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 A REDUCTION OF THE THREE BODY PROBLEM

 BY MEANS OF TRANSFORMATION GROUPS

 BY

 JAMES W. SAUVE

 Introduction. In Newtonian mechanics, the equations of motion of three

 bodies of mass mi and position (x i y i zi), i = 1, 2, 3 are given by the differential
 system

 = M2(X- x')/rl2 + M3(X3- xl)/rl3 =F'(x,y,z),

 (11R) 2= M(- X2)/rl2 + M3(x3 - X2)/r23 F2(x,y,z),

 X3 - MJ(X _x3)/r13 + M2(x2 - x3)/r23 = F3(x,y,z),

 with similar equations for y', zi, i = 1,2,3, where

 rij = [(Xi -Xj) + (yi _ yj)2 + (Zi _ zj)2]1/2-

 (1.2) x = (x',x2,x3), y = (y,y2,y3), z = (zI Z2 3)

 w = d2w/dt2.

 First integrals of this system resulting from conservation of linear momentum,

 angular momentum, and energy are well known. Moreover, the use of these
 integrals has led to a number of explicit reductions of (1.1) from order eighteen
 to order six. (A complete bibliography of the earlier methods of reduction can be
 found in [1, Chapter 2]; more recent methods are those of Whittaker [2, pp.

 339-351], Wintner [3, pp. 306-319], and Wintner and van Kampen [4].)
 The fact that the first integrals of linear and angular momentum are due to the

 invariance of a Newtonian system under the Galilean group is also well known;
 this invariance has been used in one form or another in most of the more recent

 reductions, usually in the form of contact transformations. In this paper, it will
 be shown that the entire reduction of (1.1) is the result of its invariance under

 continuous transformation groups, and also that the use of these groups will,
 for practical purposes, give no further reduction of the system. In order to dem-
 onstrate the equivalence of the reductions, the necessary coordinate changes

 will be patterned on those given by Whittaker; similar results could be obtained
 by following any of the classical methods.

 We will begin with a brief review of the theory of continuous transformation
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 22 J. W. SAUVE [July

 groups as applied to differential equations. The summation convention will be

 used throughout.

 1. Standard treatments of the theory of transformation groups can be found

 in [5], [6], and [7]; the application to differential equations is developed in
 [7, Chapter 12], [8] and [9]; [10] contains an elementary exposition for the
 case of two variables.

 DEFINITION 1.1. Let G be a Lie group with identity element e, and Mn a dif-

 ferentiable manifold. Let T: Mn x G -+ Mn be a differentiable map from an open
 neighborhood of Mn x e (in the differentiable manifold Mn x G) into Mn. Then
 T is a local Lie transformation group (LLTG) if (1)

 (1.3) T [T(x, g1), g2] = T(x, g2g1) wherever defined;

 (2) for each compact subset K of Mn there is a neighborhood NK of e in G such

 that, for fixed g in NK, the map

 (1.4) Tg: x -+T(x, g)
 is a homeomorphism of K onto some subset Kg of M'.

 NoTE: We identify two such local Lie transformation groups if they coincide

 on some neighborhood of Mn x e in Mn x G. If the map T is defined, and satisfies

 (1.3), for all gin G and x in M", then T is a global Lie transformation group. In this

 paper all transformation groups are assumed to be local. In the case in which

 G = RF (real r-dimensional space), g = (at,a2, , ar), a' real, and e = (0,0, ...,0);
 in this case T is called an r-parameter transformation group. Every such group

 can be generated by r one-parameter groups.

 Since a local transformation group is described by a Lie group, for each LLTG

 there is associated a unique Lie algebra L, called in this case an infinitesimal

 transformation group. L is a finite-dimensional subalgebra of L(Mn), the algebra

 of all differentiable vectorfields on Mn. If M" has local coordinates (t, x2,* .,xn- ),
 and T is a one-parameter LLTG,

 T(t, a) = c(t, x, a),
 (1.5) a real,

 T(xz,a) = Q (t,x,a),

 then the corresponding Lie algebra is generated by the basis element

 (1.6) u = h(t,x)Dt +f1(t,x)Dxj,

 where

 (1.7) h(t, x) = Da(t, x, a) aO, f(t, x) = Da'(t, x, a)| a = O

 X = (x,x2 ...,xn'), = alaw.

 Since any r-parameter LLTG is generated by one-parameter groups, L will always
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 1965] A REDUCTION OF THE THREE BODY PROBLEM 23

 have a basis consisting of elements of the form (1.6). Moreover, in the neigh-

 borhood of a point in L(M') at which it does not vanish, (1.6) can, by a proper

 change of coordinates, be reduced to the form

 (1.8) u = Djtn.

 A LLTG T can be extended to transformation groups of the associated line-

 element bundle and curvature line-element bundle of Mn. The corresponding

 Lie algebras L' and L", called respectively the first- and second-extended Lie

 algebras of L, have basis elements of the following form (corresponding to (1.6))

 u = h(t, x) Dt + fi(t, x) Dxj + gi(t, x, p) Dpj,

 (1.9) u" = h(t, x) Dt + f i(t, x) Dxj + gi(t, x, p) Dpi + ki(t, x, p, r) Dri,

 where (indicating partial differentiation with a variable subscript)

 (1.10) g1(t,x,p) = (ftJ- htpj) + (fJk- hXkpi)Pk,

 ki(t, x, p, r) = (fxkXmP p i - hXkXrnpMpjpi) + 2(fjkt- hXktp)pk
 (1.11)

 + (ftJ - http) - 2(hXkp + ht)rj + (fxk - hxkpi)rk.

 DEFINITION 1.2. Let Mn be a differentiable manifold with local coordinates

 (t,xt, ,x"- 1). Afirst-order differential equation

 (1.12) dxldt = F(t,x)

 is a cross-section from an open set U of Mn into L(Mn). A second-order differential
 equation

 (1.13) d2x/dt2 = G(t, x, p)

 is a cross-section from an open set 0 of L(M") into K(Mn). If 0 = p71(U) (the

 projection map), then we say that (1.13) is defined over U.

 DEFINITION 1.3. A first-order differential equation is said to be invariant under

 a local one-parameter transformation group T with infinitesimal generator u if,

 for each diffeomorphism of an open set U1 of Mn onto an open set U2 of Mn

 (both contained in U) defined by T, the induced map T' of L(01) onto L(02)

 carries the cross-section p = F(t,x) above 01 onto the corresponding cross-section

 above 02. If T is given explicitly by (1.5), then (1.12) is invariant under T if

 dI/dT = F(z, ) for all a. This will be true if and only if u'[p - F(t,x)] = 0 when
 evaluated on the cross-section p = F(t, x).

 This definition has an obvious extension to the case of an r-parameter trans-

 formation group, in which case the equation u'[p - F(t,x)] = 0 must hold for

 each element of a basis for L. A similar definition applies to (1.13), and in this

 case invariance is had if and only if u"[r - G(t,x,p)] = 0 when evaluated on the

 cross-section r = G(t,x,p) (cf. [9, p. 18]).
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 24 J. W. SAUVE [July

 The following theorems, on solutions of differential equations through the use

 of local transformation groups, are stated only for first-order equations; any

 differential equation involving higher derivatives can, by addition of variables,

 be reduced to such a first-order system. Also, all solutions are assumed to be local:

 in a suitably restricted neighborhood in which both the differential equation and

 the LLTG are defined.

 THEOREM 1.1. Let (1.12) be a first-order differential equation defined on an

 open subset of R', and suppose (1.12) is invariant under a LLTG T with Lie

 algebra L. If

 (a) dimL = n- 1,
 (b) L is a solvable Lie algebra,

 (c) line elements of (1.12) are nowhere tangent to an integral curve of T,

 then solutions of (1.12) can be obtained by quadrature.

 Details of the proof can be found in [7, pp. 449-451], and in [9, pp. 75-77].

 The essential steps are these:

 (1) A base can be chosen for L in such a way that (U1, ... ,un-s) is an ideal

 in (Ul,sE,Un-s+1)9 s = ,n -2; the corresponding LLTGTn__ is normal
 in Tn-s+.

 (2) un can be reduced to normal form un = D.5 by a proper change of coordi-
 nates; then un = uT.

 (3) in[p - F(T,_)] = FXn(,TC) = 0, so that (omitting the bars in the new co-
 ordinates) (1.12) becomes

 (a) dxz/dt = F'(t,xl ...,xn2), i = 19...,n -2,
 (1.14)

 (b) dXn-'/dt = Fn- (t xl ... xn-2

 In this new form for the equation, (a) is a system or order n - 2; when this has

 been solved, (b) can be solved by quadrature.

 (4) It is not true in general that the process just described can be repeated

 (i.e., that un-2 can be reduced to normal form without reintroducing xn into the
 system); however, because of condition (b) these same steps can be applied to

 (1.14) (a); because of condition (a), the process can be continued with successive

 coordinate changes until, at the (n - 1)st step, the system has the form

 (1.15) dxt/dt = F'(t).

 This can be solved by quadrature; then, reversing the procedure, the remaining

 solutions can be obtained by a process which alternates coordinate changes with

 quadratures.

 Even though the conditions of Theorem 1.1 are not satisfied, some reduction

 of (1.12) may be possible, as is indicated by the following theorems.
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 1965] A REDUCTION OF THE THREE BODY PROBLEM 25

 THEOREM 1.2. Assume the condition of Theorem 1.1, except that condition
 (b) is replaced by

 (b') 0 = Lo (-- cLc c Ls = L is a series of ideals in L, with Li maximal
 in Li+1.

 If Li has dimension pi, then, by a change of coordinates, (1.12) can be reduced
 to a collection of differential equations of orders

 (Ps-Ps- 1), (Ps- - Ps-2), **, (P2-PI), PI

 Proof. [7, pp. 451-456].

 THEOREM 1.3. Assume the conditions of Theorem 1.1, except that condition

 (a) is replaced by

 (a') dimL = r (r < n-1).

 Then (1.12) can be reduced to a system of order n - r - 1; when this system

 has been solved, the remaining solutions of (1.12) can be obtained by quadrature.

 Proof. The steps indicated in the proof of Theorem 1.1 may be followed without

 change, except that a complete reduction is not possible because of the dimension

 of L. After r changes of coordinates, the LLTG has been exhausted, and the
 remaining system has dimension n - r - 1.

 Even though the group is not solvable, a variant of Theorem 1.3 may be used

 if certain special conditions are satisfied:

 THEOREM 1.4. Assume that (1.12) is invariant under a LLTG T, of dimension

 r, and that Lo is an ideal in the corresponding Lie algebra L, while L -Lo = L
 is a subalgebra of L (not necessarily an ideal). Then, if L1 is solvable, Theorem

 1.3 may be applied, using L1 as the Lie algebra. The system remaining after

 this reduction is still invariant under Lo.

 Proof. As pointed out in the proof of Theorem 1.1, the essential condition

 for a stepwise reduction is the existence of normal subgroups (or ideals in the

 algebra). Since L1 is a subalgebra, it can be treated as an algebra, ignoring Lo;
 on the other hand, since Lo is an ideal in L, any change of coordinates reducing
 L1 to normal form will not affect a later reduction using Lo. This will be clear
 in the reduction which follows, where Theorem 1.4 will be used extensively.

 2. In discussing the reduction of (1.1) by the use of Lie groups, the first task

 is to determine the maximal LLTG (or, equivalently, the maximum number

 of independent local one-parameter groups) which leave (1.1) invariant. For
 convenience in computation, we make the change of variables

 (2.1) x i+3 = YiI xi+6 = zi,I i = 1, 2,3.

 A local Lie group G leaves (1.1) invariant if and only if, for each element u of L

 (the Lie algebra corresponding to G), it is true that
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 (2.2) u" [ri - Fi(x)] = 0

 in some neighborhood of a point P on the surface r' = F1(x) at which u is defined

 and does not vanish. In the ten dimensional space with coordinates (t, x), u and

 u" are given by (1.6), (1.9); note that for the system (1.1) in which F'(x) is inde-

 pendent of pi, j,j =19

 (2.3) u"[r'- Fi(x)] = kO(t, x, p, r) - u[F'(x)].

 To determine the Lie algebra L which leaves (1.1) invariant, we regard h and the

 fi as unknown functions in (2.2), and replace the F' by their known values. From
 (2.3) we have immediately

 fxik mPkPm - hXkxmpkpmpi + 2(fXkt- hxktpi)P +jJ -

 (2.4) - 2(hXkp + ht)r' + (fXk- hXkpi)r -fPF'j = 0, i = 1, *,9,

 in a suitably defined neighborhood of P. Substituting F'(x) for ri, computing Fx'j
 and collecting terms as coefficients of the masses, we have

 (2.5) M'(t, x, p) +Ml(t, x, p)m1 +M2(t, x, p)m2 +M(t,x, p)m3 =0, i = 1, * 9 9
 where

 (2.6) Mi fxkxmp kp m - h kmpkpmpi + 2(fXkt- hxktp )P +ftt -ttP

 Ml = (g2 - h2p')(x -x2)/r32 + (ff3 -hX3p3)(x - 3

 (2.7) + (ff5 - hf5pX)(x4 - x5)/r 2 + (f - hX6p')(x4- -
 + (fl8 - hX8p')(x7 -x8)/rl32 + (fl9 - hX9p1)(x7 -x)r3

 M2 = [-2(hxkpk + ht) + (fxi3-hxip')](x23 -

 (2.8) + (fx3- h 3p')(x2 - x1)/r 3 + (fX4-4hX4P )(x3 -
 + (fX - hX6p ')(x5- x6)/r23 + (fx6-h7p)(x8 _- r3

 + (fX9- hXp' )(x8 - x9)/r23 + (f' - _ xf2)/r2 + 3(X2-x1)W/ 3

 M = [-2(hXkpk + ht) + (fxi - hxtp')] (x3 -xl)lr 3

 (2.9) + (fX2 -hX32p)(x3-x2)/r23 + (fx4- hX4p')(x6- )1r2

 + (fx5- hX5P)(x6 - x5)/rr3 + (fxf7- hX7p1)(x98-X7)lr 3

 + (fx- hxp )(x9 -x)/r23 + (f -f3)/r32+ 3(x3- x W)Y/l3,

 (2.10) W W(f t) = (f1 -f2)(x1-x2) + (f4-f5)(x4-x5)+(f7-f )(x7-x8)
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 1965] A REDUCTION OF THE THREE BODY PROBLEM 27

 (2.11) y= Y(f,t)=(fl-f3)(Xl_X3) + (f4_f6)(X4_X6)+(f7-f9)(X7-X9)

 with similar expressions for M,1, j = 2,3, ... ,9; k = 1,2,3.

 Since MI1, M2,m3 are nonzero constants, it follows from (2.5) that Mj = O,
 = 1,2, *..,9; j = O, 1, 2, 3. In particular Mo = 0, so that, from (2.5) (since the

 pi are independent coordinates)

 (a) ftt = 0, (b) fxjt= 0, i =#j, (c) 2fxit-htt=O,
 (2.12) (d) fXjXk = 0, i =A j, (e) fjxi - 2hxjt = 0,

 (f) hXJXk = 0, i,j,k = 1,2,.-,9.

 From (2.12), (a), (b), (d),

 (2.13) fiot x) = AX)t + (x) + cjx i,j = 1929.
 where 4u' and ca? are functions of xi alone, and c! are constants. Since f'(t,x)
 is analytic,fxJXk =fxkxj, so that, from (2.12), (d), (e),

 (2.14) hxjt = 0

 or h(t,x) = A(t) - djxj, where the dj are constants. Moreover, from (e) and (2.13),
 zXlxi = oc4ixi = 0, so that

 (2.15) i = bzxi + cio; ci =Cix + cC 1 (no summation)

 which, with (c), gives 2b' = Att, or

 (2.16) A = bit2 + d1ot + d1l.

 It is immediate that b' = bi = b, and we then have

 (2.17) h = djxj+ dlot +dl + bt2,

 (2.18) fi = cix' + c'ot + c'1 + bx't,

 where cJ, di and b are all constants, i,j = 1,2,9-,9.
 Using these values for h andfi in M', M', and M', and collecting terms as

 coefficients of the independent variables xi, x1pj, we have, from Mt,

 (2.19) c= = Cc =C I= cl= c l = 0; d2=d3=d5=d6=d8=dg = 0,

 while, from M2

 (2.20) c2 = c2=c2= C2 =C2 =c 2=0; d1=d3=d4=d6=d7=dg=O.

 Repeating this substitution for M3, M4, MS, M6, M7, M8, M9, we have

 f cix 1 + c4x + Ci X7 + Ciot + Cll + bxzt, i 1 49 47
 fi = cjx2 + csx5 + cjx8 + clot + cjl + bx t, j = 2,5,8,

 (2.21) jk = C 3x + c6x + c9x + clot + cl1 + bx t, k = 3,6,9,

 h = bt2 + d1ot + d 1.
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 28 J. W. SAUVE [July

 When these values are substituted into M', M', a similar calculation gives

 b = 0,

 1 2 3-K 1 = 2 2 =C
 41l = l2= c61= K, c 4= c10= c60= K4,
 ci1 = ci1= cil= K2, c10= 4= c 0= K5 ,

 (2.22) 71 = C 91= C1= K3, c%= c0 = c9 = K6,

 -c7 = -c2= -c = c1 = c25 = C6 = K

 - = -c=2 = c7 = c8 = c9 = K,

 -4 = - C58 = - C69 = C7 = 8 = 96

 = Klo, (2/3)d1o = Ci = K,1, i = 9.
 Thus we are left with eleven arbitrary constants, renamed K1,***,Kjj. The
 functionsf' and h of (1.6) must then be of the following form, if the LLTG T is to
 leave (1.1) invariant:

 f = K1 + K4t + K1lx' - K7x4- K8X7-

 f2 = K1 + K4t + K11x2 - K7x5 - K8x8,

 f3 = K1 + K4t + K11x3 - K7x6- K8X9-

 f4 = K2 + K5t + K7x1 + K11x4 + K9x7,

 f5 = K2 + K5t + K7x2 + K, x5 + K9x8,
 (2.23) f6 = K2 + K5t + K7x3 + K11x6 + K9x9,

 f7 = K3 + K6t + K8x' - K9x4 + K11x7,
 f8 = K3 + K6t + K8x2- K9x5 + K11x8,

 = K3 + K6t + K8x3- K9x6 + K1jx9,
 h = (3/2)K11t + K1o.

 Every element u of the Lie algebra L satisfying (2.23) is thus a member of the

 eleven-dimensional Lie algebra with the following base, obtained by letting

 Ki = 11, Kj = O,j 0 i, i = 1, *-,11:

 U1: DX, + DX2 + DX3, u4: tDxi + tDX2 + tDX3,

 u2: DX4+ DX5+ DX6, u5: tDX4+ tDX5 +tDX6,

 U3: DX7+ Dx8+ Dxg , U6: tDX7+ tDx8 + tDxg,

 (2.24) U7: - x4Dxl - x5DX2 - x6DX3 + x'DX4 + x2DX5 + x3DX6

 U8: -X7DX - X8DX2 - x9DX3 + x'DX7 + x2DX8 + x3Dx9

 ug: - x7D 4- x8DX5 - X9D6 + x4DX7 + x5D 8 + x6Dxg

 ulo Dt n ull .. 312)tDt xjx (suYn mmation).
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 1965] A REDUCTION OF THE THREE BODY PROBLEM 29

 Since condition (2.2) is necessary and sufficient, it follows that the eleven-

 parameter group G whose Lie algebra L is generated by (2.24) is the largest LLTG

 leaving (1.1) invariant. We now wish to use this group to obtain a reduction of

 (1.1); to do this, it will be more convenient to return to the (x, y, z) coordinates

 (2.1), and to write (1.1) as a first-order system

 dx7ldt = p, dyI/dt = q%, dz'/dt = ri, i = 1,2,3,
 (2.25)

 dp//dt = Fi(x,y, z), dq'Idt = F +3(x, j, z), dr'Idt = F i6(x,y, z),

 where the F' are defined as in (1.1), and the p', qZ, r' are new variables, defined
 by (2.25)(1). In these variables, the base for the Lie algebra becomes

 U1: DX1 + Dx2 + DX3,

 U2: Dy + Dy2 + Dy 3,

 U3: Dzi + DZ2 + DZ3,

 U4: tDx i+ tDX2 + tDX3+ DP1 + Dp2 + DP3

 u5: tDy1i + tDy2 + tDy3 +DqI + Dq2 +_Dq3

 (2.26) U6: tDzi + tDZ2 + tDZ3 + DrI + Dr2 + Dr3

 U7: yDxi- xDyi + qDpi - p Dqi (summation),

 U8: ziD,, - y'Dzi + riDqi - qZDt,

 ug: x Dzt- zDxi + pDr, - rDiDp,

 Uio: Dt,

 ul1: 3tDt + 2x'Dxi + 2y'Dy, + 2z'Dzi - P -pi _ qiDqi - rDri.

 Since the dimension of L is less than the order of the equation (2.25), a complete

 solution is not possible, even locally, by the reduction theorems in ?1. Moreover

 U7, U8, and ug generate a simple three-dimensional subalgebra of L, so that the
 algebra is not solvable, and Theorem 1.3 does not apply. However, we can use

 Theorem 1.4. For an examination of the Lie products will show that the sub-

 algebra L1 generated by U7, U8, U9, U10, and u11 is normal in L, and that the
 remaining base elements u1, U2, U3, U4, u5, and U5 generate a solvable (actually
 abelian) algebra L2. Ignoring L1, a reduction of (2.25) can be obtained using

 Theorem 1.3 and L2. Once again, we assume that we are considering solutions

 (1) The attempt to determine the maximal LLTG leaving (2.25) invariant leads to a dif-
 ferential system as difficult to solve as (2.25) itself, unless we assume that, in u, (1.6), the fi are
 independent of pi, qi, ri; in this case the result is identical with (2.24), or, more exactly, with
 (2.26), which is of the form u' (1.9).
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 30 J. W. SAUVE t(uly

 (or reductions) in the neighborhood of a point P at which both the system (2.25)

 and the algebra (2.26) are defined.

 The reduction using L2 is well known: it is simply the reduction due to conser-

 vation of linear momentum. Specifically, the three basis elements ul, u2, and U3
 can be reduced to normal form (1.8)

 (2.27) il = Dx3, i2 = Dy3 D, = 3
 by the change of coordinates which moves the origin of the space to the point

 (X3,Y y3 Z3):

 -1 1 -X3 -2 = x2X3 -3 = X3 x =x-x, xc = x-x x

 (2.28) l= y -y3 -2 = Y2 _-y3 y3 = y3
 zl =z-z z2 = z2z_ z3 = z3.

 In these coordinates, the remaining base elements of L2 become

 54 = tDX3 + DP, + D p2 + DP 3

 (2.29) u5 = tDy3+ Dql + Dq2 + Dq3

 U6 = tD23+ Dr, + Dr2 +D+r3.

 By the change of coordinates (2.28), the variables 3, j3, 3 have been eliminated
 from (2.25); therefore the terms in Dx3, Dt3, D.3 and their counterparts in the
 extended algebra play no part in the invariance of the remaining fifteenth-order

 equation, and may be omitted in (2.29). Then a change of coordinates similar
 to (2.28):

 p I= p1 _ p3 -2 _ p3 3 = p3

 (2.30) ql = q' I q3 q2 = q2-_ q3 43 = q3
 -1 1 - 3 -2 2 3 -3 3
 r r-r, r =r-r,r =r

 will reduce (2.29) to normal form:

 (2.31) 4= Dp, U 5 U Dq3, u6 =

 which means that the variables p3, 43, and r3 have also been eliminated, and
 (2.25) has been reduced to a system of order twelve, together with six other

 equations which can be solved by quadrature when a solution has been found
 for the remaining differential system. Explicitly, dropping the accents on the
 new variables, and omitting the equations which can be solved by quadrature,

 dx'/dt = pi, dy'/dt = q , dr'/dt = ri, i = 1, 2,

 (2.32) dpl/dt = F'-F 3 dq1 /dt = E4-F 6 dr /dt= F7 -F9

 dp 2/dt = F2 -F3 dq2/dt = F5 -F6, dr2/dt = F8-F,
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 where

 r =2 [(XI -x2)2 + (y1 _ y2)2 + (z _ z2)2]32

 r3= [(X1)2 + (y')2 + (z')2] 3/2,

 r23= [(x2)2 + (y2)2 + (z2)2]312,

 (2.33) F1 = MjX2- x -)lrl2-M3X11r

 F2 = m1(x' -x )2- mx21/r23,

 F3 = mlxllrl3 + M2X2 r

 with similar expressions for Fi, i = 4, **,9.

 In order to demonstrate the equivalence of the remaining reduction to that
 of Whittaker, we make the further change of variables, (corresponding to a trans-
 formation to the center of mass), not strictly needed for the reduction by means
 of transformation groups:

 pI = mIpI - mA(m1P + m2p2)/m,
 (2.34) p2 = m2p2 -m2(m1p + m2p2)/m,

 with similar equations for qi, f', i = 1,2, where m = mI + m2 + M3. In these
 coordinates, (2.32) becomes, omitting bars,

 dx'/dt = (1/mM + 1/m3)p1 + (1/m3)p2,

 (2.35) dx2/dt = (1/M2 + 1/m3)p2 + (1/m3)pl,
 dpl/dt = - MrM3xI/r13 + Mrm2(x2_x - )1r 2x

 dp2/dt = - M2M33x2/r13 + MrMr2(x' -X2)r2,

 with, again, similar expressions for dy 'dt, dq'/dt, dz1/dt, dr'/dt, i = 1, 2.
 This system is still invariant under the subalgebra L1 with basis elements

 u7, U8, ug, u90, uO1 . A straightforward computation will show that these five basis
 elements have the same form (2.24) in the new coordinates (i.e., after the change
 of coordinates (2.28), (2.30), (2.34)) that they had in the original ones. Once again,

 the invariance of (2.35) under L1 is not affected by omitting those terms in DX3,
 Dy3, Dz3, Dp3, Dq3, and D,3, and their corresponding terms in the extended
 algebra.

 The basis elements u7, U8, ug generate a simple subalgebra L3 in L1, while
 L4= L- L3 is an ideal in L1 generated by ul0 and ull. Using Theorem 1.4
 once again, we now consider only the subalgebra L3 .

 Since L3 is simple, a normalization is not possible. However, the transfor-
 mation to the "invariable plane" also reduces L3 to a desirable form. For if
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 x = (c3/d)xI - (c1/d)zi,

 y= (f cc2/cd)x1 + (d/c)yi - (C2C3/cd)zi,

 z= (C1/C)X + (C2/C)yi + (C3/C)Zi,

 (2.36) p= (C3/d)p - (c1/d)r', = 1,2,

 q= (- cc2/cd)p2 + (d/c)q - (c2c3/cd)rz,

 ri.= (cI/c)pi + (C2/c)q' + (C3/c)r',

 where

 C, = m(y1r1 - qlzl) + m2(y2r2 -q2Z2)

 C2 = m(zpP - xlrl) + m2(Z2p2 -X2rA

 (2.37) C3 = m(x1q, - Plyl) + m2(x2q2 - P2Y2)

 C = [(C1)2 + (C2)2 + (C3)2]1/2,

 d = [(c)2 + (C3)2]1/,

 then

 U7 = (c3c/d)yl 'Dxl -xl 'D i, + q Dp1 - p1 'DqID

 + y2'DX2P - x2'Dy21 + q2 'DP2P -p 2Dq2'

 (2.38) = (c3c/d2)Y,

 8 = (clc/d2)Y,

 ug = 0,

 where we assume cl, C3, C, and d to be expressed in the new coordinates, (note

 that (2.35) is unchanged in form by the coordinate change (2.36)). Thus one of the
 three basis elements has been reduced to zero and, in fact, the other two are

 linearly dependent. For dcl/dt = dc21dt = dc3/dt = 0, as can be shown by deriving
 (2.37) with respect to t, and using (2.35). Therefore c,, C2, c3, c, and d are all
 constant functions of t, and U7 and us differ only by a constant factor. Moreover,
 if in the new coordinates (2.36) we again let

 (2.39) j, = m,(y 'r' -q 1'z' + y2'r2. - q2'z2')

 with C2, c3, c and d similarly derived from (2.37), a straightforward substitution
 will show that c, = J2 = 0, while C3 = = d, a constant.

 The remaining generator U7 is reduced to normal form by the change of co-

 ordinates corresponding to the "elimination of the node":
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 v = arc tan a/b, t = arc tan dic',

 V= (xb + ya)/d', 1= Z'c'ld%
 2

 N S [- p'a(x1b + y'a)/d'2 + q'b(x'b + y1a)/d'2
 (2.40) - c`bpYz1/d'2 - ac"q'zlld 2]

 2

 I = I (1/d')(pYza - q5zlb + r1z5c"),
 i=1

 = (p'b + q'a)fd', i = 1,2,

 Hi = (- p'ac" + q'bc" + rdd'2)/c'd',

 where

 a = zy 2_ z2y , b = z1x2_z2x, 'c"= x2yI-x 1y2

 d' = (a2 + b2)1/2, c' = (a2 + b2 + Cm2)112,

 and where the accents are omitted in the old coordinates. Thus

 (2.42) u.7 = - (cc3/d2)Dv = Dv.

 Moreover, (2.39) becomes, in the new coordinates (2.40),
 2

 4t = csc Icsc v H ({R'sin2v- _I..isin2 v)
 i5=1

 + Isint sinv cosv-N sin2 v CoSt = 0,

 2

 (2.43) 2= csc t csc v W ( -1Ri - g5HI) sin v cos v
 i=1

 + Isint sin2 v + N sinv cosv cost = 0,

 c3 =N,

 which immediately gives

 I = 0,

 2

 (2.44) N cost = , (ziHR - n1f)
 i=1

 N = c (a constant).

 Because of (2.42), the variable v has been eliminated from the system, and can be
 obtained by quadrature; (2.44) gives values for the variables l, t, and N in terms
 of the remaining variables. Thus, the succession of coordinate changes which
 reduces the simple group to a "normal" form has at the same time reduced the
 order of the differential equation by four. It now is of order eight, and is given
 explicitly by
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 dX'/dt = (6/rn + 1/m3)-' + ( 6/m3)-2 + A11,

 dI2/dt = (1/M2 + 1/m3)62 + (W/m3)' 6 + Ar2,

 dil/dt = (1/Ml + 1/m3)H' + (1/m3)H2 -AQ,

 dr2/dt = (1/M2 + 1/m3)H2 + (1/m3)H' -AQ2

 d6-'/dt = AH' - - mlm3V'/p1 + mIm2( 2-Vl)IP12,
 (2.45)

 d" /dt = AH + Bq' - M2M3 /P2 + mrM_2( 2 - )/P12,

 dlH'/dt = -A 6-_ C[(1/M2 - 1/m3)'- (1/rn3)i2] + B42

 - mlm3rjt/pl + mlm2(rj2 - )1 TP12,

 dH2/dt = - A2- C[(1/ml + 1/m3)2 - (1/M3)ii']- B

 - m2M3r 1P2P2 + mlm2(j1' - 12)1P12,

 where

 A = 2R2 [(1/2m1 - 1/2rM3)(12)2 +(1/2m2+1/2m3)(11)2_-ll42lM31P,

 B = 2R 3[(1/2in1 + 1/2m3)(12)2 + (1/2m2 +412m3)A1G)2_-lu2/m3](N2 -P2),

 C = - R-2(N2 _ p2

 R = 1,2 _ q2V,
 (2.46)

 P =Hl,l _ Wlql - H 6-2

 Pi = [(W1)2 + (ql)2]3/2,

 P2 = [(2)2 + (W )T]2I

 P12 = [ - 1 -2 2 + (i1 - ri2)2]3/2.

 There still remains the two-parameter LLTG whose algebra L4 has as basis

 u1o and u1l.After the changes of coordinates (2.36), (2.40), these two basis
 elements have the following form:

 Uio = Dt,

 (2.47) 2
 ull = 3tDt + NDN+ IDI + S (2 + 2rq -Hi- i).

 The system (2.45) is no longer invariant under this two-parameter group since,

 by introducing the constant N, it is no longer homogeneous, and does not admit

 ull. However, if we consider N as a variable for the moment (so that the system
 is of order nine, with the added equation

 (2.48) dNldt = 0
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 which is again homogeneous), then this new system is invariant under the group

 with Lie algebra generated by (2.47).

 Since the algebra L4 is solvable, Theorem 1.3 can be used to obtain the final

 reduction. Of the two basis elements, u1o is already in normal form, and indicates
 only that the differential equation is autonomous. So far as this author knows,

 u1l (or the corresponding one-parameter group) has never been used in the
 reduction of the three body problem. If the reduction by the use of transformation

 groups is to reflect the classical reductions, then it,, must correspond to the
 conservation of energy; but there is no apparent reason why this should be so,

 especially since u1l has time (t) as an explicit variable, and, on the other hand,
 conservation of energy does not demand homogeneity. However, the use of the

 energy constant, given in terms of the original variables by

 h = (1/2) E [(pJ)2 + (qj)2 + (rj)2]/mj -M2M3r'23
 (2.49) j=

 -mlm3/r'13 - mlm2/r'12,

 (where r! = [(x'- x j)2 + (yi _ yj)2 + (zi _ Zj)2]1/2), does reduce utl to normal
 form. For if

 t= th3/2 7 2, = 2 h

 (2.50) <:" = - 1/2(logh)4', Hit = (E')-2h i= 1,2,

 42 = 42h, H" = (H')-2h, i = 1,2,

 11= qlh, N' = N2h5

 then, in these new variables,

 (2.51) uil I = DV1 u1lo = h - 3/2Dt .

 The normal form of ill shows that 4' has been eliminated, and the system reduced
 to order eight. Since both N and h are both constants, N' is a constant, which

 reduces the system to order seven. Finally, since h is a constant, U-10 is still in
 normal form and can be used to reduce the system to order six, a reduction which

 will not be given explicitly.

 We are thus able, by the use of the eleven-parameter Lie group whose Lie

 algebra has as basis (2.24), to obtain a reduction of the differential equation (1.1)

 from order eighteen to order six, which corresponds exactly with the classical
 reductions. Since (2.24) is maximal, no further reduction is possible by this method.

 The author would like to thank Daniel C. Lewis, Jr. for his help in the prep-

 aration of this paper, and the referee for his many helpful suggestions leading
 to its revision.
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