Abstract
CONTENTS
Preface
Chapter I. Definitions and elementary applications
§1.1. One-parameter transformation groups
§1.2. Prolongation formulae
§1.3. Groups admissible by differential equations
§1.4. Integration and reduction of order using one-parameter groups
1.4.1. Integrating factor
1.4.2. Method of canonical variables
1.4.3. Invariant differentiation
§1.5. Defining equations
§1.6. Lie algebras
§1.7. Contact transformations
Chapter II. Integration of second-order equations admitting a two-dimensional algebra
§2.1. Consecutive reduction of order
2.1.1. An instructive example
2.1.2. Solvable Lie algebras
§2.2. The method of canonical variables
2.2.1. Changes of variables and basis in an algebra
2.2.2. Canonical form of two-dimensional algebras
2.2.3. An integration algorithm
2.2.4. An example of implementation of the algorithm
Chapter III. Group-theoretical classification of second-order equations
§3.1. Equations admitting a three-dimensional algebra
3.1.1. Classification in the complex domain
3.1.2. Classification over the reals. Isomorphism and similarity
§3.2. The general classification result
§3.3. Two remarkable classes of equations
3.3.1. The equation
Linearizability criteria
3.3.2. Equations
Chapter IV. Ordinary differential equations with a fundamental system of solutions (following Vessiot-Guldberg-Lie)
§4.1. The main theorem
§4.2. Examples
§4.3. Projective interpretation of the Riccati equation
§4.4. Linearizable Riccati equations
Chapter V. The invariance principle in problems of mathematical physics
§5.1. Spherical functions
§5.2. A group-theoretical touch to Riemann's method
§5.3. Symmetry of fundamental solutions, or the first steps in group analysis in the space of distributions
5.3.1. Something about distributions
5.3.2. Laplace's equation
5.3.3. The heat equation
5.3.4. The wave equation
Chapter VI. Summary of results
References
Export citation and abstract BibTeX RIS
References
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]L. V. Ovsyannikov 1978 Gruppovoi analiz differentsial'nykh uravnenii (Nauka, Moscow)
- L. V. Ovsyannikov 1982 Group analysis of differential equations (Academic Press, New York-London) (translation)
- [9]R. L. Anderson and N. H. Ibragimov 1979 Lie-Bäcklund transformations in applications (SIAM, Philadelphia, PA)
- [10]N. Kh. Ibragimov 1983 Gruppy preobrazovanii v matematicheskoi fizike (Nauka, Moscow)
- N. Kh. Ibragimov 1985 Transformation groups applied to mathematical physics (Reidel, Dordrecht) (translation)
- [11]N. Kh. Ibragimov 1970 Conformal invariance and the Huygens principle Dokl. Akad. Nauk SSSR 194 24-27
- [12]
- N. Kh. Ibragimov and A. O. Oganesyan 1991 Russian Math. Surveys 46 (3) 137-176
- [13]
- [14]
- [15]
- [16]
- [17]L. E. Dickson 1925 Differential equations from the group standpoint Ann. Math. (2) 25 287-378
- [18]L. V. Ovsyannikov 1962 Gruppovye svoistva differentsial'nykh uravnenii (Group properties of differential equations) (Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk)
- [19]P. J. Olver 1986 Applications of Lie groups to differential equations (Springer-Verlag, New York-Berlin)
- [20]G. W. Bluman and S. Kumei 1989 Symmetries and differential equations (Springer-Verlag, New York)
- [21]H. Stephani 1989 Differential equations: Their solution using symmetries (Cambridge University Press, Cambridge)
- [22]N. Kh. Ibragimov 1989 Azbuka gruppovogo analiza (ABC of group analysis) Znanie (8)
- [23]N. Kh. Ibragimov 1991 Opyt gruppovogo analiza obyknovennykh differentsial'nykh uravnenii (An attempt at group analysis of ordinary differential equations) (Znanie, Moscow)
- [24]
- [25]F. M. Mahomed and P. G. L. Leach 1989 Lie algebras associated with scalar second-order ordinary differential equations J. Math. Phys. 30 2770-2777
- [26]
- [27]A. Z. Petro 1961 Prostranstva Einsteina (Einstein spaces) (Fizmatgiz, Moscow)
- A. Z. Petro 1966 Novye metodyi v obshchei teorii otnositel'nosti (New methods in the general theory of relativity) (Nauka, Moscow)
- [28]B. A. Dubrovin, S. P. Novikov and A. T. Fomenko 1979 Sovremennaya geometria (Nauka, Moscow)
- B. A. Dubrovin, S. P. Novikov and A. T. Fomenko 1984, 1985 Modern geometry—methods and applications. vol I, II (Springer-Verlag, New York-Berlin) (translation)
- [29]L. P. Eisenhart 1932 Equivalent continuous groups Ann. Math. (2) 33 665-670
- [30]
- [31]
- [32]
- [33]E. Pinney 1950 The nonlinear differential equation y' +p(x)y+Cy3 = 0 Proc. Am. Math. Soc. 1 681 Math. Rev.: 12-336
- [34]L. M. Berkovich and N. Kh. Rozov 1972 Some remarks on differential equations of the form y' + ao(x)y = φ(x)yα Differentsial'nye Uravneniya 8 2076-2079
- [35]C. Rogers and W. F. Ames 1989 Nonlinear boundary value problems in science and engineering (Academic Press, Boston, MA)
- [36]M. Boiti, C. Laddomana and F. Pempinelli 1981 An equivalent real form of the nonlinear Schrödinger equation and the permutability for Bäcklund transformations Nuovo Cimento B 62 (11) 315-326
- [37]
- [38]
- [39]L. I. Sedov 1957 Metody podobiya i razmernostei v mekhanike 4th ed. (GITTL, Moscow)
- [40]W. F. Ames 1965, 1972 Nonlinear partial differential equations in engineering vol I, II (Academic Press, New York-London)
- [41]E. Vessiot 1893 Sur une classe d'équations différentielles Ann. Sci. Ecole Norm. Sup. 10 53
- [42]
- [43]S. Lie 1893 Vorlesungen über continuerliche Gruppen mit geometrischen und anderen Anwendungen (revised and edited by Dr G. Scheffers) (B. G. Teubner, Leipzig)
- [44]
- [45]W. F. Ames 1978 Nonlinear superposition for operator equations Nonlinear equations in abstract spaces ed V. Lakshmikantham (Academic Press, New York) p 43-66
- [46]R. L. Anderson 1980 A nonlinear superposition principle admitted coupled Riccati equations of the projective type Lett. Math. Phys. 4 1-7
- [47]
- R. L. Anderson and P. Winternitz 1980 Lecture Notes Phys. 135 165-169 Phys. Abs.: 81-89770
- [48]V. M. Men'shikov 1972 Continuous conjugation of invariant solutions Dinamika Sploshn. Sredy 10 70-84
- [49]
- [50]A. N. Tikhonov and A. A. Samarskii 1977 Uravneniya matematicheskoi fiziki 5th ed. (Nauka, Moscow)
- [51]
- [52]
- [53]E. T. Copson 1958 On the Riemann - Green function Arch. Rational Mech. Anal. 1 324-348
- [54]
- [55]
- [56]I. M. Gel'fand and G. E. Shilov 1959 Obobshchennye funktsii i deistviya nad nimi (Fizmatgiz, Moscow)
- I. M. Gel'fand and G. E. Shilov 1964, 1968 Generalized functions vol I, II (Academic Press, New York - London) (translation)
- [57]Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick 1982, 1989 Analysis, manifolds, and physics, Parts I, II (North-Holland Publ. Co., Amsterdam-New York)
- [58]
Citations
-
Solutions of nonlinear equations of divergence type in domains having corner points
E. E. Perepelkin et al 2018 Journal of Elliptic and Parabolic Equations -
Two-dimensional self-similar plasma equilibria
Alexander Lukin et al 2018 Physics of Plasmas 25 012906 -
Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces
Nicolas Besse and Uriel Frisch 2017 Journal of Fluid Mechanics 825 412 -
Interaction of weak discontinuities and the hodograph method as
applied to electric field fractionation of a two-component mixture
M. S. Elaeva et al 2016 Computational Mathematics and Mathematical Physics 56 1440 -
Laplace type invariants for variable coefficient mKdV equations
Christina Tsaousi et al 2015 Journal of Physics: Conference Series 621 012015 -
Equivalence groupoids of classes of linear ordinary differential equations and their group classification
Vyacheslav M Boyko et al 2015 Journal of Physics: Conference Series 621 012002 -
Classical Noether theory with application to the linearly damped particle
Raphaël Leone and Thierry Gourieux 2015 European Journal of Physics 36 065022 -
Laplace invariants for a fourth-order equation with two independent variables
A. N. Mironov and L. B. Mironova 2014 Russian Mathematics 58 22 -
Lie symmetry analysis of electron–electromagnetic wave interaction under condition of the anomalous Doppler effect
N.M. Ryskin 2014 Communications in Nonlinear Science and Numerical Simulation -
Field theoretical Lie symmetry analysis: The Möbius group, exact
solutions of conformal autonomous systems, and predictive model-building
Kyriakos Christodoulides 2014 Communications in Nonlinear Science and Numerical Simulation -
Free convective flow from a heated vertical wall immersed in a thermally stratified environment
Samuel Paolucci and Zachary J. Zikoski 2013 International Journal of Heat and Mass Transfer 67 1062 -
An extension of the Noether theorem: accompanying equations possessing conservation laws
V.A. Dorodnitsyn and N.H. Ibragimov 2013 Communications in Nonlinear Science and Numerical Simulation -
Lie symmetries and reductions of multi-dimensional boundary value problems of the Stefan type
Roman Cherniha and Sergii Kovalenko 2011 Journal of Physics A: Mathematical and Theoretical 44 485202 -
Similarity of approximate transformation groups
R. K. Gazizov and V. O. Lukashchuk 2010 Siberian Mathematical Journal 51 1 -
On Darboux-integrable semi-discrete chains
Ismagil Habibullin et al 2010 Journal of Physics A: Mathematical and Theoretical 43 434017 -
Lie symmetries and CR geometry
Joël Merker 2008 Journal of Mathematical Sciences -
Symmetry Solutions of a Third-Order Ordinary Differential Equation which Arises from Prandtl Boundary Layer Equations
R Naz et al 2008 Journal of Nonlinear Mathematical Physics 15 179 -
Characterization of the Newtonian Free Particle System in $m\geqslant 2$ Dependent Variables
Joël Merker 2006 Acta Applicandae Mathematicae -
ASYMPTOTIC SCALING SYMMETRIES FOR NONLINEAR PDES
GIUSEPPE GAETA and ROSARIA MANCINELLI 2005 International Journal of Geometric Methods in Modern Physics 02 1081 -
SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS
Herve Gaussier and Joel Merker 2003 Journal of the Korean Mathematical Society 40 517 -
On the reduction methods for ordinary differential equations
Edvige Pucci and Giuseppe Saccomandi 2002 Journal of Physics A: Mathematical and General 35 6145 -
Lie-point symmetries and stochastic differential equations
Giuseppe Gaeta and Niurka Rodríguez Quintero 1999 Journal of Physics A: Mathematical and General 32 8485 -
Symmetries of linear ordinary differential equations
Chris Athorne 1997 Journal of Physics A: Mathematical and General 30 4639 -
Symmetries, integrating factors and Nambu mechanics
G Ünal 1996 Physics Letters A 223 355 -
Discrete symmetries of differential equations
G Gaeta and M A Rodríguez 1996 Journal of Physics A: Mathematical and General 29 859 -
Non-perturbative linearization of dynamical systems
G Gaeta and G Marmo 1996 Journal of Physics A: Mathematical and General 29 5035