundations and removing prejudices, and to relate the paradox to broad misunderstandings of the
nature of physical theory.
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1. Introduction

The history of thermodynamics has three famous “paradoxes”: Josiah Willard Gibbs’s mixing
paradox of 1876, Josef Loschmidt reversibility paradox of the same year, and Ernst Zermelo’s recurrence
paradox of 1896. The second and third revealed contradictions between the law of entropy increase and
the properties of the underlying molecular dynamics. They prompted Ludwig Boltzmann to deepen the
statistical understanding of thermodynamic irreversibility. The Gibbs paradox—first called a paradox
by Pierre Duhem in 1892—denounced a violation of the continuity principle: the mixing entropy of
two gases (to be defined in a moment) has the same finite value no matter how small the difference
between the two gases, even though common sense requires the mixing entropy to vanish for identical
gases (you do not really mix two identical substances). Although this paradox originally belonged to
purely macroscopic thermodynamics, Gibbs perceived kinetic-molecular implications and James Clerk
Maxwell promptly followed him in this direction. From Gibbs to the present, the Gibbs paradox has
tested the foundations of thermodynamics, both at the macroscopic and at the kinetic-molecular level.

A few lessons will be drawn from this history. First, the Gibbs paradox needs disambiguation.
Different paradoxes have to be distinguished according to the theoretical level at which they occur.
Second, most of the solutions that were proposed in the abundant literature on the paradox since the
advent of quantum mechanics have (mostly unknown) antecedents in the nineteenth century. Third
and most important, the paradox (in its various forms) cannot be solved without delving deeper into
the foundations of thermodynamics and statistical mechanics than is usually done. Before any sound
discussion, three foundational issues need to be addressed: the relevance of stationary ensembles to
describe the equilibrium of a single system, the physical meaning of statistico-mechanical probabilities,
and their relation to entropy. Here too, history helps because the founding fathers Boltzmann and
Albert Einstein explained these points in a much fuller manner than his usually done in modern
texts on statistical thermodynamics. Lastly (see also [1]), the history of the paradox leads us to reject
common prejudices about the extensivity of entropy (even for gases), about the impossibility of solving
the paradox in a purely classical context, and about the role of quantum indistinguishability in solving
the paradox.

The first purpose of this essay is to retrace the early history of the Gibbs paradox, including the
thermodynamic and chemical contexts in which its chief ingredients emerged, early formulations and
attempted solutions from Gibbs to Max Planck, and parallel developments that implicitly bear on the
paradox, for instance Boltzmann’s study of chemical equilibrium and Paul Ehrenfest’s rejection of

Entropy 2018, 20, 443; doi:10.3390/e20060443 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20060443
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/6/443?type=check_update&version=2


Entropy 2018, 20, 443 2 of 54

extensive entropies. These two physicists certainly knew about the Gibbs paradox (Boltzmann used the
last sentence of Gibbs’s discussion, “The impossibility of an uncompensated decrease of entropy seems
to be reduced to improbability”, as an epigraph to the second volume of his lectures on gas theory).
Yet they did not discuss it in their writings, possibly because they knew the paradox disappeared in
their own concept of mixing.

Section 2 of this essay sets the stage for Gibbs’s remarkable theory of chemical equilibrium,
in which he enunciated his eponymous paradox in April 1876. In the years preceding this
theory, thermodynamics was still a developing theory whose principles and concepts were often
misunderstood. Violations of the second law were still contemplated; and entropy, which Rudolf
Clausius introduced in 1865, was commonly regarded as a mysterious and unnecessary concept.
The first discussions of work produced by mixing (Loschmidt in 1869, Rayleigh in 1875) and the first
applications of thermodynamics to chemistry (Loschmidt in 1869, Horstmann in 1873) occurred in this
unstable conceptual environment. They involved the basic idea that chemical equilibrium depends not
only on the energy (or enthalpy) balance of the reaction but also on the entropy balance, which itself
depends on the mixing entropy in the case of reactions involving gases or solutes.

Section 3 is devoted to Gibbs’s memoir “On the equilibrium of heterogeneous substances”
(1875–1878) and the included paradox. Special attention is given to the two basic presuppositions of
the paradox: Gibbs’s rule for computing the entropy of a gas mixture, and entropy extensivity. Gibbs’s
discussion of the paradox has several facets, including the idea that entropy depends on sensible
properties only and the suggestion that the entropy law has statistical value only.

Section 4 recounts how various authors discussed the interdiffusion of gases with respect to the
second law in the three following years, thus preparing further discussion of the Gibbs paradox. James
Clerk Maxwell used the Gibbs paradox to reveal the subjective side of entropy determinations; Simon
Tolver Preston claimed he could violate the second law by diffusion through porous membranes;
and Ludwig Boltzmann refuted Preston’s claim in a thorough analysis of the preconditions for
computing the mixing entropy. He thereby introduced the concept of semipermeable wall, which soon
became standard in this domain.

Section 5 is about the first explicit discussions of the Gibbs paradox after Gibbs and Maxwell,
under the pen of Carl Neumann, Pierre Duhem, and Otto Wiedeburg in the 1890s. This last author is
often credited with the phrase “Gibbs paradox,” for it occurs in the very title of his article. In reality,
Wiedeburg borrowed the name from Duhem, who himself benefitted from the outstanding clarity of
Neumann’s relevant analysis. Wiedeburg’s chief innovation was the idea, soon publicized by Max
Planck, that the paradox implies the essentially discrete character of chemical differences.

Section 6 is about entropy extensivity in statistico-mechanical context, with the (in)famous N!
division that several authors introduced in thermodynamic probabilities in order that the associated
entropy be extensive. There were two conflicting conceptions. In the first, inaugurated by Boltzmann
in 1883 and extended by Ehrenfest in 1920 in quantum context, the N! division is justified through the
expression of the combinatorial probability for molecules whose number varies through the exchange
of distinguishable atoms in a chemical reaction. In the second conception, introduced by Gibbs in 1902
and extended by Hugo Tetrode (1912) and Max Planck (1916) in quantum context, the N! division is
regarded as a natural consequence of the perfect identity or “indistinguishability” of the molecules in
the holistic, ensemble-based approach to thermodynamic equilibrium. Ehrenfest (and Albert Einstein)
denied that Gibbs and Planck had a proper justification for the N! division. Einstein’s new gas theory
of 1924 changed the game by spontaneously yielding extensive entropies and thus aggravating the
Gibbs paradox. In 1832, Johann von Neumann nonetheless claimed to have solved the paradox in
quantum-mechanical context.

Section 7 is a synthetic discussion of the Gibbs paradox based on its early history. Three different
paradoxes are distinguished. The first belongs to a proto-thermodynamics not yet equipped with
the entropy concept; it concerns the maximal work that can be obtained by the interdiffusion of two
gases; and it is solved by noting that this work depends on the contingent existence of a separation
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process. The second paradox belongs to macroscopic thermodynamics including the entropy concept.
It may be solved in four different manners: by making entropy and the state parameters of which it is
a function depend on the contingent existence of a separation process (Gibbs, Maxwell, Jaynes), by
making entropy depend on a universe of ideal operations (Bridgman), by invoking an intrinsic
discontinuity in chemical differences (Wiedeburg, Planck), by allowing non-extensive entropies.
The third paradox belongs to statistical thermodynamics. In classical context, it can be solved by giving
the mixing entropy the same value for different and for identical gases (early Einstein, Grad, Dieks)
or by broadly denying that the theory implies entropy extensivity (Ehrenfest, van Kampen, Jaynes).
In quantum context, it can still be solved through the latter means (van Kampen), or we may rely on
quantum-mechanical means. In this second option, one may argue that quantum indistinguishability
introduces an essential discontinuity between the case of slightly different gases and the case of
identical gases (Schrödinger), or, better, one may show that quantum theory provides just the right
amount of continuity and discontinuity between the two cases (von Neumann and Landé, whose
considerations are here improved).

The multiplicity of solutions proposed for the two last versions of the paradox is the sign that
there are different ways of conceiving the foundations of thermodynamics and statistical mechanics.
In particular, various authors disagree on whether statistical mechanics can determine the way in
which the entropy of a confined gas depends on the number of molecules. In Section 7, it is argued that
the latter determination becomes possible if statistical mechanics is complemented with a fluctuation
principle introduced by Einstein. With this principle it becomes possible to exploit the fluctuations of
a given system around equilibrium to derive the equilibrium entropy of a partial system.

Section 8, the last of this essay, is an attempt to relate the Gibbs paradox to broad
misunderstandings of the way in which physical theory connects to the experimental world.
The essential idea is that the symbolic universe of a theory acquires physical content only through
an evolving class of interpretive schemes that provide blue prints for conceivable experiments.
The systems and processes of the symbolic universe are free-floating mathematical creations, and naive
projection of some of their properties onto the interpretive level leads to paradoxes.

In the following, the now standard notation for thermodynamic and statistico-mechanical
quantities are used. In particular, the Boltzmann constant kB is inserted in the statistical entropy
formulas, contrary to Boltzmann’s practice (he measured temperatures in energy units). A process
is called reversible when it is both reversible in the ordinary sense and quasistatic. Natural mixing
is an isothermal mixing process in which the volume of the mixture at the end of the process is
equal to the sum of the volumes of the two gases before mixture. The entropy created during such
a process is called the entropy of mixing or mixing entropy. Natural mixing may occur spontaneously
and irreversibly, when a partition between two chambers is removed (see Figure 1). Or it may be done
reversibly, in which case it produces work (see below, Section 2.4). Reversible, isothermal mixing may
be non-natural; for instance, when the volumes of the two unmixed gases are equal, it may be done in
such a manner that this volume is equal to the volume of the mixture (see below, Section 4.4, Figure 10).
In the latter case and for non-interacting gases, by Gibbs’s mixing rule the entropy of the mixture is
equal to the sum of the entropies of the unmixed gases (the mixing is isentropic).

Figure 1. The spontaneous, natural mixing of two gases. The gases 1 and 2, originally in two separate
compartments, are allowed to diffuse into each other by lifting the wall that separates them.
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2. Diffusion and Dissipation before Gibbs

2.1. Some Background: Clausius’s Axiom, the Second Law, Entropy, Disgregation

Modern thermodynamics emerged around 1850 from James Joule’s empirical proof of the
quantitative equivalence between heat and work and from Sadi Carnot’s general theorem, according
to which the maximum efficiency of a cyclic engine producing work while borrowing heat from a hot
source and returning it to a cold source is a universal function of the temperatures of the two sources
(see [2]). Carnot based his derivation of the theorem on the impossibility of perpetual motion and
on the conservation of heat (“caloric fluid”) during its “fall” from the hot source to the cold source,
in evident analogy with hydraulic machines. In 1850, Rudolf Clausius [3] solved the contradiction
between the latter assumption and Joule’s equivalence between heat and work by assuming that
only part of the heat from the hot source was transferred to the cold source, the rest being converted
into heat. In the derivation of Carnot’s theorem, Clausius replaced the impossibility of perpetual
motion with the impossibility of the transfer of heat from a cold source to a warm source without
compensation in the environment. William Thomson [4] soon offered an alternative derivation based
on the impossibility of producing work from a single source of heat.

In early thermodynamics (as Thomson called the new science), the “first law” was the equivalence
between heat and work or, in Thomson’s sharper formulation, the proportionality of the heat and
work exchanged by a system with its environment during any cycle of operations on this system.
The “second law” was most commonly the name given to Carnot’s theorem, justified by “Clausius’s
axiom” regarding the irreversibility of spontaneous heat transfer or “Thomson’s axiom” regarding the
exclusion of monothermal engines (By definition, a monothermal engine produces work in a cycle of
operations during which it exchanges heat with bodies all at the same temperature). There was some
uncertainty regarding the precise meaning of these axioms. In particular, it was not clear what could
serve as a compensation for the transfer of heat from a cold to a warm body or what could serve as
a compensation for the production of work from a single source of heat. Was it just work in the former
case? Was it just the absorption of heat by a colder source in the latter case?

These obscurities affected the reception of the theory without hampering progress in the hand
of its creators. Thomson was soon able to apply thermodynamics well beyond the original context
of heat engines, to thermoelectric, thermoelastic, and Galvanic phenomena. Yet no one in those
early years tried to apply the theory to chemical processes, presumably because chemical reactions
generally involved irreversible changes that seemed to elude quantitative applications of the laws of
thermodynamics. These applications were usually done through imaginary reversible cyclic processes
involving the phenomena of interest, or through the identity∮

δQ
T

= 0, (1)

which Thomson [4] and Clausius [5] independently derived in 1854 for a reversible cycle of operations
on a system exchanging the heat δQ with sources at the absolute temperature T defined through
Carnot’s theorem.

For a better intuition of the principles of thermodynamics, Clausius relied on Carnot’s original
analogy between the fall of caloric and the fall of water in a hydraulic machine. Accordingly, the total
work δA obtainable from a substance at temperature T should be proportional to T (just as the work
obtainable from a water reservoir depends on the height of this reservoir). In 1862, Clausius [6]
expressed this condition as

δA ≡ dw− δW = TdY, (2)

wherein dw is the work done by the internal forces of the substance (the increase of its potential
energy), −δW the work done on its environment, and Y what Clausius called the disgregation, for it
gave “the degree in which the molecules of the body are dispersed” (see [7,8]). The disgregation has
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not survived modern thermodynamics, in part because it involves the molecular work dw, which is
not a purely macroscopic notion, and mostly because the more convenient entropy concept superseded
it. However, in the 1860s and 1870s disgregation and entropy were still in competition for the few
consumers of abstract concepts or hidden entities in thermodynamics.

Clausius [9] introduced the entropy of a system in 1865 as the integral of the differential δQ/T over
any reversible transformation of the system from a fixed reference state to the state under consideration.
He then proved that during an irreversible transformation the sum of the entropy of the system and
the entropies of the sources with which it exchanges heat is always increasing. He concluded his
memoir with the two statements:

(1) The energy of the world is constant.
(2) The entropy of the world tends to a maximum.

For a better intuition of entropy, Clausius related it to his earlier concept of disgregation. Introducing
the “free heat” K which is the average kinetic energy of the molecular system, the variation of the total
energy U of the system during an infinitesimal transformation can be written as

dU = δW + δQ = dw + dK. (3)

Together with Equation (2), this implies

dS = dY + dK/T. (4)

The entropy thus appears to be the sum of the disgregation of the system and of a function of the
temperature only.

Despite the formal appeal of a quantity that naturally occurs as the integral of the differential
δQ/T and despite the attractive generality of the entropy law enunciated by Clausius in parallel with
the energy law, it took a long time for entropy to become a main-stream concept of thermodynamics.
British physicists preferred Thomson’s more intuitive notions of dissipated energy and available work,
to which we will return in a moment. To make things more complicated, there were attempts to
interpret dissipation and entropy in kinetic-molecular context (see [10–15]). Maxwell and Thomson
understood dissipation as the transformation of macroscopic ordered motion into chaotic motion at
the molecular scale, and they considered it a matter of probability. In Austria, Boltzmann gave various
statistico-mechanical entropy formulas starting in 1871, and by 1877 (at least) he regarded entropy
increase as highly probable only. For the following, it will be good to remember that in the 1860s
and 1870s thermodynamics was still a young, incompletely understood theory. Its basic concepts and
methods were still in flux; its scope was not fully appreciated (especially in chemistry); and there were
still dreams of perpetual motion of the second kind.

2.2. Loschmidt’s Columns of Salted Water (1869)

In 1869, a senior and yet newly appointed researcher in Vienna’s Physics Institute, Josef Loschmidt,
remarked that the diffusion of a salt into water permitted the production of work from a single heat
source, and discussed the compatibility of this fact with the second law of thermodynamics. After
a failed industrial venture, Loschmidt had long been a school teacher with a passion for chemistry
and physics. Largely self-taught but enjoying friendly support from the head of the Physics Institute,
Josef Stefan, he contributed original work at the border between physics and chemistry, including
his famous determination of the Avogadro-Loschmidt number in 1865 [16]. In his memoir of 1869
“On the second principle of thermodynamics” [17], Loschmidt described a thought-experiment with
a valve letting only the faster molecules on one side of a wall pass to the other side, two years before
Maxwell published his famous demon argument [18] (see [19]). Loschmidt’s aim was to shed doubts
on “Clausius’s axiom”, according to which heat cannot be transferred from a colder to a warmer
body without compensation. He nonetheless trusted the “second principle” according to which no
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work can be produced though a cyclic process involving a single heat source, enough so to study its
thermochemical consequences.

In the main part of his memoir, Loschmidt considered a tall column of water at the bottom of
which a large quantity of salt is introduced. The salt then dissolves into the water and slowly migrates
to the top of the solution by diffusion. At the end of this process, the salt is globally higher than at
the beginning and has thus worked against gravity even though the temperature is kept constant
through the process. Loschmidt underlined that work was thus produced from a single heat source,
although he did not confuse this possibility with a violation of the second law. In order to apply
this law, he imagined the following cycle of reversible operations: the salt first migrates upwards
by diffusion; a fixed quantity of the solution is then extracted from the upper layers of the column;
this solution is evaporated to separate the salt; the vapor is then condensed back into the solution at
the top of the column; and the separated salt is added to the bottom of the column. By the second law,
he required the vanishing of the net work done in this cycle, and thus obtained a relation between the
vapor pressure on top of the column and the chemical affinity of the salt with water. He also proved
that in the equilibrium state the water column could not be saturated at its top.

Loschmidt actually built water columns in the basement of the Physics Institute to test the latter
prediction, although he gave up after realizing that the diffusion was much too slow for equilibrium to
be reached in a reasonable amount of time. In the same year, he discussed his valve-based violation
of Clausius’s axiom with Stefan and his junior colleague Boltzmann. The latter countered that no
intelligent being could exist and operate the valve in a strictly monothermal cellar. To which Stefan
humorously commented: “Then I understand why your [Loschmidt’s] experiments with tall glass
tubes in the basement have so miserably failed” (see [20], p. 231) Whatever be the true cause of
Loschmidt’s failure to concretize his thought experiments, he recognized that the production of work
by diffusion played an important role in chemical reactions involving the diffusion of a substance into
another. He thus pioneered a basic idea of chemical thermodynamics.

2.3. Horstmann’s Dissociation Theory (1873)

Loschmidt’s insights went mostly unnoticed. In 1873, August Heinrich Horstmann [21],
a Heidelberg chemist and former student of Gustav Kirchhoff and Hermann Helmholtz, approached
the theory of chemical dissociation by means of Clausius’s concepts of entropy and disgregation
(see [22,23]). In a dissociation equilibrium, Horstmann proposed, the dissociation degree has to take
the value for which the entropy of the system is a maximum. Implicitly, by “system” he meant the
mixture of the various reactants plus the thermostat. Calling Sx the entropy of the mixture for the
value x of the dissociation degree and Hx = x∆H the heat thereby received from the thermostat at
constant pressure, Horstmann’s equilibrium condition gives

∂

∂x

(
−Hx

T
+ Sx

)
= 0. (5)

This is equivalent with the condition ∂Gx/∂x = 0 that we would now write in terms of the free
enthalpy Gx of the mixture.

Horstmann believed that the only contribution to the variation of the entropy Sx was the variation
of the corresponding disgregation Yx. This is why instead of the former equation, he wrote

− ∆H
T

+
∂Yx

∂x
= 0 (6)
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(in a different notation). According to Clausius’s idea of disgregation as the degree of dispersion of the
molecules, in the case of gases the disgregation of each component of the mixture should be computed
as if it were alone in the container. This implies

Yx = ∑
i

ni(x)yi, (7)

wherein ni is the number of moles of the component i and yi is the disgregation of a mole of the
component at the partial pressure Pi. For a chemical reaction with the stoichometric coefficients ai
(for the reaction 2H2O↔ 2H2 + O2 , the coefficients are a1 = −2, a2 = 2, and a3 = 1), we have
dni = aidx so that condition (6) reduces to

−∆H
T

+ ∑
i

aiyi = 0 (8)

(owing to homogeneity, we have ∑
i

ai∂yi/∂x) = 0). For a perfect gas, Clausius’s definition of

disgregation leads to
yi = yi

0 − R ln Pi, (9)

wherein yi
0 denotes the disgregation of the gas at the standard pressure. Combining with the previous

equation, this gives

∏
i

Pi
ai = K, with ∆H − T∆Y + RT ln K = 0. (10)

Horstmann thus obtained the dissociation law for a reaction involving gases only, with a slightly
erroneous expression of the equilibrium constant K. His result agrees with the predictions of modern
thermochemistry, except that the disgregation Y should be replaced with the entropy S.

The former considerations apply to reactions between gases, for instance the dissociation
equilibrium of steam. Horstmann also treated the dissociation of solid substances (for instance
calcium carbonate) and the dissociation of a salt into water (dissolution). In the first case, the molar
disgregation of the solid components intuitively does not depend on their quantity, which implies that
the equilibrium constant involves only the pressure of the gas components (for instance, the pressure
of the carbon dioxide must be a temperature-dependent constant in the dissociation equilibrium
CaCO3 ↔ CaO + CO2 recently studied by Henry Debray). In the second case, Horstmann assumed
that the disgregation of the solutes varied with their concentration in analogy with the gas case.
In all cases, he found his laws well confirmed by the already numerous empirical studies of
dissociation equilibrium.

Despite the archaic reliance on disgregation, despite the confusion between this quantity and
entropy, and despite the imprecise character of Horstmann’s reasoning (he did not clearly define
the relevant systems and constraints), his memoir has often been regarded as inaugurating modern
thermochemistry. This is well deserved, for Horstmann there derived chemical equilibrium from
a maximum condition for the entropy of a properly defined system and made this equilibrium depend
on the competition between heat and entropy production during the reaction.

2.4. Rayleigh on Dissipation and Diffusion (1875)

With Loschmidt’s and Horstmann’s exceptions, no one tried to apply thermodynamics to chemical
processes until 1875. Possible reasons for this neglect were the aforementioned avoidance of irreversible
processes, the empirical complexity of the conditions of most chemical reactions, and the common belief
that the possibility of a chemical reaction depended on the development of heat (Thomsen-Berthelot
principle). But there were obvious exceptions to this principle (endothermic reactions) and, as was
just mentioned, there was a growing number of empirical laws in need of a theoretical explanation for
various kinds of chemical equilibrium (see [22]).
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In Britain, Lord Rayleigh was first, in 1875, to deplore the neglect of chemical thermodynamics in
a lecture [24] he gave at the Royal Institution on the dissipation of energy. In Thomson’s understanding
of the second law of thermodynamics, the energy originally available in a system for the production
of work can be “dissipated”. For instance, some of the work transmitted by a mechanical machine
can be lost by friction, or the work produced by a Carnot engine can be lost if the heat from the hot
source directly goes to the cold source instead of acting on the engine. In the first case, dissipation
corresponds to the creation of heat, in the second to its conduction. In 1874, Thomson [25] also cited the
interdiffusion of two gases as a dissipative process in kinetic-molecular analogy with heat conduction.
He did not address chemical reactions.

In contrast, in the following year Rayleigh stated [24] (p. 388):

The chemical bearings of the theory of dissipation are very important, but have not hitherto
received much attention. A chemical transformation is impossible, if its occurrence would
involve the opposite of dissipation.

Rayleigh thus understood, independently of Horstmann, that dissipation rather than heat development,
determined the possibility of a chemical reaction. As a simple counter-example of Berthelot’s principle,
he cited the dissolution of a salt into water. The dissolution could occur despite its endothermic
character because the dissolution involved dissipation that could compensate for the cooling of the
solution. In order to prove dissipation in ordinary dissolution, Rayleigh imagined a reversible process
of dissolution in which work would be produced: the water is placed under a piston in a cylinder
maintained at constant temperature; the piston is slowly raised until the water is fully evaporated and
its pressure reaches the value below which it ceases to be absorbable by the salt; the salt is then brought
into contact with the vapor; the piston is slowly pushed down until the vapor is fully condensed.
The work the piston produces during its rise is larger than the work it receives during its descent
because the pressure is smaller in the latter process. Therefore, work is gained during the global
process. Ordinary, irreversible dissolution is dissipative because it implies the loss of an opportunity
to produce work. Rayleigh went on to deplore the difficulty of applying thermodynamic principles
to chemistry, because in general chemical processes were irreversible. At the same time, he noted
the possibility of displacing a dissociation equilibrium in a reversible manner as Henry Debray had
recently done in the case of calcium carbonate.

Having understood that ordinary dissolution implied dissipation and having showed how to
quantify this dissipation in a thought experiment, Rayleigh did the same for the mixing of two gases in
a remarkable article [26] published a little later in the Philosophical magazine. In his brief introduction,
he described a “common experiment” in which a tube was filled with hydrogen, closed at its upper
end with a porous plug of Paris plaster, and immersed at its lowered end in water. Owing to the
diffusion of the hydrogen through the plug into the air, the pressure diminishes in the tube and the
water rises in the tube (see Figure 2). The heat from a monothermal environment is thus turned into
work. Rayleigh went on [26] (p. 311):

Whenever then two gases are allowed to mix without the performance of work, there is
dissipation of energy, and an opportunity of doing work at the expense of low temperature
heat has been for ever lost. The present paper is an attempt to calculate this amount of work.

Rayleigh then announced the result of this calculation for chemically inactive gases obeying Dalton’s
law: the maximal work that can be obtained by mixing (isothermically) two gases initially occupying
the separate volumes V1 and V2 and finally sharing the volume V1 + V2 is equal to the work produced
by the expansion of the first gas alone from V1 to V1 + V2 plus the work produced by the expansion of
the second gas alone from V2 to V1 + V2. The maximal work is reached when the mixing is reversible.
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Figure 2. The monothermal elevation of water by diffusion according to Rayleigh.

Rayleigh imagined three ways of reversible mixing or reversible separation, the first based on the
condensation of one of the gases, the second on its chemical absorption, and the third on the differential
action of gravity on the two gases. The result must be the same whatever the means of separation,
for in the contrary case it would be possible to produce work in a monothermal cycle of operations.

First assume that one of the gases can be condensed, as is the case for a mixture of steam and
hydrogen (see Figure 3). Compress the mixture isothermically in a piston until the steam is (almost)
completely condensed. Then separate the condensed water from the hydrogen and evaporate it
isothermically in a piston until the sum of the volume V1 of the hydrogen and of the volume V2 of
the steam becomes equal to the volume of the original mixture. By Dalton’s law, the pressure in the
mixture is the sum of the partial pressures of its components. Consequently, the net work done on
the system during the reversible separation is equal to the work needed to compress the hydrogen
from V1 + V2 to V1 and the vapor from V1 + V2 to V2, in conformity with the general result announced
by Rayleigh.

Figure 3. The successive steps of Rayleigh’s procedure for the reversible, isothermal separation of
a mixture of steam and hydrogen.

In Rayleigh’s second reasoning, the mixture is made of carbon dioxide and hydrogen (see Figure 4).
The volume V1 +V2 of the mixture is decreased slowly and isothermically to the value V1 for which the
partial pressure of the carbon dioxide reaches its equilibrium value in presence of calcium carbonate at
the given temperature (this value is well-defined by Debray’s law). During further slow isothermic
compression of the mixture in the presence of calcium oxide, the pressure of the carbon dioxide remains
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constant and it is gradually absorbed by the calcium oxide. Once the absorption is nearly complete,
the hydrogen and the calcium carbonate are separated. The volume over the calcium carbonate is
increased until it reaches the value V1, and the hydrogen is expanded to the volume V2.

Figure 4. The successive steps of Rayleigh’s procedure for the reversible, isothermal separation of
a mixture of hydrogen and carbon dioxide. The marbled area represents calcium oxide (CaO) in the
two first steps, a mixture of calcium oxide and calcium carbonate (CaCO3) in the third and fourth steps,
and again pure calcium oxide in the final state.

In the third reasoning, the two mixed gases are perfect gases of different density and their
separation is achieved by gravity (see Figure 5). For this purpose, the mixture is placed in a large
container on which a long narrow vertical tube (closed on top) is mounted. Applying the laws of
aerostatics to the lighter component, its pressure near the top of the tube is given by P′1 = P1e−k1gh,
in which P1 is the partial pressure in the container, h the height of the tube, g the acceleration of gravity,
and k1 the proportionality coefficient between pressure and density. The height h is supposed to be so
large that the pressure of the heavier component is there negligible. Remove a small volume υ′1 of this
gravity-separated gas, let it fall to the level of the container, and compress it to the pressure P = P1 + P2

in the container. The removal does not imply any work nor any change in the container if it is done
after walling off the portion from the rest of the gas mixture (I add this condition to simplify Rayleigh’s
reasoning). The fall produces the work m1gh with m1 = ρ′1υ′1 = k1P′1υ′1. The compression requires the
work P′1υ′1 ln(P/P′1) (for a perfect gas). Taking into account P′1υ′1 = Pυ1 and ln(P1/P′1) = k1gh, the net
work needed for the reversible, isothermal separation of the volume υ1 of the first gas from a large
amount of the mixture at the same total pressure is

w1 = P′1υ′1 ln(P/P′1)−m1gh = Pυ1 ln(P/P1). (11)

The similar separation of the volume υ2 of the second gas (by means of a downward tube) requires the
work Pυ2 ln(P/P2). These two separations require the same work as the complete reversible separation
of the volume υ1 + υ2 of the mixture. The work needed for the latter separation therefore is

w = Pυ1 ln
υ1 + υ2

υ1
+ Pυ2 ln

υ1 + υ2

υ1
, (12)

in conformity with Rayleigh’s general rule (Schrödinger [27] rediscovered Rayleigh’s procedure in
1921 as a means for the reversible separation of isotopes).
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Figure 5. Schematic representation of Rayleigh’s method for the separation of two gases of different
atomic weight (here hydrogen and nitrogen) by gravity.

To sum up, in 1875 Rayleigh proved that the interdiffusion of two gases implied dissipation,
that is, the loss of an opportunity to produce work. He quantified the dissipation by determining the
work produced in a reversible process connecting the mixed state to the unmixed state. He found this
work to be the one given by the separate expansion of each gas from the initial to the final available
volume. He did not comment on the evident fact that for perfect gases the value of this work does not
depend on the nature of the two gases, as long as they are different.

3. Gibbs on the Equilibrium of Heterogeneous Substances

3.1. The Rules of Equilibrium (1873–1876)

In 1875, Josiah Willard Gibbs was in his fourth year on the chair of mathematical physics at
Yale university, from which he held an engineering degree. In earlier years he had attended the
lectures of a few famous mathematicians and physicists in France and in Germany; his interest then
seems to have been mostly in optics and electrodynamics. It is not clear why, in the early 1870s,
he decided to concentrate on thermodynamics. The trigger may have been his reading of Tait’s Sketch of
thermodynamics in 1868, and Maxwell’s Theory of heat in 1871, as well as his witnessing lively debates in
the Philosophical magazine about priority for the central concepts of the theory and about the meaning,
proper definition, and usefulness of Clausius’s entropy concept of 1865 (see [28], pp. 51n–52n). Tait
and Maxwell favored Thomson’s dissipation and reinterpreted or misinterpreted entropy in terms of
the more practical concept of available energy.

In contrast with British natural philosophers, Gibbs welcomed Clausius’s entropy and perceived
its potential for a more rigorous, systematic, and mathematical approach to thermodynamics. In his
two first memoirs [28,29], published in 1873, he introduced entropy-temperature and entropy-volume
diagrams to describe the properties of homogeneous substances including the recently discovered
critical point. He also described and exploited the properties of the entropy surface in (S, P, T)-space.
In particular, he discussed the equilibrium and stability of a given state of a substance under fixed
pressure and temperature by means of the condition that the thermodynamic function U + PV − ST
(our free enthalpy) should be a minimum [28] (p. 43n). He thereby assumed that volume, energy,
and entropy were extensive quantities; and that, for a non-equilibrium state, they were still well-defined
for the smaller parts of the substance: “The body, however, as a whole has a certain volume, entropy,
and energy, which are equal to the sums of the volumes, etc., of its parts” [28] (p. 39).

Gibbs soon extended his entropy-based approach to chemical equilibrium in a book-size memoir
“On the equilibrium of heterogeneous substances,” published between 1875 and 1878 in the Transactions
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of the Connecticut Academy [30]. His condition of stable equilibrium for a closed system was that
the entropy should be a maximum at constant energy, or, equivalently, that the energy should be
a minimum at constant entropy. For a homogeneous part of the system (that is, of uniform chemical
composition and physical state), the energy U is a function of the temperature T, the volume V, and the
number of moles ni of the various chemical components, and its differential is given by

dU = TdS− PdV + ∑
i

µidni, (13)

in which P is the pressure and the µi coefficients are the “chemical potentials.” For the equilibrium of
a system made of two homogeneous and chemically stable parts (“phases”), Gibbs’s criterion gives

T′dS′ + T′′dS′′ − P′dV′ − P′′dV′′ + ∑
i

µ′idn′i + ∑
i

µ′′i dni
′′
= 0 (14)

for any change of the variables such that

dS′ + dS′′ = 0, dV′ + dV′′ = 0, dn′i + dn′′i = 0. (15)

This yields T′ = T′′, P′ = P′′, µ′i = µ′′i : for each chemical component present in the two phases,
the temperatures, pressures, and chemical potentials must have the same value in the two phases.
Another simple case is that of a homogeneous chemical mixture, whose proportion may vary
by a chemical reaction of stoichiometric coefficients ai(for 2H2O↔ 2H2 + O2 , a1 = −2, a2 = 2,
and a3 = 1). Here equilibrium requires

∑
i

µidni = 0 whenever dni = aidx. (16)

This yields

∑
i

aiµi = 0 (17)

as the effective condition of chemical equilibrium (Gibbs 1875–1878).
Gibbs also introduced the functions F = U − TS and G = U + PV − TS, such that

dF = −SdT − PdV + ∑
i

µidni (18)

and
dG = −SdT + VdP + ∑

i
µidni, (19)

and which may be used instead of the energy in expressing the equilibrium condition when
temperature equilibrium and pressure equilibrium have already obtained respectively. He regards the
extensivity of the energy and the entropy as obvious [30] (p. 141) (I use the now standard letters for
the thermodynamic potentials, not Gibbs’s):

We know, . . . a priori, that if the quantity of any homogeneous mass containing s
independently variable components varies and not its nature or state, the quantities [U,
S, V, n1, n2, . . . , ns] will all vary in the same proportion.

Consequently, the function G(T, P, n1, n2, . . .) is a homogenous function of degree one in the variables
ni and it therefore satisfies

G = ∑
i

ni
∂G
∂ni

= ∑
i

niµi. (20)
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In order to deal with chemical reactions between gases, Gibbs needed to determine the
thermodynamic properties of a mixture of gases. For this purpose, he relied on the following empirical
law [30] (p. 215):

If several liquid or solid substances which yield different gases or vapors are simultaneously
in equilibrium with a mixture of these gases (cases of chemical actions between the gases
being excluded), the pressure in the gas mixture is equal to the sum of the pressures
of the gases yielded at the same temperature by the various liquid or solid substances
taken separately.

This law crucially involves the possibility of separately condensing the various components of the
gas mixture. Since the chemical potentials in the condensed phases are generally unaffected by the
existence of other substances, it further implies that “The pressure in a mixture of different gases is
equal to the sum of the pressures of the different gases as existing each by itself at the same temperature
and with the same value of its potential”(emphasis mine). This should not be confused with Dalton’s law,
which simply states that the pressure in a mixture of different gases is equal to the sum of the pressures
of the different gases as existing each by itself at the same temperature and within the same volume as the
volume of the mixture. The manner in which Gibbs exploits his pressure rule is highly ingenious [30]
(pp. 218–219).

In symbols, this pressure rule gives him

P(T, µ1, µ2, . . . µs) = ∑
i

Pi(T, µi) and dP(T, µ1, µ2, . . . µs) = ∑
i

dPi(T, µi). (21)

Gibbs also has Equations (19) and (20),

G = ∑
i

niµi and dG = −SdT + VdP + ∑
i

µidni,

which together imply
dP(T, µ1, µ2, . . . µs) = (S/V)dT + ∑

i
(ni/V)dµi. (22)

If the gas i were alone in the volume V, we would instead have

dPi(T, µi) = (Si/V)dT + (n′i/V)dµi. (23)

Combining Equations (21)–(23), we first get ni = n′i, which means that the number of moles of a given
component of the mixture is the same as the number of moles of this gas when it occupies alone the
volume V with the same chemical potential as in the mixture. Secondly, we get the mixing rules

P(T, V, n1, n2, . . . ns) = ∑
i

Pi(T, V, ni) and S(T, V, n1, n2, . . . ns) = ∑
i

Si(T, V, ni). (24)

Similar rules apply to the functions G, F, H, and U thanks to the relations G = ∑
i

niµi, F = G− PV,

H = G + TS. In modern words, the pressure, entropy, free enthalpy, free energy, enthalpy, and energy
of the gas mixture is the sum of the corresponding quantities for each component as existing by itself
at the same temperature and in the same volume. In Gibbs’s words [30] (p. 218),

The quantities [P, S, U, F, G, H] relating to the gas-mixture may therefore be regarded as
consisting of parts which may be attributed to the several components in such a manner that
between the parts of these quantities which are assigned to any component, the quantity of
that component, the potential for that component, the temperature, and the volume, the same
relations shall subsist as if that component existed separately. It is in this sense that we
should understand the law of Dalton, that every gas is as a vacuum to every other gas.
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Gibbs was aware of Rayleigh’s recent article on gas mixing, and he did not fail to note that Rayleigh’s
rule for calculating the work produced by reversible isothermal mixing agreed with his own rule for
combining free energies [30] (p. 221n). Indeed, this work is equal to the variation of the free energy,
and by Gibbs’s rule the final free energy should be the same as if the two gases existed separately in
the container.

3.2. The Gibbs Paradox (April 1876)

According to the previous rule, when two moles of two different perfect gases originally in two
contiguous vessels of the same volume V are mixed by removing the wall between the two vessels,
the entropy variation is the same as if each gas were expanded isothermally from V to 2V. It is therefore
equal to 2R ln 2. Gibbs comments:

It is noticeable that the value of this expression does not depend upon the kinds of gas which
are concerned, if the quantities are such as has been supposed, except that the gases which
are mixed must be of different kinds. If we should bring into contact two masses of the same
kind of gas, they would also mix, but there would be no increase of entropy.

This is, in its rawest form, what we now call the Gibbs paradox because we intuitively expect a physical
quantity to vary continuously during a continuous deformation of the system (when the difference in
the kinds of the two gases goes to zero). Gibbs does not call this a paradox and goes on to explain why
there is a mixing entropy for different gases and not for identical gases [30] (pp. 227–228) (The printing
date “April 1876” appears on p. 217, “May 1876” on p. 233):

But in regard to the relation which this case bears to the preceding, we must bear in mind
the following considerations. When we say that when two different gases mix by diffusion,
as we have supposed, the energy of the whole remains constant, and the entropy receives
a certain increase, we mean that the gases could be separated and brought to the same
volume and temperature which they had at first by means of certain changes in external
bodies, for example, by the passage of a certain amount of heat from a warmer to a colder
body. But when we say that when two gas-masses of the same kind are mixed under similar
circumstances there is no change of energy or entropy, we do not mean that the gases which
have been mixed can be separated without change to external bodies. On the contrary,
the separation of the gases is entirely impossible. We call the energy and entropy of the
gas-masses when mixed the same as when they were unmixed, because we do not recognize
any difference in the substance of the two masses.

Gibbs is here judging from a macroscopic, operational point of view: either the gases are different
enough to allow entropy-decreasing separation, or their mixing does not imply any change of state.
He next explains what counts as a change of state in thermodynamics:

So when gases of different kinds are mixed, if we ask what changes in external bodies
are necessary to bring the system to its original state, we do not mean a state in which
each particle shall occupy more or less exactly the same position as at some previous
epoch, but only a state which shall be undistinguishable from the previous one in its
sensible properties. It is to states of systems thus incompletely defined that the problems of
thermodynamics relate.

These remarks agree with the extensivity of the entropy earlier admitted by Gibbs: no sensible property
is altered when two portions of the same gas at equal temperature and pressure are allowed to
communicate. At this point of the text we seem to be approaching a solution to the initial paradox
based on an operational definition of thermodynamic states.

Gibbs still sees a difficulty [30] (pp. 228–229):
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But if such considerations explain why the mixture of gas-masses of the same kind stands
on a different footing from the mixture of gas-masses of different kinds, the fact is not less
significant that the increase of entropy due to the mixture of gases of different kinds, in such
a case as we have supposed, is independent of the nature of the gases.

Now we may without violence to the general laws of gases which are embodied in our
equations suppose other gases to exist than such as actually do exist, and there does not
appear to be any limit to the resemblance which there might be between two such kinds of
gas. But the increase of entropy due to the mixing of given volumes of the gases at a given
temperature and pressure would be independent of the degree of similarity or dissimilarity
between them. We might also imagine the case of two gases which should be absolutely
identical in all the properties (sensible and molecular) which come into play while they
exist as gases either pure or mixed with each other, but which should differ in respect to the
attractions between their atoms and the atoms of some other substances, and therefore in
their tendency to combine with such substances. In the mixture of such gases by diffusion
an increase of entropy would take place, although the process of mixture, dynamically
considered, might be absolutely identical in its minutest details (even with respect to the
precise path of each atom) with processes which might take place without any increase of
entropy. In such respects, entropy stands strongly contrasted with energy.

Here we have the full-blown paradox, involving the limit of infinitely small difference between two
gases, and the even stranger case of two gases whose molecules differ only by their interactions with
the molecules of a third substance. In both cases, the entropy cannot possibly be a function of the
molecular dynamics of the system of the two mixed gases only, in contrast with the energy. The analogy
between energy and entropy, which originally inspired Gibbs’s equilibrium principle, turns out to be
a risky one.

Gibbs ends his discussion with a suggestion for what makes entropy so special:

Again, when such gases [differing only through their interaction with a third substance] have
been mixed, there is no more impossibility of the separation of the two kinds of molecules in
virtue of their ordinary motions in the gaseous mass without any especial external influence,
than there is of the separation of a homogeneous gas into the same two parts into which it
has once been divided, after these have once been mixed. In other words, the impossibility
of an uncompensated decrease of entropy seems to be reduced to improbability.

The logic of this often-cited remark seems to be as follows. First consider a homogeneous gas of 2N
traceable molecules, and assume that the first N molecules are in a given half of the container at time
zero. After a sufficiently long time, we intuitively expect the recurrence of this state of affair (this is
obvious for small N). Since the evolution of the gas depends only on the mutual forces of its molecules,
the same kind of recurrence extends to the case in which the first N molecules and the last N molecules
interact differently with the molecules of another substance (in the absence of this substance). In the
latter case, the recurrence is a process in which entropy first increases and then decreases to return
to its initial value. Consequently, entropy decrease is not impossible in a closed system. It is just
extremely improbable.

Gibbs clearly regarded this reasoning as a proper conclusion to his discussion of the mixing
paradox. Yet it is hard to see how the probabilistic character of the entropy law truly connects to
the Gibbs paradox. It would seem that the molecular picture directly suggests the possibility of the
de-mixing of two different gases, just as much as it suggests the possibility of recurrence in the case
of a homogeneous gas. Indeed, Thomson, Maxwell, and Boltzmann frequently used the molecular
intuition of interdiffusion in order to justify the statistical character of the entropy law. Thomson
did so in a communication to Nature of May 1874 [25], in which he discussed dissipation, Maxwell’s
demon, and the probabilistic character of thermal equilibrium and mixing. He even computed the
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probability that in an air-filled vessel all the oxygen molecules be found in one part of the vessel and
all the nitrogen molecules in the complementary part. Gibbs’s remark on the statistical character of
entropy decrease probably echoed Thomson’s and Maxwell’s considerations. Their logical connection
with the Gibbs paradox remains unclear (to me). In general, Gibbs’s discussion of his paradox confuses
us as much as it illuminates us, for he conflates three different levels of analysis: the operational level,
the level of abstract entropy, and the molecular level.

4. Diffusion and the Second Law

As seen, the Gibbs paradox arose in discussions about the thermodynamics of gas mixing,
especially in chemical reactions. As we will now see, this topic remained active and controversial after
Gibbs’s publication, and the resulting developments informed subsequent discussions of the paradox.

4.1. Maxwell on Diffusion (1877)

In 1877 Maxwell wrote the article “Diffusion” for the ninth, thoroughly revised edition of
the Encyclopaedia Britannica. He was the obvious choice for this task since he had pioneered the
kinetic-molecular theory of gas diffusion in two capital memoirs of 1860 and 1867. In the last section
of his article, entitled “On processes by which the mixture and separation of fluids can be effected in
a reversible manner” [31] (pp. 642–646), he briefly described the contents of Rayleigh’s relevant memoir
of 1875, he related it to Gibbs’s more recent consideration of the mixing entropy, and he drew a broad
philosophical conclusion on the meaning of entropy. Maxwell mentioned Rayleigh’s three ways of
reversible mixing (by condensation, by chemical absorption, and by gravity) and the resulting rule for
calculating the work produced during this process. He then explained how irreversible (isothermal)
mixing equivalently led to an increase of Clausius’s entropy or to a dissipation of available work,
the latter being the product of the former by the absolute temperature.

Lastly, Maxwell noted that the energy dissipated during the interdiffusion of two gases originally
occupying the same volume at the same temperature and pressure had the constant value 2RT ln 2
independent of the nature of the two gases, and went on to confront this thermodynamic result with
the kinetic-molecular intuition of the diffusion process [31] (p. 645):

Let us now suppose that we have in a vessel two separate portions of gas of equal volume,
and at the same pressure and temperature, with a movable partition between them. If we
remove the partition the agitation of the molecules will carry them from one side of the
partition to the other in an irregular manner, till ultimately the two portions of gas will be
thoroughly and uniformly mixed together. This motion of the molecules will take place
whether the two gases are the same or different, that is to say, whether we can distinguish
between the properties of the two gases or not.

If the two gases are such that we can separate them by a reversible process, then, as we have
just shewn, we might gain a definite amount of work by allowing them to mix under certain
conditions; and if we allow them to mix by ordinary diffusion, this amount of work is no
longer available, but is dissipated forever. If, on the other hand, the two portions of gas
are the same, then no work can be gained by mixing them, and no work is dissipated by
allowing them to diffuse into each other.

It appears, therefore, that the process of diffusion does not involve dissipation of energy
if the two gases are the same, but that it does if they can be separated from each other by
a reversible process.

In this variant of the Gibbs paradox, there is a conflict between molecular intuition and the
phenomenology of dissipation: According to molecular intuition, there seems to be no difference
between the cases of different and identical gases; yet energy is dissipated in one case and not in
the other.

Maxwell goes on [31] (pp. 645–646):
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Now, when we say that two gases are the same, we mean that we cannot distinguish the one
from the other by any known reaction. It is not probable, but it is possible, that two gases
derived from different sources, but hitherto supposed to be the same, may hereafter be found
to be different, and that a method may be discovered of separating them by a reversible
process. If this should happen, the process of interdiffusion which we had formerly supposed
not to be an instance of dissipation of energy would now be recognized as such an instance.

This may be regarded as a variant of Gibbs’s remark that entropy refers to “sensible properties” that
condition our ability to concretely demonstrate heterogeneity. More original is Maxwell’s remark that
our discovery of a heretofore unsuspected heterogeneity would lead us to revise our assessment of
dissipation. This leads Maxwell to his famous conclusion regarding the meaning of dissipation [31]
(pp. 645–646):

It follows from this that the idea of dissipation of energy depends on the extent of our
knowledge. Available energy is energy which we can direct into any desired channel.
Dissipated energy is energy which we cannot lay hold of and direct at pleasure, such as
the energy of the confused agitation of molecules which we call heat. Now, confusion,
like the correlative term order, is not a property of material things in themselves, but only
in relation to the mind which perceives them. A memorandum-book does not, provided it
is neatly written, appear confused to an illiterate person, or to the owner who understands
it thoroughly, but to any other person able to read it appears to be inextricably confused.
Similarly the notion of dissipated energy could not occur to a being who could not turn any
of the energies of nature to his own account, or to one who could trace the motion of every
molecule and seize it at the right moment. It is only to a being in the intermediate stage,
who can lay hold of some forms of energy while others elude his grasp that energy appears
to be passing inevitably from the available to the dissipated state.

So for Maxwell, dissipation is in some sense subjective: it depends not only on the kinetic-molecular
state of the system but also on the extent to which we can physically act on this state. For a demon
“who could trace the motion of every molecule and seize it at the right moment” there never is any
dissipation. For a human being who has a limited ability to perceive and control heterogeneities,
dissipation depends on this ability and need be reassessed when this ability evolves. This differs
from Gibbs’s conclusion that entropy increase is a matter of probability, although Maxwell had earlier
insisted on the statistical nature of the second law and himself related it to the kinetic-theoretical
understanding of diffusion in other texts [32] (see [33], pp. 604–605).

4.2. Preston’s Violation of the Second Law (1877)

In the 1870s, Gibbs’s extraordinarily deep and thorough study of the laws of chemical equilibrium
was known only to the happy few who, like Maxwell, privately received offprints from the Yale
professor. The engineer-physicist Samuel Tolver Preston was not among them. More surprisingly,
he does not seem to have read Rayleigh’s article on diffusion in the Philosophical magazine. This oversight
allowed him, in a letter to Nature [34], to announce “an exception to the second law of thermodynamics”
based on the different velocities with which two different gases diffuse through a porous wall.
Specifically, he imagined a cylinder with a porous piston in the middle, oxygen gas on the left
side, and hydrogen gas on the right side of the piston (see Figure 6). The mass of the hydrogen
molecules being much smaller than that of the oxygen molecules, their average velocity much be much
larger by energy equipartition. Consequently, the diffusion of the hydrogen into the oxygen is much
faster than the opposite process and the pressure on the oxygen’s side must increase. The piston is
thus able to perform work even though the entire system is originally at uniform temperature.
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Figure 6. Preston’s device for the monothermal production of work by diffusion.

Preston also noted, as Loschmidt and Rayleigh had earlier done, that work could be generated
by the differential diffusion of two gases of different density in a gravitational field. In general,
he concluded that work could be obtained without a temperature difference, if only a density difference
(of a diffusing gas) existed [34] (p. 32). Unlike his predecessors, he believed such processes to be
violating the second law, and he even hoped they could prevent the heat death with which Thomson
had threatened the entire universe. This belief is easily explained by his relying on Thomson’s early,
rough statement of the second law as “the impossibility of producing work by cooling any portion
of matter below the temperature of the coldest of the surrounding objects” [4] (p. 179). In reality,
Thomson meant the impossibility of a monothermal engine that would be able to turn the heat form
a single source into work after completing a cycle of operations. Preston simply overlooked the necessity
of a cycle.

Preston persisted a few months later in a second letter to Nature [35] in which he prided himself on
having found a concrete version of Maxwell’s demon. He now illustrated diffusion through a porous
piston by a hard-ball gas model, and he perfected his imaginary device by allowing the periodic
refilling of the two compartments of his cylinder with fresh hydrogen and oxygen. He also noted that
the porous piston, instead of doing work through an external mechanical contraption, could move
freely in the cylinder and thus heat up the gas on one side by compression and cool down the gas on
the other side by expansion, in contradiction with Clausius’s statement of the second law (according to
which heat cannot spontaneously pass from a colder to a warmer body). In the following issues of
Nature he got only compliments: firstly by the future meteorologist John Aitken [36], who described
a device that could elevate water through the diffusion of ether into air (see Figure 7); secondly by
the astronomer Alexander Stewart Herschel [37] (the third of the dynasty) who imagined an obscure
connection with Clausius’s virial.

Figure 7. Aitken’s device for pumping up water by means of the diffusion of ether into air.
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The first public rebuttal occurred in the German Annalen, and it came from Clausius himself [38].
After praising Preston’s “ingenious considerations” and his “interesting conclusions,” Clausius denied
that they implied any violation of the second law because a full and exact cycle of operations would be
needed for that purpose. At the end of Preston’s pseudo-cycle (after refreshing the gases in the cylinder)
not only heat has been borrowed from the environment but also an unmixed store of hydrogen and
oxygen has been turned into a mixture. The mixing compensates for the monothermal production of
work, as Loschmidt, Thomson, Rayleigh, and Gibbs clearly understood.

Presumably after seen Clausius’s note (he does not mention it) (Clausius’s note was written in
May 1878, and Preston’s letter was published on 23 May 1878), Preston sent a third letter to Nature
in which he now admitted that “the case there dealt with does not appear necessarily to be out of
harmony with what is termed the ‘second law of thermodynamics,’ though it may be questioned
whether it quite harmonises with certain modes of stating the law” [39] (p. 92). Just like Clausius,
he now emphasized that the monothermal production of work, or the spontaneous transfer of heat
from a colder to a warmer body, was accompanied with mixing in the environment. He nevertheless
insisted about the practical promises of the possibility of producing work from a given source of heat
without the need of a warmer or colder source.

4.3. Boltzmann on the Mixing Entropy (1878)

In the summer of 1878, Boltzmann became aware of Preston’s heresy through an abstract in
the Beiblätter. His first reaction appeared in the November issue of the Philosophical magazine [40],
together with an abstract of a recent memoir of his. In agreement with Clausius, he first noted that
the production of work by diffusion did not violate the second law and rather was an interesting
illustration of this law. Apparently unaware of Rayleigh’s and Gibbs’s publications on this topic,
he then offered a new, kinetic-theoretical derivation of the mixing rule for entropies. His main resource
was the combinatorial expression he had given in the previous year for the entropy of a homogeneous
gas and also for a mixture of several gases [41]. Let us first recall how he arrived at this formula.

For a single monatomic gas, Boltzmann divided up the (r, v)-space of a molecule into uniform
cells of size ε and counted the number of distributions of the N molecules of the gas over the cells for
which there were Ni molecules in the cell labeled by the index i. This number is equal to the number

W =
N!

∏
i

Ni!
(25)

of permutations of the molecules that leave the content of the various cells invariant. Boltzmann
took this number to be proportional to the probability of the distribution (Ni)i and he identified the
equilibrium distribution with the distribution of maximum probability under the constraints

∑
i

Ni = N (26)

and

∑
i

Ni(mυi
2/2) = E (27)

of constant total number N and constant total energy E. Assuming the cells to be large enough to
contain a large number of molecules, we may use the approximation

ln W = N ln N −∑
i

Ni ln Ni. (28)
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Assuming the cells to be small enough so that the relative variation of the number Ni between two
consecutive cells becomes negligible, we may replace the discrete distribution (Ni)i with the continuous
distribution f (r, v)d3rd3υ. Boltzmann’s problem then is to find the distribution f for which

H =
∫

f ln f d3rd3υ (29)

is a minimum under the conditions∫
f d3rd3υ = N and

∫
(mυ2/2) f d3rd3υ = E. (30)

By the method of Lagrange’s multipliers, the solution is

f = αe−βmυ2/2, with α = (N/V)(mβ/2π)3/2 and β = (3/2)(N/E). (31)

To this solution corresponds
(32)

This is to be compared with the entropy of a perfect gas, given by

dS = cVdT/T + PdV/T = (3/2)nRdT/T + nRdV/V, (33)

wherein cV denotes the specific heat at constant volume, R the constant of perfect gases, and n the
number of moles of the gas. This differential expression agrees with

S = kB ln W provided that NkB = nR and β = 1/kBT. (34)

Note that the logarithm of the permutability naturally gives a non-extensive expression of the entropy,
since N ln V is not extensive. Boltzmann felt free to drop the ugly N ln N and N ln ε terms in the
expression of ln W (in fact, he directly worked with−

∫
f ln f d3rd3υ). This gave him the extensive form

S/kB = (3/2)N ln β + N ln(V/N) + (3N/2) ln(2π e/m). (35)

For a mixture of monatomic (perfect) gases, the distribution of the molecules of a given component
in the cells of the corresponding phase-space is independent of the similar distribution for another
component. In the case of two components only, call N′i and N′′i the corresponding distributions.
The total permutability is simply given by

W =
N′!

∏
i

N′i !
N′′!

∏
i

N′′i !
. (36)

Again, Boltzmann felt free to omit the N′ ln N′ and N′′ ln N′′ terms in ln W and got

S = −kB

∫
f ′ ln f ′ d3r′d3υ

′
− kB

∫
f ′′ ln f ′′ d3r′′d3υ′′ (37)

for the entropy.
As Boltzmann emphasized in his response [40] to Preston, this formula implies that the entropy

of the mixture is given by the entropy of the components as if each of them existed alone in the
container. This is exactly the Gibbs-Rayleigh rule, now justified by kinetic-theoretical means. For the
contributions of the two gas components to the entropy of the mixture, Boltzmann directly used the
thermodynamic formulas

S′ = (3/2)n′R ln T + n′R ln V and S′′ = (3/2)n′′R ln T + n′′R ln V. (38)
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If the two gases originally were in two separate containers of volumes V1 and V2 such that V1 +V2 = V
at the same temperature T and at the same pressure P = n′RT/V1 = n′′RT/V2, then the original
entropy is S1 + S2 with

S1 = (3/2)n′R ln T + n′R ln V1 and S2 = (3/2)n′R ln T + n′R ln V2. (39)

The mixing entropy is (I have corrected a slip in Boltzmann’s expression of Sm)

Sm = S′ + S′′ − S1 − S2 = n′R ln
V1 + V2

V1
+ n′′R ln

V1 + V2

V2
, (40)

in conformity with Gibbs’s result. The corresponding work gained during isothermal reversible mixing
is TSm. Lastly, Boltzmann sketched a method of reversible mixing based on absorption of one of the
gases by a solid chemical (for instance CO2 by CaO) just as in Rayleigh’s article of 1875.

A few months later, Boltzmann published a fuller account of his views in the proceedings of the
Viennese Academy [42]. For the entropy of a perfect homogeneous gas, he now used the extensive form

S = (3/2)nR ln T + nR ln(V/n), (41)

with concomitant alterations in the expressions of S1, S2, S′, S′′. The net result for the mixing entropy
is the same since the n′R ln n′ and n′′R ln n′′ corrections are the same in the initial and final states.
Boltzmann then investigated three ways of obtaining the maximal amount of work in reversible,
isothermal mixing: by chemical absorption (pp. 311–312), by gravity combined with chemical
absorption (pp. 313–316), and by means of semipermeable walls (p. 317). In the first case, the reasoning
was similar to Rayleigh’s, except that Boltzmann recognized the ideal character of the imagined gases
and substances and considered more complex processes in which the maximal work could be reached
with real gases and absorbers. In the third case, the reasoning was entirely new and it turned out to be
highly influential.

4.4. Semipermeable Walls

Semipermeable walls or diaphragms had long been known in relation to osmosis, in which the
solvent is free to move across the diaphragm while the solute is confined on one side. They occurred
in Gibbs’s memoir on the equilibrium of heterogeneous substances, as a particular case of equilibrium
with osmosis in mind. No one, however, had imagined semipermeable diaphragms for gases and their
application to reversible mixing. Rayleigh’s, Preston’s, and Aitken’s porous walls essentially differed
from such diaphragms since they were permeable to the two gases being mixed; their purpose was to
let the two gases permeate at different speeds. As Boltzmann noted, their way of mixing is irreversible
and therefore cannot be used to produce the maximal work. In contrast, semipermeable walls allow
reversible, isothermal mixing in a very simple manner. In the process imagined by Boltzmann [42]
(p. 317) (see Figure 8), the two gases initially occupy separate containers of volumes V1 and V2 at
the same pressure P and the same temperature T. The first gas is expanded slowly until its pressure
is a vanishingly small fraction of P. This gas is then allowed to penetrate the second gas through
a semipermeable diaphragm. The volume of its container is slowly reduced to zero while the volume
of the second container is constantly adjusted to the value for which the total pressure remains P.
At the end of this reversible process, the work produced is the work given by the isothermal expansion
of the first gas from V1 to V1 + V2 plus the work given by the isothermal expansion of the second gas
from V2 to V1 + V2. For perfect gases, this gives

W = n′RT ln
V1 + V2

V1
+ n′′RT ln

V1 + V2

V2
(42)
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if n′ and n′′ denote the numbers of moles of the two gases. This formula agrees with the theoretical
value Sm/T of the maximal work that can be gained by mixing, Sm being the mixing entropy of
Equation (40). Plausibly, Boltzmann worked backwards from this formula to imagine the mixing by
semipermeable walls.

Figure 8. The successive steps of Boltzmann’s procedure for the reversible, isothermal mixing of two
gases 1 and 2 by means of a semipermeable wall. The pressure P on the right side of the rightward
sliding wall is kept constant. The hatched rectangle is permeable to gas 1 and impermeable to gas 2.

There being no real semipermeable walls known to him for pairs of gases, Boltzmann called
his semipermeable walls “fictional” and did not insist on them. Nonetheless, they soon became the
principal ingredient of a standard derivation of the mixing entropy of two gases. In 1883, Hermann
Helmholtz approved Rayleigh’s and Boltzmann’s considerations in a footnote (p. 654n) to the third
installment [43] of his influential “Thermodynamik der chemischen Vorgänge,” based on the concept of
“free energy.” In the same year his disciple Max Planck [44] dwelt on gas mixing and gas dissociation.
He remarked (p. 370) that semipermeable walls allowed for reversible mixing and gave the example of
glowing platinum, which is permeable to hydrogen and not to nitrogen.

In 1891, the Leipzig mathematician and mathematical physicist Carl Neumann [45] (pp. 117–118)
more explicitly considered a cylinder of volume 2V initially containing a mixture of two perfect gases
and equipped with two sliding semipermeable pistons (see Figure 9). These pistons are slowly moved
from the end sections of the cylinder to its middle section, so that in the end state the two gases
are separated and each of them occupies the volume V. The net pressure on a given piston being
equal to the partial pressure of the gas to which it is impermeable, and this pressure being inversely
proportional to the volume occupied by this gas in an isothermal process, the network W done on the
system is 2RT ln 2. The work conversely obtained by reversible mixing is given by the same formula.
The mixing entropy then is

Sm = ∆S = Q/T = −W/T = 2R ln 2, (43)

in conformity with Gibbs’s formula. The mixing is here natural: the end state is the same as if the gases
had diffused through each other by the mere removal of a partition.

In another kind of mixing, each of the two gases originally occupies a volume equal to the volume
2V of the end mixture. This mixing can be achieved reversibly and isothermally by first contracting
each gas to the volume V and then mixing them according to the former procedure. The work done
during the first process is exactly the opposite of the work done in the second. This mixing therefore
does not alter the entropy. In other words, the entropy of an ideal mixture of two gases is the sum of the
entropies that each gas would have if it occupied the available volume separately. This is Gibbs’s rule.
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In his Grundriss der allgemeinen Thermochemie of 1893 [46] (pp. 128–129), Planck recalled that Gibbs’s
expression of the entropy of a gas mixture could be derived from the existence of semipermeable walls.
In his lectures on thermodynamics of 1897 [47] (pp. 200–201), he described the reversible, isentropic
mixing process that is now most commonly found in thermochemistry texts. In the cylinder and
double piston of Figure 10, wall I is permeable only to the gas I at pressure P1, wall II only to gas 2
at pressure at pressure P2. The sliding walls II and III move together reversibly to the right without
any expense of work since the forces on III and II have the same intensity and opposite directions.
The temperature is constant and uniform throughout the process. At the end, the gases 1 and 2 have
been mixed reversibly and isothermally, and the final volume is equal to the common volume of the
two gases before mixing.

Figure 9. Carl Neumann’s procedure for the reversible, isothermal separation of two perfect gases 1
and 2 by displacing two semipermeable walls. One of the hatched walls is permeable to gas 1, the other
to gas 2.

Figure 10. The isentropic, reversible mixing of two gases 1 and 2 by means of two semipermeable walls
according to Planck.

5. New Discussions of the Gibbs Paradox

5.1. Duhem and Neumann on Gas Mixtures (1886–1892)

In his lucid Le potentiel chimique of 1886 [48] (pp. 46–47), Pierre Duhem recognized the central
character of Gibbs’s mixing rule and justified it as follows. The entropy variation of the mixture during
an infinitesimal variation of its volume and temperature is given by

dS =
δQ
T

=
dU + PdV

T
. (44)

Owing to the relation P = P1 + P2 between the total pressure and the partial pressures and to the
relation U = U1 + U2 between the total energy and the partial energies, we have

dS = dS1 + dS2, with dS1 = dU1 + P1dV and dS2 = dU2 + P2dV. (45)

By integration, this implies that the entropy of the mixture is equal to the sum of the entropies that the
components would have if they existed separately in the vessel, up to an additive constant independent
of the temperature T and the volume V but possibly depending on the composition of the mixture
(since the mass of each gas component is kept constant during the former infinitesimal variation).
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Duhem arrived at Gibbs’s rule by further excluding the latter dependence (Neumann [44] (p. 115)
criticized Duhem for arbitrarily setting the integration constant to zero).

When, in 1892, Duhem published his treatise on gas dissociation [49], he had read Neumann’s
memoir of 1891 [45] and his illuminating discussion of the mixing entropy. He now insisted (pp.
49–50), as Henri Poincaré had done in his Sorbonne lectures on thermodynamics [50] (pp. 320–321),
that the former reasoning led to

S = S1 + S2 + ψ(n1, n2), (46)

wherein the function ψ(n1, n2) of the numbers of moles of the two components remains undetermined.
An additional assumption was needed to reach Gibbs’s rule S = S1 + S2. It could be equilibrium of
the mixture with condensed phases according to Gibbs, equilibrium with a partially dissociated salt
(calcium carbonate for a mixture of carbon dioxide with another gas), or the existence of semipermeable
walls according to Neumann. In conformity with his general conception of physical theory, Duhem
did not dwell on these justifications and rather regarded the extensivity of partial thermodynamic
potentials and entropies as an axiom whose merit was to be judged on its empirical consequences.

In his impressive memoir of 1891 [45], Carl Neumann sought to clarify the foundations of
thermodynamics and its variable applications, giving more precise statements of the basic assumptions,
bringing implicit assumptions to light, strengthening the mathematical discussion, and testing the
mutual compatibility of the various assumptions. He gave special attention to the mixing of gases
and favored semipermeable walls as the simplest and most direct way to justify Gibbs’s mixing rule,
although he also attended to reversible separation by gravity in Rayleigh’s manner (pp. 119–124).
He noted that the resulting value of the maximal mixing work had received the stamp of Rayleigh’s
and Helmholtz’s authority. Yet he expressed some “mistrust” in this result, for it seemed to have the
absurd consequence that the mixing of two identical gases would produce the same amount of work.
In his opinion, Gibbs’s discussion of this point “did not quite dissolve the present obscurity” (p. 129).

Duhem reacted to Neumann’s worries in his treatise of 1892 [49] (pp. 52–53):

In a recent and very important writing, a good part of it is devoted to the definition
[of a gaseous mixture according to Gibbs], Mr. Carl Neumann points to a paradoxical
consequence of this definition. This paradox, which must have stricken the mind of anyone
interested in these questions and which, in particular, was examined by Mr. J. W. Gibbs, is
the following:

If we apply the formulas relative to the mixture of two gases to the case when the two gases
are identical, we may be driven to absurd consequences.

This is, as far as I know, the first occurrence of the word “paradox” in this context. Unlike Neumann,
Duhem believed that Gibbs’s discussion, if properly sharpened, did solve the paradox. Duhem first
recast Gibbs’s argument as the following syllogism:

- Major premise: The notion of mixture of two gases includes the mixture of two masses of the
same gas.

- Minor premise: Gibbs’s definition of a mixture leads to absurd results when applied to the mixture
of two masses of the same gas.

- Conclusion: Gibbs’s definition is inacceptable.

Duhem rejected the major premise: in his view, the notion of mixture applied only to different
gases because in the case of two masses of the same gases, bringing them into contact did not imply
any disequilibrium.

This reasoning indeed resembles the part of Gibbs’s discussion in which he brings forth that
entropy should depend on states determined by sensible properties only. In Duhem’s philosophy,
this is almost a tautology since physical theory in general and thermodynamics in particular can only
refer to sensible properties. Atoms, molecules, and their motion are mere figments of the mind. As for
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Gibbs’s consideration of very nearly identical gases and the joint statement about the probabilistic
nature of the entropy law, Duhem simply ignores them.

5.2. Wiedeburg’s “On Gibbs’ Paradox” (1894)

One of Duhem’s readers was Otto Wiedeburg, a Leipzig Privatdozent who had recently completed
a PhD on hydrodiffusion in Berlin under August Kundt. In 1894, Wiedeburg [51] published an essay
entitled “Das Gibbs’sche Paradoxon” in the Annalen, with proper reference to Gibbs’s, Neumann’s,
and Duhem’s contributions. He first identified the two assumptions leading to the mixing entropy
formula and paradox: (A) Each component of the mixture behaves as an ideal gas; (B) The pressure,
energy, and entropy of the mixture are the sum of the contributions of each component regarded as
alone in the container. He then gave his own statement of the paradox (pp. 684–685):

[The mixing entropy] as computed from these assumptions turns out to have a non-zero
value independent of the nature of the gases. It would therefore have the same value when
gas masses of the same chemical nature diffuse into each other. Yet one surely expects the
value zero for the entropy variation, since there is no perceptible change in what is regarded
as the ‘state of the system’ in thermodynamics and since entropy depends on this state only.

Gibbs, Wiedeburg went on, had tried to defuse the paradox by arguing an essential disparity
between the case of different gases and the case of identical gases: in the latter case it is physically
impossible to separate the two mixed gas masses, so that we lack the means to compute the mixing
entropy. Duhem had similarly argued that bringing into contact two masses of the same gas at the
same pressure and temperature did not imply any transformation. At that point of his text, Wiedeburg
brought in the kinetic-molecular picture of the gases [51] (p. 685):

To this we may object that according to the kinetic intuition the inducement to mixing is
equally given in both cases by the constant (though slow) migration of the smallest particles.

In other words, the kinetic-molecular intuition (implicitly admitting the distinguishability of the
molecules or “smallest particles”) contradicts the extensivity of entropy. Wiedeburg, unlike Duhem
and Planck, was taking the kinetic theory of gases seriously, presumably because his former advisor
Kundt was one the few German promoters of this theory.

In order to shed light on this matter, Wiedeburg scrutinized Assumption B (Gibbs’s mixing rule).
He approved Walther Nernst’s recent remark [52], in a review of the German translation of Gibbs’s
thermodynamic papers, that this assumption should not be regarded as evident despite its formal
appeal. The assumption, he went on, needed physical justification in Gibbs’s original manner (through
equilibrium with condensed phases) or in Poincaré’s manner (based on the dissociation of calcium
carbonate). He favored Neumann’s justification by means of semipermeable walls (bringing out the
implicit assumption that the pressure of a mixture on a semipermeable wall is equal to the partial
pressure of the gas to which it is permeable). In this concept he found his own solution to Gibbs’s
paradox: there is no mixing entropy for two masses of the same gas simply because the concept of
semi-permeability “presupposes a certain finite difference between the gases to be mixed” [51] (p. 693).

Wiedeburg next confronted this view with the kinetic-molecular intuition [51] (pp. 693–694):

However, if we admit the mental or even practical possibility to reversibly mix or unmix
similar [gas] masses in such a way that every individually determined smallest particle is
found in the same ‘state,’ in particular in the same position, after a complete cycle, it cannot
be denied that in such a mixing process work can be won even though it does not involve any
outward change. Simply, in this case the concept of ‘state of a system’ must be determined
and handled in a much more extensive and precise manner than is usually done.

Wiedeburg here seems to make the definition of thermodynamic states relative to our ability to
separately manipulate parts of the system. He may have had in mind the case of two gases whose
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molecules differ only through their interactions with the molecules of a third gas. Or he may have been
alluding to Maxwell’s demon and to Maxwell’s later idea that dissipation occurs only for beings “in the
intermediate stage”. Yet, toward the end of his article, he distanced himself from Gibbs’s probabilistic
conclusion (p. 696):

It should be clear that one need not conclude, as Gibbs himself does, that ‘the impossibility of
an uncompensated decrease of the entropy seems to be reduced to an improbability,’ in other
words: that the second law of thermodynamics seems not to be absolutely true.

It should be remembered that the mid-1890s were the time of the most violent opposition between
those, like Boltzmann, who regarded the kinetic molecular theory as the true foundation of thermal
phenomena and reduced the second law of thermodynamic to a merely statistical law, and those,
like Planck, who believed in a purely macroscopic thermodynamic based on two absolute laws.
Wiedeburg prudently avoided to take side. He believed he could solve the Gibbs paradox without
entering this debate, through an operational definition of thermodynamic states.

Wiedeburg still needed to address Gibbs’s consideration of the limit of a vanishing difference
between two gases. He did so at the very end of his article [51] (p. 697):

The paradoxical consequences [of the mixing-entropy formula] start to occur only when we
follow Gibbs in imagining gases that are infinitely little different from each other in every
respect and thus conceive the case of identical gases as the continuous limit of the general
case of different gases. On the contrary, we may well conclude that finite differences of the
properties belong to the essence of what we call matter.

Planck echoed this view in his influential thermodynamics lectures of 1897 (without referring to
Wiedeburg or even to Gibbs) [47] (pp. 203–204):

With regard to the entropy increase by diffusion, it does not make any difference whether
the gases are chemically more or less ‘similar’ [ähnlich]. Now, if we take two identical gases,
the entropy increase is obviously zero, since there is no change of state at all. Whence follows
that the chemical difference between two gases or two substances in general, cannot be
represented through a continuously variable quantity, and that we instead have to do with
discrete distinctions [sprungweisen Beziehungen]: either equality [Gleichheit] or inequality
[Ungleichheit]. This circumstance creates a principal opposition between chemical and
physical properties, since the latter must always be regarded as continuously variable.

6. The N! Division

6.1. Boltzmann on Chemical Equilibrium (1883)

The Gibbs paradox results from the combination of two elements: the extensivity of entropy,
and the Rayleigh-Gibbs rule for calculating the mixing entropy of two gases. The latter rule can be
derived from the existence of a reversible mixing process, without presupposing the extensivity of
entropy. To be true, Gibbs’s own derivation does appeal to extensivity since it relies on the relation
G = ∑

i
niµi, which is itself a consequence of the homogeneity of the G function. But Boltzmann’s

derivation does not (at least in its first form) necessitate extensivity. For two gases initially occupying
the separate volumes V1 and V2 at the same temperature T and the same pressure P, the rule gives
the mixing entropy as the sum of the entropy variations for each gas during reversible, isothermal
expansion from the original volume to the final volume V1 + V2. This rule derives from the existence
of reversible mixing processes. Its application involves nothing more that the variation of the entropy
function of a homogeneous gas for a constant value of the number of molecules. We may add any
function of the number of molecules to the entropy of a homogeneous gas without altering the value of
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the mixing entropy. Thus, there are infinitely many non-extensive expressions of the entropy function
of a homogeneous gas that yield the same mixing entropy.

Consequently, the extensivity of entropy should be regarded as independent from the mixing rule.
According to Gibbs and many other authors, this extensivity is nearly as obvious as the extensivity
of energy because no sensible property is altered when two initially separated masses of the same
gas at the same pressure and the same temperature are brought to communicate, for instance through
an opening on the wall that separates them. Moreover, Gibbs’s theory of chemical equilibrium seems to
require extensive entropies since it appeals to the entropy of mixtures of variable chemical composition.
In this case, unlike the case of non-interacting mixtures, the way in which the entropy depends on
the numbers of molecules is instrumental, and it seems plausible that non-extensive variants of the
entropy function would derail the deduction of the equilibrium state.

These seemingly obvious arguments in favor of extensivity do not withstand criticism. In 1883,
soon after Helmholtz published his own chemical thermodynamics, Boltzmann published a long
memoir [53] in which he derived the laws of chemical equilibrium through his combinatorial method
of 1877. In this approach, the basic entities are the atoms of which the various interacting molecules
are made, and chemical equilibrium is obtained by maximizing the combinatorial probability of
a combination of the atoms into molecules. Consider the simplest case of the dissociation equilibrium
of a diatomic gas, say I2 ↔ I + I for iodine. Call N′ the number of isolated atoms in the gas mixture,
N′′ the number of diatomic molecules, and A the total number of atoms (with N′ + 2N′′ = A). Since in
Boltzmann’s combinatorics the atoms are mutually distinguishable, their permutation generally leads
to a different combination for a given value of N′ and N′′. The number Y of distinct combinations is
the total number of permutations of the atoms divided by the number of permutations that leave the
diatomic molecules invariant, by the number of permutations of the free atoms, and by the number of
permutations of the diatomic molecules:

Y =
A!

(2!)N′′N′!N′′!
. (47)

Each free atom is then distributed over the cells of its phase-space, and the same is done for the
diatomic molecules. Call N′i the number of free atoms in the cell i of the first phase-space, and N′′j the
number of molecules in the cell j for the second phase-space. For given values of the numbers N′ and
N′′ of free atoms and molecules, the number of distributions over their discretized phase-spaces are
respectively given by

W ′ =
N′!

∏
i

N′i !
andW ′′ =

N′′!
∏
j

N′′j !
. (48)

Boltzmann then gives the probability of a combination of the atoms compatible with these
distributions as

W ∝ Y W ′W ′′ =
A!

2N′′
1

∏
i

N′i !
1

∏
j

N′′j !
. (49)

The important point is that the factor Y cancels the N′! and N′′! factors that are responsible for the
non-extensivity of ln W ′ and ln W ′′. Globally, Boltzmann’s combinatorial entropy ln W is not extensive
since ln A! is not. Nonetheless, for a constant value of N′ + 2N′′ = A and for a constant value of the
total energy, the maximal value of ln W depends on the degree of dissociation in the same manner
as it would in Gibbs’s theory. Strangely (for the modern reader), it is precisely the distinguishability
of the atoms in Boltzmann’s molecules that provides the desired N′! and N′′! division (see [54]; [15],
pp. 258–268).

The success of Boltzmann’s procedure incites us to reconsider the necessity of extensive entropies.
Does communication between two similar masses of the same gas imply a global change of state? NO
from a purely macroscopic point of view, and YES from a molecular point of view. Before the
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communication, the trajectory of a given molecule is confined to one half-space only; after the
communication it penetrates both half-spaces. Now we have two options: either we want entropy to
be a function of sensible states only, or we allow it to depend on the molecular microstates and their
history. Gibbs overtly took the first option; Boltzmann’s relation between entropy and combinatorial
probability seems to favor the second. The first one has mathematical appeal (it is more convenient to
work with homogeneous functions) but it leads to the Gibbs paradox and it makes entropy depend on
our present ability to detect the heterogeneity of a substance. The second annuls the Gibbs paradox
since it yields exactly the same mixing entropy for identical gases and for different gases. But it seems
to diminish the operational significance of entropy.

To summarize, the brute application of Boltzmann’s logarithmic relation between entropy and
permutability leads to non-extensive entropies, and the reason for this is the distinguishability of
molecules or atoms that is presupposed in the very definition of permutability. This is only a formal
argument because the permutability can be divided by N! and the entropy is thus made extensive
without changing its other properties. But there is more. Classical molecules are distinguishable in
a more physical sense: any given molecule can be identified through its trajectory (that is, we can say
whether two micro-objects, seen at different points at different times, correspond to the same molecule).
In this context, the addition of two similar masses of gas is not a reversible operation and it is entirely
similar to the mixing of two different gases. It would therefore seem that Boltzmann, for the sake of
consistency, should have given up extensive entropies.

He did not. With the exception of the aforementioned communication to the Philosophical magazine,
he always used extensive formulas for the entropy of a gas. In his view, this practice did not contradict
the relation between entropy and probability because the permutability W was only meant to be
proportional to the probability of the state, for a constant value of the numbers of ultimate particles.
It could not be used to calculate the relative probability of states implying different numbers of ultimate
particles. By ultimate particles, I mean the number N of molecules in the case of a homogeneous
gas, and the list of the numbers A, B, C... of constituting atoms in the case of a mixture of chemically
interacting molecules. The relation between entropy and probability should then be written as

S = kB ln W + ϕ(N) and S = kB ln W + ψ(A, B, C . . .) (50)

respectively. Extensive entropies obtain by setting the arbitrary functions ϕ and ψ to

ϕ(N) = −kB ln N! and ψ(A, B, C . . .) = −kB ln(A!B!C! . . .). (51)

As far as I know, no one defended non-extensive entropies until the new quantum theory reactivated
the issue of the additive constant in the statistical entropy formula.

6.2. Absolute Entropies (1911–1920)

According to the combinatorial formula S = kB ln W, the value of the entropy also depends on
the size of the cells into which the phase-space of a molecule is divided. Although this dependence
is extensive, it is meaningless in a classical theory for which the size of the cells is largely arbitrary
(according to Boltzmann, this size should be large enough to contain a large number of molecules
and small enough so that the relative difference between the numbers of molecules in two contiguous
cells be negligible). The quantum of action changed the game in the next century. In 1911, the Breslau
physicist Otto Sackur [55] used Planck’s constant h to set the size of the cells and thus determined
absolute entropies involving a h-dependent “chemical constant”. The hope was that in a chemical
reaction involving gases only, the variation of the sum of absolute entropies would yield the true value
of the entropy variation. This move supposed the elimination of any additive constant in the relation
between entropy and probability. In particular, Sackur wanted his entropies to be extensive. Sackur
achieved this aim by making the size of his quantum cells proportional to the number N of particles.
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The following year the seventeen-year old Dutch student Hugo Tetrode [56] derived the same entropy
formula through the following adaptation of Gibbs’s microcanonical entropy:

S =
1

N!
1

h3N

∫
H<E

d3Nrd3N p with H =
N

∑
i=1

pi
2

2m
(52)

in the monatomic case. Tetrode justified the h3N divider through the quantum structure of phase
space, and the N! division by appeal to Gibbs’s “generic phases,” about which more in a moment
(see also [54], pp. 285–287).

Paul Ehrenfest, the guardian of Boltzmann’s heritage, protested that Sackur’s extensive cells
or Tetrode’s N! division lacked any fundamental justification. In 1920 with his Czech assistant
Viktor Trkal, he showed how to derive the laws of chemical equilibrium, including the full quantum
theoretical expression of the equilibrium constant, without absolute extensive entropies [57] (see [58],
pp. 51–55; [54], pp. 285–287). The basic idea was to return to Boltzmann’s method of 1883, the principal
difference being in the size of the cells in the phase space of a molecule, now set to h f if f denotes the
number of degrees of freedom of the molecule. Just as in Boltzmann’s original memoir, the division
by the factorials of the molecule numbers is now justified by the multiplicity of ways in which
distinguishable atoms can be combined to yield given numbers of molecules of each possible kind.

Ehrenfest seized this opportunity to publicize his criticism of entropy extensivity and entropy
constants. About Sackur’s and Tetrode’s ways to achieve extensivity he wrote [57] (p. 163):

The law of dependence on N can only be satisfactorily settled by utilizing a process in which
N changes reversibly and then comparing the ratios of the probability with the corresponding
differences of entropy.

This process could be a chemical process occurring in a gas mixture, during which the numbers
N′, N′′,... of molecules of the various species can change reversibly. The equilibrium could then be
computed in Boltzmann’s manner by computing the relative probability for the combination of atoms
into the various species of molecules with abundance given by the numbers N′, N′′,... :

Our method removes, we hope, any remaining obscurities as regards the occurrence of
N′!N′′! . . . This could only be accomplished, as it appeared to us, by not stopping at the
numbers of the molecules in the combinatory computations, but by going down to the atoms.

Toward the end of the memoir, Ehrenfest condemned the usual justification of extensive entropies [57]
(pp. 176–177):

In the majority of calculations of the chemical constants a special obscurity remains as to
the way in which the ‘thermodynamic probability’ of a gas depends on the number of
molecules. We shall try to explain in a few words how this obscurity is connected with the
use of [Planck’s equation S = kB ln W instead of Boltzmann’s ∆S = kB∆ ln W]: it is generally
assumed as self-evident, that the entropy of a gas is to be taken twice as large, if the number
of molecules and the volume are both doubled. Now it is certainly true, that the increase
of the entropy in a given process in a gas of twice the number of molecules is twice as
large as the corresponding increase in the original gas. But what is the meaning of taking
the entropy itself twice as large and thereby settling the entropy-difference between the
doubled and the original gas? By what reversible process is the double quantity of gas to be
generated from the original quantity? Without that the entropy difference

∫
δQ/T cannot be

clearly defined. In order to remove this obscurity, it is necessary to return to Boltzmann’s
equation [∆S = kB∆ ln W] and to apply it to a reversible process in which the numbers of the
molecules change.
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Ehrenfest then reviewed the various procedures by Sackur, Tetrode, and judged them artificial. About
Planck’s own justification of the N! division through the indistinguishability of the molecules he had
to say: “I am not able—in spite of my sincere efforts—to grasp the foundation of the division by N!
performed there” [59] (p. 628n).

Implicitly, Ehrenfest considered that the natural way of “doubling the quantity of gas”, by opening
a hole on the wall between separating two equal portions of the gas, was not a reversible process.
Logically, this should have led him to give a non-zero value to the mixing entropy of identical gases,
and even to equate this value to the mixing entropy of different gases if he had the kinetic-molecular
picture of the mixing in mind. He did not openly take this step, and he rather left the dependence of
the entropy on the number of molecules undetermined for a single gas of stable composition.

Einstein agreed with Ehrenfest that the quantity of a gas could not be multiplied in a reversible
process and that the usual demand of extensive entropies was “arbitrary”. In 1914 [60], he gave the
entropy of a crystallized, chemically homogeneous substance at zero temperature as kB ln(A!B! . . .),
wherein A, B,... denote the total number of atoms of each kind in the crystal. Implicitly, he thereby
regarded S = kB ln W as a valid tool for computing absolute entropies, and he regarded the atoms as
distinguishable in the computation of W. Evidently, the resulting entropy is not extensive. He also
noted that in the case of a mixture of two moles of two monatomic substances (for instance an alloy
of two metals), the combinatorial entropy of the mixture differed from the combinatorial entropy
of the separate substances by kB ln[(2NA)!/NA!2] ≈ 2R ln 2. The result is of course the same if the
two metals are identical. When transposed to gases at ordinary temperature, this reasoning gives
non-extensive entropies and the same mixing-entropy for different and identical gases. Two years later,
in a communication to the Physikalische Gesellschaft on the Sackur-Tetrode formula [61], Einstein felt
free to introduce an N! division in order to get extensive entropies. But he did not relate this move to
indistinguishability and he still regarded extensivity as an arbitrary (though convenient) demand.

6.3. Gibbsian Approaches (1902–1916)

Boltzmann’s and Ehrenfest’s approaches to chemical equilibrium implied the statistics of atoms
and molecules when distributed over cells in the atomic or molecular phase space. In a more holistic
approach, the gas or mixture of gases is considered as a whole mechanical system with a given
Hamiltonian and the statistics refers to an ensemble of copies of the system. Somehow, averages
over properly chosen ensembles are supposed to yield the desired thermodynamic properties. This is
the essence of Gibbs’s method, which Boltzmann himself inaugurated but did not apply to chemical
equilibrium. Gibbs’s Statistical mechanics of 1902 [62] was highly abstract and mathematical. It mostly
concerned generic Hamiltonian systems with any given (large) number of degrees of freedom (N) and
stationary ensembles built from them. Gibbs focused on two ensembles, the microcanonical ensemble
distributed according to ρdNqdN p, with

ρ ∝ δ(E− H) (53)

over the energy shell H(q1, . . . qN , p1, . . . pN = E) in the global phase space, and the canonical ensemble
distributed according to ρdNqdN p

ρ ∝ e−βH . (54)

He showed that averages based on these two stationary ensembles were mutually related in a manner
analogous to thermodynamic quantities (see [63,64]).

In the fifteenth and last chapter of his treatise, Gibbs specialized the Hamiltonian to that of a set of
molecules, with the intention to deal with the manner in which thermodynamic processes may involve
molecule numbers. He had a special stake in this question since he had given the first thermodynamic
theory of chemical equilibrium twenty-five years earlier. In analogy with the canonical ensemble in
which the energy is distributed exponentially, he introduced the grand-canonical ensemble in which the
molecule numbers can take different values with an exponential weight. Calling νi the number of
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molecules of the species i, xi their global phase, and dσi the volume element of the associated phase
space, the grand-canonical number of systems whose phase belongs to the element ∏

i
dσi of the global

phase space is

(55)

Gibbs here divides the measure ∏
i

dσi by the product of the factorials of the numbers of molecules.

His first justification reads [62] (p. 187):

First of all, we must define precisely what is meant by statistical equilibrium of such
an ensemble of systems. The essence of statistical equilibrium is the permanence of the
number of systems which fall within any given limits with respect to phase. We have
therefore to define how the term phase is to be understood in such cases. If two phases
differ only in that certain entirely similar particles have changed places with one another,
are they to be regarded as identical or different phases? If the particles are regarded as
indistinguishable, it seems in accordance with the spirit of the statistical method to regard
the phases as identical.

In Gibbs’s terminology, all “specific phases” that differ only by permutations of molecules of the same
species correspond to the same “generic phase.” From an abstract mathematical point of view, there is
nothing to favor generic phases over specific phases, since ensembles are purely mental constructs.
It is all a matter of “practical convenience,” Gibbs tells us. More exactly, the choice of generic versus
specific phases should be dictated by the quality of the thermodynamic analogy it permits.

As Gibbs has proven in an earlier chapter, the canonical ensemble of parameter β bears an analogy
with a thermodynamic system of temperature β−1. In particular, when two canonically distributed
ensembles are brought into thermal contact (thanks to a small interaction Hamiltonian for the two
corresponding mechanical systems), the joint ensemble is (approximately) stationary if and only if
the β parameter has the same value for each of the combined ensembles. Similarly, in his last chapter
Gibbs proves that when two grand-canonical ensembles are allowed to exchange molecules of a given
species (thanks to a small semipermeable channel), the joint ensemble is (approximately) stationary if
an only if the µ parameters of this species have the same value for each of the combined ensembles.
Here the analogy is with the equality of the chemical potentials of a given chemical on the two sides
of a semipermeable wall. It holds only if the generic concept of phase is adopted, as we might have
expected from the intuitively evident fact that the joint ensemble is not stationary with respect to
specific phases: a given (labeled) molecule is no longer confined to one of the two separate systems
after they have been brought to communicate.

The expression that Gibbs gives for the grand-canonical entropy,

S = − ∑
ν1,...νs

∫
ρ ln ρ∏

i

dσi
νi!

(56)

is an extensive function of the grand-canonical averages νi of the numbers νi, as he wished it to be in
analogy with the thermodynamic entropy used in his earlier theory of chemical equilibrium in gas
reactions. Gibbs proves that this expression is very nearly equivalent to

(57)
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which is the generic-phase version of the canonical entropy (the index c refers to the canonical ensemble,
and “gen” refers to generic phases).

Gibbs ends his treatise with the situation of the Gibbs paradox [62] (pp. 206–207):

To fix our ideas, let us suppose that we have two identical fluid masses in contiguous
chambers. The entropy of the whole is equal to the sum of the entropies of the parts,
and double that of one part. Suppose a valve is now opened, making a communication
between the chambers. We do not regard this as making any change in the entropy, although
the masses of gas or liquid diffuse into one another, and although the same process of
diffusion would increase the entropy, if the masses of fluid were different. It is evident,
therefore, that it is equilibrium with respect to generic phases, and not with respect to
specific, with which we have to do in the evaluation of entropy, and therefore, that we must
use the average of [ln ρ] or of [ln ρc

gen] and not that of [ln ρc], as the equivalent of entropy,
except in the thermodynamics of bodies in which the number of molecules of the various
kinds is constant.

The remark echoes Gibbs’s earlier remark that entropy should refer to sensible properties only. Gibbs
adjusts his definition of the statistical entropy so as to meet this requirement.

As was mentioned, in his justification of the N! division in quantum-theoretical context, Tetrode
adduced the microcanonical version of Gibbs’s generic-phase entropy. In 1916, Planck [65] similarly
relied on the generic-phase partition function (his Zustandssumme, from which the letter Z has survived)
for a homogeneous gas:

Z =
∫

e−βH dσ

N!
, (58)

in which dσ is the canonical measure in the phase space of the whole gas and N the number of
molecules of the gas. The resulting free energy, F = −β−1 ln Z, is found to be extensive. In a reply to
Ehrenfest and Trkal, Planck [66] explained that statistical methods, when applied to the whole gas and
not to its individual molecules, did not require the combinatorial distinguishability of the molecules
and that the analyst should be free to choose the measure in phase-space that best fits his purpose.
In his opinion, Ehrenfest was too narrow an empiricist when he required the extensivity of entropy to
be justified by actual processes [66] (p. 367):

It does not help to wrack one’s brain on the meaning of a quantity for a process that does
not exist in nature, but one may be satisfied with the following criterion: this quantity will
be relevant if its calculated theoretical value for every process which can really be observed
agrees with the measured value.

Mathematical physicists like Lothar Nordheim and David Enskog, or mathematicians like David
Hilbert, favored the N! division. Other physicists believed the thermodynamic properties of a system
should not be more determined than allowed by the underlying dynamical model, and they approved
the standpoint of the Ehrenfest and Trkal paper. Albert Einstein did so in a letter to Ehrenfest,
with a broader condemnation of Planck’s use of probabilities [67]:

Planck will not be talked out of his metaphysical probability concept. For whoever tries
to understand minds of his kind, there is always a left-over irrationality, which escapes
assimilation (which keeps reminding me of Fichte, Hegel, etc.).

By “metaphysical probability” Einstein meant: probability unjustified by proper physical argument,
and perhaps justified by metaphysical arguments of the kind delivered by philosophers he did not like
(see [54], pp. 288–290).
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6.4. Foundations

Beyond rhetoric, Einstein was here pointing to a genuine difficulty of statistical mechanics in
its various guises. In Boltzmann’s combinatorial approach of 1877 as well as in Gibbs’s statistical
mechanics, the selected statistical distributions lack fundamental justification. Why should the
mathematical permutability of a state truly measure its probability in a physical sense? Why should
Gibbs’s stationary ensembles truly represent the equilibrium properties of a single system? How should
the entropy be related to the probability distributions? Without proper answers to these fundamental
questions, the users of statistical mechanics felt free to adjust the probability distributions in an ad
hoc manner. In Einstein’s opinion, Planck had repeatedly indulged in this sort of opportunism (firstly
in his derivation of the black-body law in 1900), and so too had Sackur, Tetrode, and their followers.
In his own reflections on the foundations of statistical mechanics, published in 1902–1904, Einstein
meant to remove any arbitrariness in the definition of the underlying probabilities and in their relation
to entropy.

Boltzmann had already done so in writings overlooked by Einstein (see [4] (pp. 128–133, 245–248,
249–256). In 1881 Boltzmann [68] had shown that his combinatorial probabilities derived from the
microcanonical distribution of the entire gas: the equiprobability of complexions is the discrete
version of the uniformity of the microcanonical distribution over the energy shell. In addition,
Boltzmann knew that for an ergodic system the temporal distribution of the phases of the system
is microcanonical in the long run. Since he doubted that molecular systems were truly ergodic,
in 1881 [69] he replaced ergodicity with the weaker assumption that within large but empirically
accessible times the macroscopic properties of a system reaches a very nearly stable value independent
of the choice of the initial conditions, as long as these conditions remain compatible with the
macroscopic constraints. In other words, he assumed that the microdynamics was compatible with
the empirically well-established existence of a well-defined, unique equilibrium state of a system
under given macroscopic conditions. This assumption in itself implies that any stationary ensemble
compatible with the macroscopic conditions should yield the macroscopic equilibrium properties
of a system as averages over this ensemble. The microcanonical ensemble does the job under the
constraint of constant total energy. The canonical ensemble does the job for a small subsystem of
a system of the former kind. As Boltzmann knew since 1871 [70], an expression of the microcanonical
and canonical entropies can be derived by considering slow deformations of the system in which the
volume (and other parameters of the Hamiltonian) and the energy or temperature vary continuously.
The entropy is thereby defined up to an additive constant depending on the (fixed) value of the
numbers of molecules.

Let us try to apply these insights to the chemical equilibrium of a mixture of gases. Boltzmann’s
method of 1883 is perfectly justified in a classical context, since it derives from the microcanonical
distribution applied to all possible combinations of the constituting atoms. It does not spontaneously
lead to an extensive entropy since it concerns only the state distribution for a given value of the total
numbers of constituting atoms (whether one takes the logarithm of the combinatorial probability or
the more direct and more fundamental formulas for the microcanonical or canonical entropy). But the
entropy can be made extensive by subtracting from its expression the sum of the logarithms of the
factorials of these numbers.

To summarize, in statistical mechanics at its most fundamental level, there seems to be nothing
to tell us how the entropy should depend on the unchanging number of the ultimate particles
(the molecules when there are no chemical reactions, and the atoms in general). In conformity
with Boltzmann’s and Ehrenfest’s views, it is nevertheless possible to determine how the entropy
depends on the composition of a mixture of chemically interacting substances. This dependence does
not require extensive entropies. One may either favor non-extensive entropies in conformity with
the molecular intuition, or extensive entropies in conformity with molar intuition. As we will see in
Section 7, the choice between these two options is not only a matter of taste.
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6.5. The Bose-Einstein Gas (1924–1925)

In the classical case, the molecular intuition led Ehrenfest and to tolerate non-extensive entropies.
As Ehrenfest probably imagined and as his followers made clear, the molecules of a homogeneous gas
can be distinguished through their path, so that the opening of a channel between two vessels alters
the identity of the molecules that can be found in each vessel. Also, the combinatorial entropy formula
S = kB ln W, as used in Boltzmann’s manner, assumes distinguishable molecules in a combinatorial
sense and yields a non-extensive entropy. Ehrenfest preserved the intuition and the formula in
the quantum theory because he reasoned in a semi-classical context in which molecules were still
considered as classical objects with ad hoc quantization of their classical attributes.

In 1924, Einstein [71] offered a new theory of the quantum gas based on a combinatorial procedure
from Satyendra Nath Bose’s earlier theory of black-body radiation as a gas of lightquanta (see [54],
pp. 92–93). In this case, the formula S = kB ln W directly yields an extensive entropy. As Ehrenfest
and Einstein soon understood, Bose’s combinatorics presupposes indistinguishable particles for which
Boltzmann’s permutability becomes unusable. A couple of years later quantum mechanics gave up
the notion of a definite trajectory of the gas molecules, so that the intuitive molecular argument for the
irreversibility of the mixing of two masses of the same gas lost its grab. The extensivity of entropy was
no longer questioned, and the Gibbs paradox came back with increased vigor.

There even was a worse mixing paradox, introduced by Einstein at the end of his first memoir on
the Bose-Einstein gas [71]. According to the new combinatorics, a mixture of two gases containing N′

particles of a first kind and N′′ particles of a second kind essentially differs from a homogeneous gas
of N′ + N′′ molecules in the same volume and at the same temperature. Not only the entropies but
also the pressures differ because the low-temperature degeneracy does not occur at the same rate in
the two compared gases. Einstein ended his memoir with the words (p. 267):

To conclude, I would like to bring the reader’s attention to a paradox which I have not been
able to solve. There is no difficulty, with the method here given, to also treat the case of
a mixture of two different gases. In this case, each kind of molecules has its own [quantum]
‘cells.’ Hence follows the additivity of the entropies of the components of the mixture. Thus,
each component behaves as if it were alone [in the container] regarding molecular energy,
pressure, and statistical distribution. A mixture with the molecule numbers N′ and N′′,
wherein the molecules of the first and second kinds differ as little as one wishes (in particular
with respect to the molecular masses m′, m′′) therefore gives, at given temperature, a pressure
and a state-distribution different from those of a homogeneous gas with the molecule number
N′ + N′′ and with practically the same molecular mass and the same volume. This seems
virtually impossible [so gut wie unmöglich].

In his second memoir on the quantum gas [72] (p. 10), Einstein related gas degeneracy to the
interference of de Broglie waves and argued that this interference would not occur for different
molecules, even if the mass difference m′ − m′′ was very small, because the associated frequency
difference (m′ −m′′)c2/h could still be very large. In mature quantum mechanics, the argument is
meaningless since the waves of different molecules should be multiplied, not added. So too is a later
argument by Ehrenfest and George Uhlenbeck [73] based on an incorrect correspondence between the
statistics of the molecules and their mutual impenetrability.

6.6. Von Neumann’s Solution

In his famous treatise of 1932 on the mathematical foundations of quantum mechanics [74]
(pp. 191–202), Johann von Neumann claimed to have solved the Gibbs paradox (without naming it) by
proving that the separability of the two components of a gas mixture, each represented by a different
quantum state, depended on the distance between these states: separation was of course impossible
for identical states, completely possible for orthogonal states, and partially possible for intermediate
states. “We thus clarify an old paradox of the old form of thermodynamics, that is, the unpleasant
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discontinuity in the operation of semipermeable walls: states that differ as little as one wishes are
nonetheless 100% separable, and exactly identical states are not at all separable!” (pp. 197–198). Von
Neumann’s difficult argument may be summarized as follows.

Von Neumann considers a statistical ensemble in which each of the N (identical, typically
macroscopic) systems of the ensemble is in a pure quantum state. Formally, the ensemble is represented
by a density matrix of the form

ρ =
1
N

N

∑
i=1
|ψi〉〈ψi| (with trρ = 1). (59)

Von Neumann further imagines that each of the systems is placed in an ideal shell (say a potential
barrier) so that is does not interact with the other systems (as should be the case in an ensemble),
and he allows all the shells to move in a container. The motion is the thermal agitation implied by
interactions of the shells with the thermalized walls of the container. The set of shells is thus analogous
to a gas at a well-defined temperature. The thermal motion of this gas is completely decoupled from
the evolution of the quantum states within the shells. When needed for the argument, the shells can be
opened so that a measurement can be performed on the included system or an external field can be
applied to it.

Firstly, von Neumann proves that the ensembles represented by any two pure states ρ′ = |ψ′〉〈ψ′|
and ρ′′ = |ψ′′〉〈ψ′′| have the same entropy. For this purpose, he sets the temperature of the gas of shells
to zero and he imagines that all the systems of the first ensemble undergo a Hamiltonian evolution
that turns |ψ′〉 into |ψ′′〉, or, better in his mind, that all the systems are subjected to the same dense
series of measurements with outcomes intermediate between ψ′ and ψ′′. In the first case, the entropy
does not change because the process is reversible and athermal, in the second case the process may
be irreversible and the entropy in the end state may be higher than in the initial state, but it must
nevertheless be the same because a similar process can be imagined from |ψ′′〉 to |ψ′〉. Since the
entropies of all pure states are equal, von Neumann takes their common value as a reference and thus
sets the entropy of any pure state to zero.

Secondly, von Neumann considers the mixed ensemble of density

ρ = a|ϕ〉〈ϕ|+ b|ψ〉〈ψ| with a > 0, b > 0, a + b = 1 (60)

and proves that the ϕ and ψ components can be separated by a semipermeable wall in the gas of shells
as long as the orthogonality condition 〈ϕ|ψ〉 = 0 is met. For this purpose, he imagines a porous wall
with holes slightly larger than the shells. The temperature of the gas of shells is now considered high
enough for this gas to be ideal. Owing to their thermal motion, the shells occasionally penetrate a hole
in the wall. Each hole is equipped with a mechanism that can measure the observable defined by

O = |ϕ〉〈ϕ| − |ψ〉〈ψ|. (61)

O-measurement of the states |ϕ〉 and |ψ〉 is non-destructive since 〈ϕ|ψ〉 = 0). When the outcome of the
measurement is 1, the ball is sent to the other side of the wall with no change of momentum; when the
outcome is −1 it is sent back with reflected momentum to the side it came from. According to von
Neumann this operation can be done without entropy cost because the mechanism, unlike Maxwell’s
demon, reacts on the instantaneous state of the shell in an automatic manner. Therefore, the wall
behaves like the usual semipermeable walls with respect to the gas of shells, and it can be used for the
purpose of reversible, isothermal separation of the ϕ and ψ gas components.

Thirdly, von Neumann proves that there cannot exist a semi-permeable wall for the separation of
the ϕ- and ψ-gases if the corresponding states |ϕ〉 and |ψ〉 are not mutually orthogonal (The following
is a much-simplified version of von Neumann’s lengthy reasoning). If such a wall existed, then by
the usual thermodynamic reasoning the entropy 2NkB ln 2 would be created by mixing N shells of the
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ϕ-gas with N shells of the ψ-gas. The entropy in the initial state is zero since the entropy of a pure state
has been set to zero. As for the entropy in the final, mixed state ρ f =

1
2 |ϕ〉〈ϕ|+

1
2 |ψ〉〈ψ|, it is given by

S f = −2NkBtr
(

ρ f ln ρ f ). (62)

For the derivation of this entropy formula, von Neumann sends the reader to the next part of his
argument. The eigenvalues of ρ f being (1± α)/2 with α = |〈ϕ|ψ〉|, we have

S f = 2NkB f (α) with f (α) = −1 + α

2
ln

1 + α

2
− 1− α

2
ln

1− α

2
. (63)

The function f (α) decreases monotonously between f (0) = ln 2 and f (1) = 0. Therefore, the value of
S f agrees with the mixing entropy 2NkB ln 2 if and only if α = 0. That is to say, complete separation is
possible if and only the vectors |ϕ〉 and |ψ〉 are orthogonal.

Fourthly and lastly, von Neumann proves

S = −NkBtr(ρ ln ρ) (64)

for the entropy of a gas of N shells with the density matrix ρ. This matrix being Hermitian (and of
trace 1), it may always be represented as a mixture

ρ = ∑
i

pi|i〉〈i| with 〈i|j〉 = δij and ∑
i

pi = 1 (65)

of mutually orthogonal pure states. By von Neumann’s second result, there are walls that are permeable
to one of the i-gases and impermeable to all the other i-gases. Using Planck’s double piston, we can
separate the mixture of these gases isentropically, in such a manner that they all occupy in the end
the same volume V as the original volume of the mixture. Spending the work −NkBTpi ln pi, we may
then compress (isothermically) the i-gas to the fraction pi of the volume V. The entropy of this gas
thereby varies by NkB pi ln pi. By reasoning similar to the one given in the first step (except that the
temperature of the gas now has a non-zero value), this entropy is unchanged if the |i〉 state is replaced
by any given pure state, say |0〉. The same operations being performed on each of the i components,
we end up with fractions of the same 0-gas at the same density and pressure. They may be joined
together to form a gas of N shells in the |0〉 state. The entropy of such a gas having been set to zero,
the entropy of the initial mixture must be

S = −NkB∑
i

pi ln pi = −NkBtr(ρ ln ρ). (66)

This result ends von Neumann thermodynamic considerations. The reasoning is ingenious but
odd, because it purports to define a thermodynamic entropy for an ensemble that does not represent
a state of equilibrium. Von Neumann’s density matrix is not constrained in any manner, and its
Hamiltonian evolution is not considered. The shells in which the systems are enclosed do not have any
degrees of freedom other than those of global translation, and there is no thermal coupling between
the systems, the substance of the shells, and the thermostat with which the gas of shells is in contact.
Consequently, it is not clear what von Neumann truly proved. His model is too far from a genuine
gas model and his thought-experimentation is too unbridled to provide a convincing elucidation of
the Gibbs paradox. Right after announcing such elucidation, von Neumann writes: “Here we should
point out that the adventurous character of our ‘thought experiments,’ that is, the impossibility of their
practical realization, does not hamper their demonstrative force: in the sense of phenomenological
thermodynamics, every thinkable process has force of proof as long as it does not contradict the
principles [the two laws of thermodynamics]” [74] (pp. 191–192). This may be wishful thinking if the
thought experiments venture too far from any thinkable thermal process (see [75]). Yet we will see in
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a moment that von Neumann’s reasoning, if properly modified and reinterpreted, contains two keys
to a quantum mechanical resolution of the Gibbs paradox.

7. Various Gibbs Paradoxes and Possible Solutions

7.1. In Macroscopic Thermodynamics

The history of the Gibbs paradox invites us to distinguish between three versions of the paradox
belonging to three different levels of theory (Simon Saunders [74] Sections 1.2 and 1.3 has two levels,
corresponding to my levels 2 and 3). The first level is the operational level based on an operational
formulation of the two laws of thermodynamics and on the concepts of heat, work, and transformation.
At this level, we have the paradox

P1 : The maximal work that can be produced by natural mixing of two moles of different perfect gases at constant
temperature without change of pressure has the same value 2RT ln 2, no matter how small the difference between
the two gases.

This sounds like a paradox because no work can be produced by the natural mixing of two moles
of the same gas and because we expect the case of identical gases to be the limit of vanishingly
small difference between the two gases (continuity principle) (By continuity principle, I here mean
the principle according to which a physical quantity varies continuously when the parameters of
the system vary continuously. As pointed out by a referee, there are many examples of jumps of
properties during a continuous variation of a system. For instance, a new symmetry appears when
the sides of a rectangle become equal. However, in this case the jump is only qualitative. A measured
quantity such as the surface of the rectangle varies continuously). The solution is easily found by
considering the way in which the maximal work is computed. This computation requires the existence
of a reversible means of mixing and separating the two gases, which itself presupposes the existence
of an exploitable difference between the two gases. As long as no such difference is known, the two
gases appear identical, we do not even think of separating them, and no work can be produced
by their mixture. Thus, the possibility of producing work by isothermal mixing is contingent on
our technical ability to detect heterogeneity. There truly is no paradox in P1 because a vanishingly
small difference is undetectable and because the continuity principle obviously does not apply to
contingently determined properties.

The second level of theory adds the entropy concept to the more primitive thermodynamic
concepts. The corresponding version of the Gibbs paradox is

P2 : The thermodynamic value of the mixing entropy of two moles of different perfect gases is 2R ln 2 no matter
how small the difference between the two gases.

This will be a paradox if the calculation of the mixing entropy is justified and if entropy is an extensive
quantity. The discussion is now more complex because there is no consensus on how entropy should
be defined even at the level of macroscopic thermodynamics. It is commonly accepted that during
a quasi-static, reversible transformation of a system exchanging the heat δQ with the source of
temperature T at a given moment of the transformation, the entropy variation should be given as∫

δQ/T. But different authors disagree on how ideal the transformations that serve to determine the
entropy function can be. They also disagree on what counts as a reversible transformation. In the
present case, the calculation of the mixing entropy requires a real or ideal way of achieving reversible
isothermal mixing. The real way appeals to condensation, chemical absorption, or gravity. The ideal
way appeals to semipermeable walls. We could limit ourselves to the real way, and conclude, as we
did for the maximal work gained by mixing, that the value of the mixing entropy hinges on the
existence of concrete methods to detect and exploit heterogeneity. As Simon Saunders has said of this
position [76] (p. 345), “the meaning of the entropy function does not extend beyond the competencies
of the experimenter”. This is a first escape from paradox P2. The only problem is that this escape makes
entropy a changeable property of a system, depending on our temporary ability to manipulate the
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system. Maxwell came close to this view in his encyclopedia article on diffusion (This is also the view
defended by Edwin Jaynes [77]. A few authors [78,79] invoke the time needed for the interdiffusion
and for the separation, arguing for instance that the time needed for separation by semipermeable
walls grows indefinitely when the difference between the two gases goes to zero. Kenneth Denbigh
and Michael Redhead [80] propound that an infinite number of steps are needed to separate two gases
reversibly when the difference between the two gases goes to zero).

Alternatively, we may allow idealized entropy calculations and regard any conceivable difference
between two gases, no matter how small, as exploitable for reversible separation, for instance through
ideal semipermeable walls. This gives the mixing entropy a completely defined value for any
imaginable pair of gases. Now, there are still three escapes from P2. We may, as Wiedeburg and
Planck did, exclude the possibility of arbitrarily small differences between two gases. The variety
of atoms and molecules is a discrete one in this view. In the second escape, proposed by Percy
Bridgman [81] in 1941 (and anticipated by Wiedeburg), entropy is made to depend on “the universe of
operations” through which it is ideally determined (Nowadays there are information-theoretic variants
of this view. See [82] (pp. 28–29) for instance). Since this universe varies discontinuously in the limit of
vanishing difference between the two gases, the discontinuity of the mixing entropy expressed in P2 is
no longer a surprise.

The third escape, taken by Ehrenfest, is to deny the extensivity of (gas) entropy. For Gibbs
and many others, the entropy should be extensive because entropy variations are extensive (since
the exchanged heat is so) and because the entropy of a system should be a function of the sensible
properties of the system only. In their opinion, there is no sensible difference in the state of a gas
when it occupies two different chambers with the same pressure and temperature and when the two
chambers communicate through an opening on the wall separating them. However, we have already
denied that entropy depends only on sensible properties by allowing the mixing entropy to be defined
by purely ideal transformations. So we may as well assume the existence of insensible processes
occurring when the two chambers are brought to communicate and associate an entropy increase
with these processes. Then we can adjust the mixing entropy of two moles of the same gas to the
value 2R ln 2 in order to avoid P2. Admittedly, the move is far-fetched as long as we do not have the
kinetic-molecular picture in mind.

7.2. In Classical Statistical Mechanics

So far, we have considered macroscopic quantities only and we have refrained from any
underlying mechanical model. The third level of analysis involves the kinetic molecular picture
of a gas or its quantum-mechanical counterpart. We now have the paradox

P3 : The statistico-mechanical value of the mixing entropy of two moles of different perfect gases is 2R ln 2 no
matter how small the difference between the two gases.

In this statement, the entropies are determined through one of the available statistico-mechanical
methods. A priori, P3 should be distinguished from P2 because there need not be a perfect coincidence
between the thermodynamic entropy and the statistical entropy. For statistical mechanics to yield
a good approximation of thermodynamic laws, we only need a partial overlap of the two concepts.
We know in advance that the overlap cannot be complete, since the statistical entropy cannot both
concern a single closed system (as the thermodynamic entropy does) and be forever increasing in time.
As Gibbs puts it, “the impossibility of an uncompensated decrease of entropy seems to be reduced to
an improbability.”

Let us first consider the case of classical statistical mechanics, in which the gas system is
represented by a set of molecules interacting according to the laws of classical mechanics. There are
different approaches and different entropy formulas. Let us start with the elementary combinatorial
approach of Boltzmann 1877, in which the relevant probability W is given by the number of ways
of distributing N (distinguishable) molecules over cells in the phase space of a molecule and the
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associated entropy is given by S = kB ln W. As we are interested in the case of equilibrium only, we use
the maximal value of W corresponding to the most probable distribution (Maxwell’s). This formula
leads to a non-extensive entropy that can be made extensive by subtracting kBN ln N from its value
or, equivalently, by dividing W by N!. Boltzmann feels free to do so, plausibly because his main
purpose it to derive Maxwell’s distribution as the most probable one and because the N dependence of
the probability is here irrelevant (as we saw, Ehrenfest later argued similarly). The same argument,
however, could be applied to the total energy E and yet the dependence S(E) is crucial in identifying
kB ln Wmax with the entropy.

In fact, the basic rules of entropy determination in the combinatorial approach remain arbitrary
as long as we do not derive these rules from a more fundamental approach in which firstly the
probabilities have a clear physical meaning, and secondly their relation to the entropy is physically
justified. The first condition is satisfied by assuming, as Boltzmann and Einstein did, that for a closed
system the microcanonical distribution ρ ∝ δ(E − H) correctly represents the long-term average
behavior of a single system, with negligible exceptions. The second condition is satisfied by considering,
as Boltzmann and Einstein also did, the slow deformations of the system (implying slow variations
of the volume V and the energy E), and computing the Clausius integral

∫
δQ/T with δQ = δE− δχ

and T ∝ K, wherein K represents the kinetic energy of the system and χ its potential energy (so that
H = K + χ). In the usual units, this integral has the well-defined value

δS = kBδ ln
∫

H<E

dσ, (67)

in which dσ is the canonical measure in global phase space. For a homogeneous gas with a very
high number of molecules, the phase integral in this formula can be replaced by a few approximately
proportional expressions:∫

H<E

dσ ∝
∫

δ(E− H)dσ ∝
∫

E−∆E<H<E

dσ ∝ ∑
(Ni)i

W[(Ni)i] ∝ Wmax. (68)

This is how Boltzmann justifies the success of the naive combinatorial approach.
When this reasoning is applied to a single homogeneous gas of stable molecules, the number of

molecules does not vary and the differential relation (67) determines the entropy up to the integration
constant, which is an arbitrary function of the number N of molecules. An extensive entropy may be
obtained by taking

S = kB ln
∫

H<E

dσ/N! (69)

in conformity with Gibbs’s and Tetrode’s appeal to generic phases. In the case of a mixture of two
non-interacting gases, the differential relation (67) determines the entropy up to an arbitrary function
of the numbers N′ and N′′ of the two kinds of molecules. There seems to be no rationale for comparing
this entropy with the sums of the entropies of each gas considered by itself, because reversible mixing
does not belong to the category of deformations originally assumed in the derivation of relation (67).

A first way to circumvent this difficulty is to rely on the probability of fluctuations of a certain
kind for the phases of a microcanonically distributed system. First consider a fluctuation in which all
the molecules are found within the partial volume υ of a container of volume V. The probability of this
fluctuation is given by the ratio (υ/V)N , which is the portion of the energy shell in phase space for
which the positions of every molecule is restricted to the volume υ. Formally, this is the ratio of the
two values of the phase integral

I =
∫

δ(E− H)dσ (70)
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when the positions of the molecule are confined to the volumes υ and V respectively. It also obtains
intuitively by remarking that the probability of a given molecule to be in the fraction υ/V of the total
volume is equal to this fraction. Now, the subset of microstates defined by the fluctuation is strictly
identical with the set of microstates of a gas in a vessel of volume υ (with the same energy and the
same number of molecules). It is therefore tempting to regard the difference

kB ln I(υ)− kB ln I(V) = NkB ln(υ/V) (71)

as the entropy variation of a gas when the volume of its container goes from V to υ. In this case we are
not learning anything new since we already know by independent reasoning (by slow deformation)
that the function kB ln I(V) properly represents the volume dependence of the entropy.

Let us in general assume the fluctuation principle according to which the probability of a subclass
of phases of the system that agrees with the class of phases for a given macrostate of another system
properly yields the entropy of the latter state (by taking the logarithm of this probability). As is well
known, this principle did wonders in Einstein’s hands (More exactly, Einstein applied the reverse
principle according to which the thermodynamic entropy can be used to compute the probability
of fluctuations. This is how he arrived at the lightquantum and at the wave-corpuscle duality for
black-body radiation and for the Bose-Einstein gas). We will first apply this principle to an equimolar
mixture of two different gases in the volume 2V. The microcanonical probability of a fluctuation in
which all the molecules of the first gas are confined in one half of the container and the molecules of the
second gas are confined in the other half is given by (1/2)N(1/2)N . The fluctuating phases being the
same as the phases of a system made of two separate vessels for each gas in equilibrium (with the same
energy or temperature), by the fluctuation principle the entropy of the mixture differs from the entropy
of the separated gases by 2NkB ln 2, in conformity with the classical value of the mixing entropy.

Now consider a single homogeneous gas in the volume 2V. The molecules being classically
distinguishable by their trajectories, we may imagine a fluctuation in which the N first molecules of
the gas are confined within one half of this volume and the N last molecules of the gas are confined
within the other half. The probability of such a fluctuation is again (1/2)N(1/2)N and its phases agree
with the equilibrium state of a system made of two separate vessels each containing N molecules of
the gas. By the fluctuation principle we therefore have

S(2N, 2V, T) = 2S(N, V, T) + 2NkB ln 2. (72)

This entropy is not extensive, and the departure from extensivity is just what we need to avoid P3.
This is a solution to the Gibbs paradox.

As was already mentioned, the Boltzmann-Einstein way to define entropy variations in statistical
mechanics is to consider slow deformations of a system involving change of volume (and other
parameters of the Hamiltonian), change of the energy (in the microcanonical case), and change of the
β parameter (in the canonical case). The change of volume is effected by including in the potential
χ of the forces acting on the molecules a potential barrier χλ(r) that mimics a wall (this function
vanishes within the volume of the vessel and takes a very large value outside). The slow variation
of the parameter λ shifts the barrier to produce the desired volume change. Now, within a vessel
of constant volume we may imagine a potential barrier that blocks the molecules of one gas on one
side of the barrier but does not act on the molecules of another gas. The potential barrier plays the
role of a semipermeable wall and it can be used to derive an extension of the differential relation
(67) to reversible mixing. Thus, the mixing entropy can be derived in statistical mechanics without
recourse to the fluctuation principle. But we cannot imagine any semipermeable potential barrier in
the case of identical gases (Dennis Dieks [83] (pp. 370–371) conceives semipermeable walls even in
the case of two identical gases in the classical case. Such walls require Maxwell demons that defy
concrete realization. Their mechanism should be made entirely explicit in order to precisely judge their
statistico-mechanical effects. This is why I prefer to restrict my analysis to walls that can be modelized
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as potential barriers). The fluctuation principle therefore seems necessary to determine the effect of
a doubling of the mass of a gas on its entropy, unless we can imagine a reversible way to alter the
number of molecules.

Note in passing that the microcanonical entropy formula

S = kB ln
∫

H<E

dσ (73)

and derived formulas all give the departure kBN ln N from extensivity in conformity with the
fluctuation principle. This was to be expected since one of the derived formulas agrees with
Boltzmann’s combinatorial entropy of 1877 and since the implied permutability and the application of
the fluctuation principle both appeal to distinguishable molecules. Yet there does not seem to be any
reason to take the kBN ln N term seriously besides the fluctuation principle.

So far we have reasoned with the microcanonical distribution and the associated entropy formula.
Another entropy formula can be obtained by regarding the system of interest as a small subsystem of
a larger system described by the microcanonical distribution, the complementary system here playing
the role of a thermostat. As was already known to Boltzmann, the small subsystem is distributed
according to the canonical law

ρ = Z−1e−βH , with Z =
∫

e−βHdσ. (74)

Considering small deformations of the latter system in which the volume V and the inverse temperature
β now are variable parameters and computing the ratio

δQ
T

= kBβ
∫

(δH − δχ)dσ, (75)

we get

δS = −kBδ

∫
ρ ln ρdσ. (76)

Again, this formula determines the entropy up to any function of the numbers of molecules. We may
again invoke the fluctuation principle and get the same results for the mixing entropy and the N
dependence of the entropy of a homogeneous gas as we did in the microcanonical case.

Strictly speaking it is impossible to reversibly (quasi-statistically and continuously) alter a discrete
quantity. However, we may consider systems in which the number of particles fluctuates around
a well-defined average. This will be the case if the vessel of volume V containing the (homogeneous)
gas communicates through a small channel with a much larger container. Call αV this volume and
M the total number of molecules (with α >> 1 and M >> 1). We suppose the global system to
be in equilibrium with a thermostat. The phases of the global system being distributed canonically,
the probability that the N first molecules of the global system be in the volume V and in a phase
belonging to the element dσN of the phase space of N molecules is very nearly proportional to
eβµNe−βHN dσN in which µ is a constant of the large container (just as the parameter β is a constant
of the thermostat in the derivation of the canonical law). Now, if instead of the N first molecules we
take any N distinct molecules picked among the M molecule in any order and require their phase to
belong to dσN , we are still getting the same microstate of the gas contained in the vessel of volume V
since the identity of the molecules contained in this vessel constantly changes and cannot be taken into
consideration in the long run. Consequently, the probability that this system contains N molecules in
a phase belonging to dσN is proportional to

e−β(HN−µN) M!
N!(M− N)!

dσN ≈ e−β(HN−µN) dσN
N!

. (77)
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After normalization, this probability is equal to ρNdσN/N!, with

ρN = Ξ−1e−β(HN−µN) and Ξ =
+∞

∑
N=0

∫
e−β(HN−µN) dσN

N!
. (78)

The N! division here receives a similar justification as in Boltzmann’s reasoning for a chemical
mixture (Nicolaas van Kampen gave a similar argument in 1984 [1]. See also [76], p. 351). As was
mentioned, Gibbs introduced it axiomatically in the last chapter of his statistical mechanics to define the
grand-canonical ensemble.

The consideration of deformations of the system in which the parameters V, β, and µ vary slowly
leads to the entropy formula

S = −kBln ρN = −kB

+∞

∑
N=0

∫
ρN ln ρN

dσN
N!

= kBβ(HN − µN −Ω) with Ω = −β−1 ln Ξ. (79)

The average energy HN , the average molecule number N, and the potential Ω are easily seen to be
proportional to the volume V, so that the entropy is extensive (The fluctuations of the particle number
and of the energy being negligible, the entropy is also given by the generic-phase versions of the
canonical and microcanonical entropy). This should not surprise us since in the present approach the
(average) particle number can be altered reversibly by slow variation of the µ parameter of the container.
The reasoning can be generalized to a gas mixture that communicates through semipermeable walls
with reservoirs containing the various components of the mixture. The result is Gibbs’s grand-canonical
ensemble in its most general form.

We seem to be arriving at a contradiction: whereas in the microcanonical and canonical approaches
supplemented with the fluctuation principle we got non-extensive entropies, in the grand-canonical
approach we get extensive entropies. In reality, we have to do with two different physical situations.
In the former case, the two masses of the same gas that are brought to communicate are originally in
two sealed vessels. In the latter case, the two masses can be imagined to be originally communicating
with a reservoir that determines the common value of their µ parameter so that the addition of a new,
direct channel of communication does not bring any qualitative change. In other words, the molecules
in the grand-canonical case are effectively indistinguishable since their trajectory does not permanently
reside in the vessel. It makes no sense to say that a molecule that was originally confined in one vessel
becomes able to visit the two vessels when an opening is made on the separating wall.

Does the extensivity of the grand-canonical entropy imply a resurgence of paradox P3? Not really,
because what we have in mind in any version of the Gibbs paradox is the mixing of gases originally
contained in separate sealed vessels. P3 makes sense only in microcanonical or canonical context.
Then we have two ways to solve it (without invoking an essential discontinuity of chemical differences):
either we accept the fluctuation principle and we agree that the natural mixing of two masses of the
same gas creates just as much entropy as the natural mixing of different gases (as Dennis Dieks [83]
does), or we decide (as Nicolaas van Kampen [1] does) that the statistical entropy is not sufficiently
defined to decide whether entropy is extensive or not (As was mentioned in an earlier footnote, Dieks
relies on a Maxwell demon, not on the fluctuation principle. Harold Grad adopts an intermediate
position, in which the choices between the two options depends on a free choice of the level of
information we include in the definition of the entropy [84], pp. 326–327. See also [85]).

7.3. In Quantum Statistical Mechanics

In quantum statistical mechanics, the remarks we earlier made in the classical case about the
physical definition of probabilities and entropy variations still apply. However, the state of the
gas is now defined by a density matrix instead of a point in phase space, and the micromodel of
the gas is radically different. The absence of well-defined trajectories in this model, the perfect
indistinguishability of the molecules, and the holistic character of the definition of the states seem to
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make it impossible to ascribe any meaning to the statement that a given molecule is in one half of the
container and not in the other. Communication between two chambers containing the same gas at
the same temperature and pressure still implies a change of state because the number of molecules
in a given chamber was fixed before communication and fluctuates after communication (and also
because the proper cavity modes are different before and after communication). However, the number
of molecules being very large, this fluctuation is very small and we intuitively anticipate a negligible
effective difference between the separate and fused states (see [86]).

Again, me may use the fluctuation principle to compute the associated entropy variation.
This could be done for the canonical entropy by quantum-field-theoretical means. We will here reason
more naively by comparing the number F(N, P) of distributions of N indistinguishable particles over
P cells of size ε in the volume V with the number F(2N, 2P) of distributions of 2N indistinguishable
particles over 2P cells of size ε in the volume 2V. In the Stirling approximation we have

F(N, P) =
(N + P− 1)!
(N)!(P− 1)!

∼
√

P
2πN(N + P)

(N + P)N+P

NN PP , (80)

which gives
F(2N, 2P)

F(N, P)2 =

√
N(N + P)

πP
. (81)

The logarithm of this expression gives an entropy difference of the order of ln N, which is negligible
compared to entropies of the order of N for the separate and fused states.

In agreement with this approximate lack of a mixing entropy, the canonical entropy is very nearly
extensive. In quantum statistical mechanics, the canonical state is given by the density matrix

ρ = Z−1 ∑
∑
r

nr=N
e
−β∑

r
nrεr |(nr)r〉〈(nr)r| , with Z = ∑

∑
r

nr=N
e
−β∑

r
nrεr

, (82)

in which the index r labels the proper wave modes of the cavity of volume V, εr denotes the energy
of the r-mode, and the integer nr denotes its excitation number (interpreted as the number of
indistinguishable molecules attached to this mode). The big sum bears over every choice of the
sequence (nr)r of these numbers such that their sum equals N. The state obtained from the former by
doubling N and V clearly differs from the product state for two separate vessels of volume V each
containing N molecules. In symbols: ρ2V,2N 6= ρV,N ⊗ ρV,N . The entropy −kBtrρ ln ρ is nevertheless
approximately extensive because the grand-canonical entropy is extensive and because this entropy is
approximately equal to the canonical entropy. This may be seen as follows.

The grand-canonical partition function reads

Ξ = ∑
(nr)r

e
−β∑

r
nr(εr−µ)

= ∏
r

+∞

∑
nr=0

e−βnr(εr−µ) = ∏
r
(1− e−β(εr−µ))

−1
. (83)

For the grand-canonical potential, this gives

Ω = −β−1 ln Ξ = β−1∑
r

ln(1− e−β(εr−µ)) (84)

The density of modes being proportional to the volume V, we have

Ω(αV, β, µ) = αΩ(V, β, µ) for any α, (85)
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that is, Ω is extensive. So too is the grand-canonical entropy Sgc = kBβ2∂Ω/∂β. The same property
holds for the average number of molecules N = −∂Ω/∂µ. The fluctuations of the number N being
very small, we may write

Ξ = ∑
N

eβµN ZN ≈ eβµN ZN (86)

in a sufficient logarithmic approximation. Using FN = −β−1 ln ZN , this gives

(87)

In this approximation the free energy is extensive and so is therefore the canonical entropy.
As for the mixing rule, we still have two possible justifications: through the slow shift of

a semipermeable barrier, and through the fluctuation principle. The main difference is that we can no
longer rely on the corpuscular picture when computing the probability of a fluctuation in which the two
gases are entirely confined to their original volumes V1 and V2 (before mixing). This probability could
still be computed by quantum-field-theoretic methods. For our purpose, it is sufficient to remark that
by the fluctuation principle and for non-interacting, dynamically independent gases, this probability
determines both the mixing entropy and the entropy created during the free expansion of the two
gases from their original volumes V1 and V2 to their final volume V1 + V2 (Of course, the value of the
mixing entropy will depart from its classical value for low temperatures at which degeneracy occurs,
and it vanishes at zero temperature since the entropy of a quantum gas does).

Paradox P3 therefore holds in full force in the quantum case. In addition, we get Einstein’s
mixing paradox according to which the equation of state of a quantum gas (at low temperature) is
altered in a discontinuous manner when we consider a mixture of two different gases instead of
a single homogeneous gas with the same total number of particles. In this new paradox, all relevant
properties are directly observable and we no longer have to fear the definitional traps of the entropy
concept. Wiedeburg’s old suggestion that we should regard the chemical identity of a substance as
an inherently discrete variable seems to be the only escape from Gibbs’s and Einstein’s paradoxes.
From a quantum-theoretical point of view, different species correspond to different eigenstates of the
same Hermitian operator, which implies the desired discreteness. They also obey superselection rules
that yield the dynamical independence required for the computation of the mixing entropy.

However, instead of two different chemical species for the molecules, we may also consider two
different internal states. Take for instance two gases of silver atoms with all the spins pointing in one
direction for the first gas, and all the spins pointing in another (fixed) direction for the other gas. Since
the direction of a spin eigenstate is a continuous variable, the difference between these two gases can be
made arbitrarily small and we again face the Gibbs paradox. Alfred Landé [87,88], who first described
this version of the paradox, also remarked that in this case the usual basis for deriving the mixing
entropy is lacking: no complete separation by semipermeable walls is conceivable unless the two spin
states are orthogonal, because a wall permeable to one spin state will let the other spin state through
with a probability given by the squared modulus of their scalar product. Landé believed he could
still compute the entropy of the mixture by analyzing it into two gases of opposite spin directions.
For instance a mixture of |+u〉 and |+v〉 spin states in the directions u and v can be analyzed into
a mixture of |+u〉 and |−u〉 spin states through “filters” that project the spin state of an incoming
molecule onto the latter pair of spin states and let one of these states through while they reflect the
other. As Dennis Dieks and Vincent van Dijk once remarked [75], this does not work because the action
of these filters is irreversible: they turn a pure spin state into a mixture.

Yet the mixing entropy can still be defined and computed by transposing two of von Neumann’s
ideas to the present system (The following reasoning is based on semi-permeable walls. Alternatively,
it is possible to exploit a quantum-mechanical definition of the maximal work produced by mixing.
This is the way in which Armen Allahverdyan and Theo Nieuwenhuizen [89] conceived their ingenious
solution to the quantum Gibbs paradox). The first idea is that a mixture of two gases whose global spin
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states |ϕ〉 and |ψ〉 are factorized and orthogonal behaves like a mixture of two chemically different
gases. This mixture formally allows reversible separation through walls represented by the potentials
barriers of Hamiltonian

Hϕ = |ϕ〉〈ϕ|
N

∑
i=1

χ(ri) and Hψ = |ψ〉〈ψ|
N

∑
i=1

χ(ri), (88)

wherein ri is the position of the center of mass of the ith molecule and χ is a function that vanishes
on one side of the barrier and takes a very large value on the other side. The second idea is that
a mixture of two gases whose global spin states |ϕ〉 and |ψ〉 are factorized but non-orthogonal is
equivalent to a mixture of two fully and reversibly separable gases in the proportion (1 + α)/(1− α)

with α = |〈ϕ|ψ〉|.
Take two chemically homogeneous gases of N molecules originally in separate, contiguous

chambers of volume V. The molecules of the first gas are assumed to be all in the same spin state |θ〉
and those of the second gas in the same spin state |−θ〉, with

|±θ〉 = cos θ|+〉 ± sin θ|−〉. (89)

If |+〉 and |−〉 denote the two spin eigenstates in a fixed direction of space (2θ is the angle that the
spin axes of the states |θ〉 and |−θ〉make with this direction). The spin states |θ〉 and |−θ〉 agree for
θ = 0 and their scalar product 〈θ|−θ〉 = cos 2θ decreases when θ grows from 0 to the value π/4 for
which it vanishes. We are thus equipped to consider a continuous variation of the difference of the two
gases between perfect identity and perfect separability.

Now let the two gases be mixed though an opening on the separating wall. If the ±θ-gas was
alone in the thermostated vessel of volume 2V, its density matrix would be

ρ± = Z−1∑
r

e−βEr |r〉〈r| ⊗ |±θ〉⊗N〈±θ|⊗N with Z = N−1∑
r

e−βEr so that trρ± = N. (90)

Here the vectors |r〉 refer to any basis of stationary states of a spinless gas of N molecules in the cavity
of volume 2V and Er denote the energy in the state |r〉. The symbol |±θ〉⊗N stands for the spin state
|±θ〉 ⊗ |±θ〉 . . .⊗ |±θ〉 of the N molecules (symmetry here allows global factorization). Provided that
the spins of the molecules of the two gases are not affected during collisions, the final state of the
mixture will be

ρ = ρ+ + ρ− = Z−1∑
r

e−βEr |r〉〈r| ⊗
(
|θ〉⊗N〈θ|⊗N + |−θ〉⊗N〈−θ|⊗N

)
. (91)

We now introduce the two orthogonal unit vectors

|±〉N =
|θ〉⊗N ± |−θ〉⊗N∣∣∣|θ〉⊗N ± |−θ〉⊗N

∣∣∣ (92)

as well as the parameter
α = 〈θ|⊗N |−θ〉⊗N = 〈θ|−θ〉N . (93)

In these terms, we have

|θ〉⊗N〈θ|⊗N + |−θ〉⊗N〈−θ|⊗N = (1 + α)|+〉N〈+|N + (1− α)|−〉N〈−|N . (94)

Our mixture is therefore equivalent to a mixture of two gases whose molecules are globally in the
orthogonal spin states |+〉N and |−〉N . Reversible mixing of these two states being possible by
a semipermeable wall, the corresponding mixing entropy is equal to the entropy created by the
reversible expansion of a gas of N(1 + α) molecules from the volume V(1 + α) to the volume 2V
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plus the entropy created by the reversible expansion of a gas of N(1− α) molecules from the volume
V(1− α) to the volume 2V. In the ideal, moderate-temperature case for which the Boyle-Mariotte law
applies, this gives

Sm = kBN(1 + α) ln
2

1 + α
+ kBN(1− α) ln

2
1− α

. (95)

When α grows from 0 to 1, this mixing entropy decreases from 2kB ln 2 to 0. The initial state in this
mixing process has the same entropy as a homogeneous gas of 2N identically polarized molecules
because entropy is extensive, additive, and does not depend on the state of polarization. So is too the
entropy of the initial state for the mixing of θ and −θ molecules (It might be objected that for very large
N the parameter α = 〈θ|−θ〉N can have an extremely small value even when 〈θ|−θ〉 is still close to 1.
This difficulty is removed by noting that in such cases the difference between the two gases should
be measured by N(1− 〈θ|−θ〉) instead of 1− 〈θ|−θ〉). Consequently, the mixing entropy of the two
mixing processes is the same and it is given by the former equation. The mixing entropy of two fully
polarized gases therefore goes to zero when the difference of polarization goes to zero. The Gibbs
paradox is solved. The Einstein mixing paradox is also solved in a similar manner, by noting that the
mixture of two polarized gases is equivalent to a mixture of two fully separable gases and that the
proportion of this mixture continuously approaches 1/0 when the difference between the polarizations
goes to zero.

Lastly, a few words should be said on Erwin Schrödinger’s influential and yet confusing discussion
of the Gibbs paradox in his Dublin lectures of 1944 [90]. There Schrödinger observed that classical
statistically mechanics naturally led to the same mixing entropy for different and identical gases,
and commented (p. 61):

It was a famous paradox pointed out for the first time by W. Gibbs, that the same increase
of entropy [for the mixing of two different gases] must not be taken into account, when
the two molecules are of the same gas, although (according to naïve gas-theoretical views)
diffusion takes place then too, but unnoticeably to us, because all the particles are alike.
The modern view solves this paradox by declaring that in the second case there is no real
diffusion, because exchange between like particles is not a real event—if it were, we should
have to take account of it statistically. It has always been believed that Gibbs’s paradox
embodied profound thought. That it was intimately linked up with something so important
and entirely new could hardly be foreseen.

What Schrödinger here calls “Gibbs’s paradox” is not the original paradox. It is the statement that
molecular intuition and classical statistical mechanics lead to the same mixing entropy for two identical
gases as for two different gases, at odds with the extensivity of entropy in macroscopic thermodynamics.
This statement does not at all involve the limiting case of a vanishing small difference, and boils down
to a comparison between the predictions of two different theories (macroscopic thermodynamics and
classical statistical mechanics) for the relation between the entropies S(2V, 2N, T) and S(V, N, T)
of a homogeneous gas. We are quite far from Gibbs’s statement. Moreover, it is not true that
Schrödinger’s paradox cannot be solved in classical context. It can be solved by giving up extensivity,
as we have seen (According to Simon Saunders [76],pp. 352–353, it can also be solved by counting
the distributions of indistinguishable molecules over elementary cells for a given distribution over
macro-cells that contain many elementary cells. This is tantamount to deriving the extensivity of
classical entropies from the extensivity of quantum entropies by taking the classical limit of the latter
(the elementary cells here playing the role of quantum cells)). It is also untrue that in quantum
context nothing happens when two samples of the same gas are allowed to communicate. As we
saw, the communication increases the number of microstates accessible to the system, although this
increase does not significantly alter the value of the entropy. Pace Schrödinger, the Gibbs paradox did
not foreshadow quantum indistinguishability.

Was Schrödinger nonetheless right to oppose the indistinguishability of quantum particles with
the distinguishability of classical particles? There is no consensus on this issue. It has often been
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remarked that indistinguishability can be defined and used in classical context (Gibbs in fact invented
the word), and that conversely distinguishability can be introduced in quantum context [91,92].
In classical context, the instantaneous phase of a set of labeled point-like molecules is evidently
invariant by permutation of the labels. It is even possible to describe the state of this set in a completely
symmetrical manner, with no labeling at all, and to write the equations of evolution of the system
for such intrinsic states [54] (p. 241n). In this sense, the molecules are indistinguishable. However,
for derived thermodynamic quantities including the entropy, it cannot make any difference whether
the molecules are labeled or not. The reason is that thermodynamic quantities depend on the long-term
behavior of macro-properties that do not depend on the labeling. For instance, the distribution
(Ni)i of the N the molecules over cells in molecular phase space does not depend on the labeling by
definition, and its temporal probability, as derived from the microcanonical distribution of global
phases, is the same whether these phases are defined specifically (with fixed labeling) or generically
(in a permutation-invariant manner). Indeed the only effect of adopting generic phases instead of
specific phases is to divide the canonical measure dσ in phase space by N!. Whether or not the
molecules are labeled, the temporal probability of the distribution (Ni)i is proportional to Boltzmann’s
permutability N!/∏

i
Ni!, whose naive interpretation relies on counting the distribution of labeled

molecules over cells (hence Boltzmann’s word “permutability”). The reason for this paradoxical state
of affairs is that classical molecules, even though they may be indistinguishable in the above-given
sense, still are traceable: the long-term evolution of the global system, on which thermodynamic
behavior crucially depends, implies distinct trajectories for each molecule. In classical statistical
mechanics, distinguishability boils down to traceability.

In contrast, it has often been argued that the indistinguishability of quantum particles excludes
traceability. It is indeed a commonplace of quantum theory that it excludes a well-defined trajectory of
a particle in ordinary space. Against this, Simon Saunders and Dennis Dieks have argued [76,91,92],
there are resources in quantum mechanics that allow us, at least in quasi-classical cases, to differentiate
trajectories for the various molecules of a gas. Thus, the fully (anti)symmetric states that are usually
meant to define quantum indistinguishability do not necessarily exclude traceability. The crucial
point, however, is that the stationary states used in quantum statistical mechanics, for instance the
canonical density matrix, do not allow such differentiation: the relevant quantized wave modes are
completely delocalized in the volume of the cavity (This statement needs to be nuanced: in the case
of a quasi-classical gas for which the de Broglie lengths of the molecules are much smaller than their
mutual distances, the quantum state of the gas may be approximated by a state in which molecular
trajectories are definable). Just as in the classical case, what truly matters is the long-term evolution of
the global micro-model, and not the ad hoc combinatorial procedures that Boltzmann and Einstein
used in their first statistico-mechanical derivations of the entropy of a gas.

8. The Relation between Theory and Experiments in the Light of the Gibbs Paradox

Discussions of the Gibbs paradox typically involve a fanciful mix of abstract theoretical notions,
imagined devices and processes, and real experiments. Most of the confusion in the literature on this
paradox comes from an insufficient understanding of the articulation of these three elements in physical
theory in general. As I have argued elsewhere [93,94] (Chap. 9), a physical theory should in general
be defined as a symbolic universe equipped with interpretive schemes and modularly connected
with earlier confirmed theories. The symbolic universe can be defined in purely mathematical terms,
typically by a set-theoretical and functional description of a set of systems and transformations
upon them. The interpretive schemes are obtained by selecting a subset of the symbolic systems
and focusing on a few quantitative attributes that are mutually related according to the laws of
the symbolic universe. These schemes are chosen so that the associated quantities correspond to
measurable quantities. They are blue prints for possible experiments in the laboratory. The procedures
of measurement are dictated by theoretical modules to which the relevant quantities belong. These
modules are structurally related to the theory under consideration, either because they play a role in
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the definition of its symbolic universe or because they are valid approximations of this theory for the
purpose of measurement.

The symbolic universe without the interpretive schemes is just a mathematical theory.
The interpretive schemes should be regarded as an essential part of a physical theory, even though
they evolve in time when physicists learn how to better apply the theory. They are themselves
mathematical objects and should not be confused with the concrete realization at which they aim.
In particular, one should avoid the temptation to reify schematic quantities. Their empirical meaning is
not hard-wired; it may evolve together with the class of interpretive schemes. The schematic modules,
which inform measurement of the schematic quantities, are essential in importing all the knowledge,
tacit or not, that we have accumulated in applying earlier successful theories.

In real life, physicists do not cleanly distinguish between symbolic systems, interpretive schemes,
and real experiments; and they rarely spell out modular connections. Indeed, the intuition of
the working physicist implies attaching fairly concrete ideas to abstract components of the theory.
In contrast, philosophers often focus on the mathematical structure of this universe, hoping that
it would give us a clue about how the theory relates to the physical world. In reality, proper
understanding of the nature and functioning of physical theory requires the complex of symbols,
schemes, and modules (I have argued that this structure is essential to the construction, application,
comparison, and communication of theories).

This is true in particular when discussing paradoxes such as the Gibbs paradox, whose paradoxical
character derives from a confusion between symbols and schemes. Let us first consider the paradox in
macroscopic thermodynamics. The symbolic universe is here made of a manifold of thermodynamic
states described by a number of relevant parameters and their constitutive relations (transformations
are paths on this manifold); it is endowed with a work form δW and a heat form δQ; it harbors
geometrical, mechanical, thermometric, and calorimetric modules for volume, pressure, temperature,
and heat respectively; it also includes mechanical contraptions such as (ideal) walls and pistons; and it
is subjected to the two laws of thermodynamics. For these two laws, we may take the impossibility of
perpetual motion of the first and second kinds (no work can be produced in a cycle of operation on
a substance without consuming an equivalent amount of heat; and there are no monothermal cyclic
engines). These two laws imply that the temperature T can be defined so that during a reversible
cycle of operations on a system,

∮
δQ/T = 0. For a system with the independent state variables

T, λ1, λ2 . . ., and for a path-connected state-space, we may use this relation to define the entropy
S(T, λ1, λ2, . . .) as the integral of the form δQ/T from a reference state to the state (T, λ1, λ2 . . .).
This definition presupposes the independence of the state variables and their continuous variability.
In addition, it requires the existence of at least one reversible transformation from the reference state to
the running state.

For the reversible mixing of two gases, we may include semipermeable walls, or absorbing
chemicals, or gravity in our symbolic world. For the doubling of the mass of a given gas, however, it is
not clear that we can define a reversible process comparable to the slow motion of a piston. In order
to alter the mass, we need to make a hole on the vessel and to inject additional mass into it. Even
though the injection can be done continuously, the opening of a communication between the vessel
and a reservoir looks more like a discontinuous step. This is why we cannot determine how entropy
depends on the mass of a (homogeneous) gas without further assumption. We may just leave this
dependence indeterminate, or we may determine it through an additional assumption. For Gibbs,
the assumption is that the entropy should depend only on the total volume of the gas and not on
an eventual partition of this volume. An alternative assumption is that the mixing of two identical
gases should create the same amount of entropy as the mixing of two identical gases.

We still are in the symbolic universe, of which we cannot require more than mathematical
consistency. At this level, the Gibbs paradox can occur only if we follow Gibbs in requiring extensive
entropies. Then the mixing entropy of two identical gases has a well-defined value at variance with
the mixing entropy of two gases whose difference is arbitrarily small. At the symbolic level, this
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jump is not truly paradoxical because from a formal mathematical point of view there is no reason
to require that the thermodynamic properties of a system should be a continuous function of its
chemical properties.

In order to apply the theory, we need interpretive schemes in which the relevant quantities are
meant to be actually measurable. As a first consequence of this selection, the number of independent
variables in the entropy function must be fitted to the empirically known number of degrees of freedom.
In the case of a gas mixture, this number will change when we will learn that a substance originally
regarded as chemically homogeneous truly is not. In addition, the mixing or separation procedures that
occur in interpretive schemes must be realistic. This is why Boltzmann spent much time imagining such
realistic procedures in his discussion of the mixing entropy. At this more concrete level, the continuity
of thermodynamic properties with respect to chemical properties might seem to be a more legitimate
requirement than at the symbolic level. In reality, it is devoid of meaning because the mixing entropy,
qua measurable property, appears to be relative to the temporary extent of our empirical knowledge
and because some of the determinations of the symbolic world, for instance the extensivity of entropy,
are irrelevant at the schematic level. The Gibbs paradox is thus completely dissolved and it turns out
to have emerged from a confusion between the symbolic and schematic levels.

This kind of confusion is easy to make in the case in a phenomenological theory like the older
thermodynamics. By definition, in this type of theory the difference is small between the symbolic and
the schematic levels. The ideal systems and processes of the symbolic world are directly conceived
as idealizations or limits of concretely realizable processes, even in the statement of the two laws
of thermodynamics. In his lectures on thermodynamics [47], Max Planck insisted on the need of
a more abstract approach in a mathematically consistent theory, and he also warned about naive
concretizations of artifacts of the mathematical construction.

With the advent of statistical mechanics, the distance between the symbolic universe and the
interpretive schemes increased dramatically. There is indeed little apparent similarity between the
dynamics of a large number of molecules and the thermodynamic properties of macroscopic bodies.
There is no risk here of confusing the symbolic universe with the set of interpretive schemes. But there
is a risk of exaggerating the freedom in the construction of the symbolic universe, and there is
a persistent risk to misconceive the relation between symbolic quantities and schematic quantities.
One problem is that the kinetic-molecular picture, in itself, does not contain the concepts of exchanged
heat and entropy that we need in order to apply the theory to thermodynamic systems. These concepts
and quantities are introduced at the schematic level only. It is true, of course, that we can proceed
axiomatically and define entropy at the symbolic level through Boltzmann’s combinatorial probability
or through Boltzmann’s and Gibbs’s appropriate phase-space integrals. But it is only the analysis
of quasi-thermodynamic interpretive schemes that will tell us whether this defined entropy has any
operational significance.

The quasi-thermodynamic schemes refer to the long-term, equilibrium behavior of the molecular
system. As we saw, Boltzmann assumes that the macroscopic properties of this system reach a stable
value under given macroscopic conditions after a sufficiently long time (the thermalization time),
for (almost) every choice of the initial microstate compatible with these conditions. From a holistic
point of view, this implies that the long-term behavior of the system can be derived from a stationary
distribution in phase space. Although Gibbs (Boltzmann too, occasionally) made such distributions
(microcanonical and canonical) the basis for an axiomatic construction of the symbolic universe of
statistical mechanics, it is healthy to remember that the purpose of statistical mechanics is to describe the
behavior of individual systems under the assumption that they reach a macroscopic state of equilibrium
over the long run. The distributions in phase-space essentially represent the long-term behavior of
a single system.

Some schematic quantities, such as the volume, pressure, and internal energy of a gas have evident
counterparts in the symbolic universe: the volume may be represented by a potential wall through
which the molecules are confined to a portion of space; the pressure is the resultant of the impacts of
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the molecules on a wall; and the internal energy is just the total kinetic energy of the molecules plus
the total potential energy of their mutual forces. The temperature is given, for instance, by the average
translational kinetic energy of the molecules (in proper units), although this needs to be justified by
a proof of equipartition of this energy for interacting gases or more general systems. The construction
of the exchanged heat and the entropy is far less trivial. It requires the consideration of interpretive
schemes in which the molecular system exchanges both heat and work with the environment. As we
earlier saw, Boltzmann and Einstein did so by imagining slow variations of the potential barrier that
confines the system. The resulting entropy is a well-defined function of the parameters that vary during
the slow deformation. Consequently, the remarks we made in the case of macroscopic thermodynamics
about the schematic realization of the mixing entropy can be transposed to the statistical-mechanical
case: the empirical significance of entropy-variation formulas is confined to processes for which the
interpretive schemes allow for the relevant variation. In the canonical-distribution case, which best fits
the situation considered in the Gibbs paradox (constant temperature and closed vessels), the mixing
entropy is empirically meaningful if concrete separation is possible, and the extensivity (in the quantum
case) or non-extensivity (in the classical case) of the canonical entropy formula is devoid of empirical
meaning. It is just an artifact of mathematical simplicity at the symbolic level. Following van Kampen,
we could stop the analysis here and declare that the Gibbs paradox, again, derives from a naive
reification of the symbolic universe. The Gibbs paradox is then solved “by replacing the Platonic idea
of entropy with an operational definition,” as van Kampen puts it [1] (p. 303).

But is there truly no means to compare the entropies of different masses of the same gas in
statistical mechanics? There may be hope in the fact that the macroscopic predictions of statistical
mechanics do not exactly agree with the predictions of macroscopic thermodynamics. The comparison
of the predictions of two different theories requires a shared class of interpretive schemes: we must
identify systems, quantities, and processes that exist in the symbolic worlds of both theories and
have clear empirical counterparts. However, the laws of the two symbolic universes imply different
relations between the schematic quantities. In our case, statistical mechanics allows for fluctuations
that do not exist in macroscopic thermodynamics. These fluctuations are empirically accessible, at least
in principle. They may offer a new way of interconnecting the equilibrium states of systems that
have different Hamiltonians. For instance, it is tempting to identify the fluctuations in which all the
molecules of a gas are found in the partial volume υ of its container with the equilibrium state of
this gas when it is contained in a vessel of volume υ. Statistical mechanics allows us to compute the
probability of such a fluctuation, and its logarithm agrees with the volume-dependence of the entropy
of the gas. We are not learning anything new in this case. But we may follow Einstein and generally
assume what I called the fluctuation principle: the probability of a subclass of phases of the system
that agrees with the class of phases of another system in a given macrostate determines the entropy of
this state. This principle leads to non-extensive entropies in the classical case and extensive entropies
in the quantum case.

If we are willing to admit the fluctuation principle, the Gibbs paradox belongs to the quantum
context only, and its solution then requires the blend of continuity and discontinuity inherent in
quantum mechanics. If we prefer not to invoke this principle, then the Gibbs paradox belongs equally
to the classical and the quantum contexts, and can be solved in both cases by recognizing conventional
aspects in the definition of entropy.
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