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It is shown that for the planar or three-dimensional two-, three-, or four-body 
problems of celestial mechanics, almost all initial conditions (in the sense of 
Lebesgue measure and Bake category) lead to solutions which exist for all time. 

1. INTRODUCTION AND NOTATION 

The main purpose of this paper is to prove the following theorem. 

THEOREM 1. For almost all initial conditions (in the sense of Lebesgue measure 
and Baire category) in the t.wo-, three-, and four-body problems of Newtonian 
mechanics, a unique solution exists for all time. 

This theorem holds for a p-dimensional physical space for p > 2, where 
we are mainly interested in the values p = 2, 3. Phase space can be either the 
full phase space or the reduced phase space obtained by fixing the center of 
mass at the origin of some inertial coordinate system. (Although we do not carry 
out the details, this result can be extended to energy manifolds and the algebraic 
varieties defined by constant angular momentum except for TZ = 2 and zero 
angular momentum.) Only the domain of existence needs to be established since 
solutions of the n-body problem are analytic, and hence unique, in their domain 
of existence. 

Previously this type of global existence and uniqueness theorem was known to 
be true only for the two- and three-body problems. In the two-body problem it is 
known that the analytic singularities of the solutions are due to collisions between 
the particles. But it is also known that this system suffers a collision at some time 
if and only if the angular momentum of the system is zero. Thus the set of 
initial conditions leading to a collision coincides with the algebraic variety 
defined by a zero value for the angular momentum. Since, in phase space, this 
set is of Lebesgue measure zero and of first Baire category, the conclusion 
follows. 
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For 11 3 3, it cannot be expected, nor is it true, that the collision orbits are 

restricted to some fixed angular momentum surface. However, for the tz-body 
problem it has been shown by Saari [7-91 that the set of initial conditions leading 

to collisions is of Lebesgue measure zero and of first Baire category. (Urenko [14] 
has established a similar statement in a lower-dimensional setting where the 
initial conditions are restricted to any angular momentum surface.) Thus in any 
situation where collisions constitute the only singularities of solutions, Theorem 1 
follows immediately. 

This is what happens for the three-body problem. Painlevk [5] showed for 
n = 3 that the singularities are caused by collisions. However, the situation 

changes for 1~ > 3. PainlevC also showed that a necessary and sufficient condition 
for a singularity to occur at t = t, is for the minimum spacing between particles 
to approach zero as t + t, . PainlevC pointed out for n > 3 that this does not 
necessarily imply collision. While the existence of a noncollision singularity has 
not been established, their properties, if they do exist, have been studied. For 
example, it is known [13, 151 that the existence of a noncollision singularity is 

equivalent to the system becoming unbounded in physical space in a finite time. 
Indeed, the system must become unbounded at a “rapid” rate [1 11. The existence 
of such a noncollision singularity is suggested by some recent work of Mather and 
McGehee [2] where they show, for the four-body problem, that binary collisions 
can accumulate in such a fashion that the system becomes unbounded in physical 
space in a finite time. 

Therefore, in order to prove Theorem 1, we need to find an estimate on the 
size of the set of initial conditions which could potentially lead to a noncollision 
singularity. 

THEOFiEM 2. In the four-body poblem, the set of initial conditions leading to a 

nomollision singularity lies in a set of Lebesgue measure zero and first Bake category. 

Theorem 1 now follows immediately from Theorem 2 and the fact that 
collisions are improbable. 

Actually, all we need to show is that this set is of Lebesgue measure zero, as 
the Baire category statement follows immediately by continuity of solutions with 
respect to initial conditions. To see this, let NC([n, 1~ + 11) be the set of initial 
conditions which suffer their first singularity in the time interval [n, n i I], and 
it is a noncollision singularity. Then the set described in Theorem 2 is 
uzZ=;_~m NC([?z, n + I]). I f  this set were of second Baire category, then for some n, 
set iVC[n, 12 + 11) is of second Baire category. This means that the closure of 
NC([n, n + 1]) contains an open set U. Since both NC and the collision initiating 
set are of measure zero, there is some initial condition p E U such that its solution 
exists on the time interval [0, n + I]. But by continuity of solutions with respect 
to initial conditions, there exists an open neighborhood of initial conditions, r/, 
such that their solutions exist in [0, n + I] and p E V. This contradicts the fact 
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that p is in the closure of AK’([n, n + I]), and it shows that the first Baire 
category statement follows from the measure zero statement. 

Other results follow from the analysis, and they are stated in Section 9. One 
of the statements asserts the nonexistence of certain types of noncollision 
singularities for certain mass ratios of the masses. Another provides a lower 
bound on how fast the system becomes unbounded in finite time when a 
noncollision singularity is encountered. 

The notation is standard. Assume the center of mass of the system is fixed at 
the origin of an inertial coordinate system. Let mli , I-~ , and V~ denote, respec- 
tively, the mass, position vector, and velocity vector of the kth particle. (The 
same letter will be used to designate the magnitude of a vector, e.g., z+~ = 1 v,; /, 
I’kj = 1 r6 - rj I.) I f  the gravitational constant is assumed to be unity, then the 
equations of motion are 

where 

The conservation of energy integral is 

(1.2) 

where h, the total energy, is a constant of integration. The angular momentum 
integral is 

il M7.h x h) = c, Cl.31 

where vector c is a constant of integration. 
Define 21 = xt=, m7Lrk2. Since the center mass of the system is fixed at the 

origin, it follows immediately that 

where M is the total mass of the system. 
The well-known Lagrange- Jacobi relationship which relates I to U is 

i’= Uf2h. U-4) 

The importance of this relationship is partially derived from the fact that Wz 
can be interpreted as a measure of the maximum spacing between particles, 
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whereas U-l can be viewed as a measure of the minimum spacing between 
particles; namely, if R(t) -= maxr+ r&t) and r(t) = min,+j r&t), then it can 

easily be shown that 

where rrzO is the smallest mass. 
In what follows, A and B will denote positive constants determined by the 

masses of the particles and other constants of the system. In general, they do not 
assume the same value with each usage. We shall be discussing several small 

intervals of time. In each case, the interval will be specified, and we shall use 
dt to be the length of this particular interval. Also, if the interval is (tr , ta) then 
df = f(tJ - f(&). Finally, with the exception of t, which always will designate 
the time of a noncollision singularity, the subscripts on t may change meaning 
with each section. 

2. PRELIMINARY ESTIMATES 

The basic idea for the proof of Theorem 2 comes from [IQ] where essentially 
it was shown that if there is a noncollision singularity in the four-body problem 
at time i = t, , then as t ---f t, the commuting of the particles is restricted to a 
shrinking neighborhood of some fixed line in physical space passing through the 
origin. That is, it was shown that there exists an infinite sequence {t,], t, + -tG , 

such that at t = t, three of the particles are extremely close together and the 
remaining particle is approximately distance R assay. It turns out that this 3-l 
configuration must break up, and some particles, either a singleton or a binary, 
must enter some small neighborhood of the fourth particle. 

The idea behind the proof of Theorem 2 is to derive estimates on how fast 
these particles must approach this fised line in physical space. Since this is a 
conservative system, it is measure preserving; thus these estimates lead to an 

upper bound on the measure of the initial conditions leading to this type of 
behavior. The basic idea behind the estimates is toNexploit the fact that when some 
particle or binary is commuting between the remaining particles, its motion must 
be essentially a straight line. This is so since the acceleration is negligible at 
large distances. However, the velocities must be very large in order that all of this 
commuting can be done an infinite number of times in a bounded time interval. 
Furthermore, since the velocities are very large, some commuting particle or 
binary m.ust pass very close to the target, or else nothing will return. (Close 
approaches effect the magnitude of the acceleration.) The actual estimates 
provide an estimate on the measure of the set of initial conditions leading to this 
behavior. 
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For the remainder of this paper, assume that a solution of the four-body 
problem suffers its first singularity at time t = to and that it is a noncollision 
singularity. (This condition can be relaxed by “regularizing” binary collisions. 
But since collisions are already known to be improbable and since we are seeking 
an existence theorem, this complication is not needed here.) 

LEMMA 2.1. (a) As t--j t, , r-0 and R+oo. 

(b) Ij V(t) = rnaxkfj vkj(t), then 4m,,“/M ,( lim sup ~17~ < lW/m02 as 
t+to. 

(c) For E > 0, there exists sequeme (t,), t, -+ to , with the property that at 
t = t, either three particles aye within E distance of each other and the remaining 
pmticle is at least R - E units away, or there are two binaries no more than E 
distance apart and the distance between the binaries is at least R - 2~ units. The 

first situation will be called a 3-1 configuration, while the second will be called a 

2-2 conjiguration. 

(d) There exists a sequence (tJ, t,+ t, , such that at t = t, the particles 
form a 3-1 configuration. 

(e) For 6 > 0 and for each index k there exzSts Gadex j and a sequence {tm}, 
t, --f t, , such that rki(t,) < (t, - t,JIVB. 

From part a, the system becomes unbounded. 
From part d, the 3-l configuration must be formed infinitely often. From 

part e, this configuration must break up infinitely often, and some particle or 
particles (at most two) must approach the singleton of the 3-1 configuration. 
Since the distances these particles must travel to reach this singleton approach 
infinity (part a), and the time span approaches zero (t - t,,), the magnitudes of 
the velocities must approach infinity. By part b, these velocities can be no greater 
than a constant multiple of ~-lj@. 

Proof of Lemma 2.1. 

Part a. PainlevC [5] showed that a singularity at t = to is equivalent to 
P 4 0 as t + to . By [II, 13, 151, if the singularity is a noncollision singularity, 
then R must be unbounded. However, according to Eqs. (1.4) and (1.5), and 
Cnce h is a constant, 

i’= U+2h>Alr+m, 

so the graph of I is concave as t + to. Since I is unbounded, I -+ co. This, in 
-turn, implies R --f co. Incidently, this proof also shows that 1 is monotonically 
increasing near to . 
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Part b. This follows from the conservation of energy integral, 

The upper bound for lim sup rV” now follows. Again using the energy integral, 
we find that 

which establishes the inequality 

Pmt c. Let E > 0 be given. Since Y -+ 0 as t -+ to, after some time Y < ~j3. 
We shall restrict attention to the open interval defined by this time and t, I 
Since R 4 co, assume that R > 10~. There are two cases to consider. The first 

is where different particles exchange infinitely often the role of defining distance r. 
The second case is where after some time some distance between particles agrees 
with r(t). 

In the first case there exists a sequence of times {tN}, t, + t, , and two mutual 
distances, say 1’P2, and rij , such that r,,(t,) = rii(tJ = r(&). I f  ;,j + 1, 2, then 
rra(t,) = r&t,) = r(tJ < ~13. Using the triangle inequality we have that 

R-E<Y i3 , ra3 , r14, ~a$ < R. This is the 2-2 configuration. 
If  i equals 1 or 2, say 1, then j must be either 3 or 4, say 3. That is, ~rra(tJ = 

r13(taj = r(t,). We find by using the triangle inequa1it.y that y&j < r13(tE) + 
r12(tJ < E. Since rl is the remaining particle and since R -+ 03, it follows that 
the distance from these particles to r1 is at least R - E. This is the 3-1 configura- 
tion. This completes the first case. 

In the second case, assume that after some time rnz(t) = r(t). We shall now 
show there exists a sequence (&I, t, -+ t, , such that at time t = f, the distance 
from the center of mass m, and rnz to some other particle is bounded above by E. 

Since r = rla , this statement establishes part d. 
Assume the assertion is false. Let q, denote the center of mass of particles r1 

and ra . It follows from the equations of motion that 

where Mra = mr + ma and A is some positive constant. (Recall our usage of A 
and B.) 
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Since C,, = O(l), it follows by integrating this inequality twice and using the 
Cauchy criterion for the existence of a limit that C,, has a limit as t --f t, . Since 
r - r --f 0, r, and r, approach this same limit. 12 - 

Since R + co as t --j t, , it follows from the above sentence that 
max(ra , rJ ---f co. However, since the center of mass of the system is fised at 
the origin and since rr and ra approach a limit, it is clear that should either ra or 

r4 become unbounded, then so must the other and the particles are going in 
essentially opposite directions. 

In order for rs to become unbounded, some particle must approach particle 3 
infinitely often in an arbitrarily close approach. If  this were not the case, then 

i;, = O(l), and y3 would approach a limit as t -+ t,, . According to our assumption 
that the assertion is false, it must be particle 4 which approaches particle 3 in 
arbitrarily close approaches. By center of mass considerations, whenever this 
occurs, 

r s, r4 = -Ju&/~3, + O( 1)s 

Since this must happen infinitely often as t -+ to, we are led to the implication 
IiminfR < c%) as t-+ t,,, which violates part a. This completes the proof. 

Part d. From the above, we need only consider the case where infinitely 
often two distances, say r12 and rad , exchange the role of defining r(t). Further- 
more, we can assume r(t) < c/3. Assume that statement d is false. This means 
that after some time the distance from either r, or rt to either rs or r4 is bounded 

below by e/2. It is easy to see this must be the situation since there are only four 
particles, Y --f 0 (so at all values of time at least one distance must be small), 
R -+ 03, and 3-l configurations are not permitted by assumption. 

Denoting the center of mass of particles nzr and m, by C,, , and of particles ms 

and m4 by C,, , it follows by an argument similar to the one used above that 
C,, , C,, = O(l), and that they approach limits as t + t,, , However, the assump- 
tion that infinitely often these distances trade the role of defining r, establishes 

the existence of t arbitrarily close to to such that T&t) = r,,(t) = r(t). This 
implies that rl and r, are close to C,, , and ra and r, are close to C,, , or that 
lim inf R < co as t + to . This contradiction proves part d of the lemma. 

Part e. Assume false. Then there is some 0 < 6 and some index, say 4, 
such that r&t) > (to - t)l-“. This implies that i;, = O((to - t)-2(1-s)). By 
integrating both sides of this relationship twice, it follows that r4 = O(1) as 
t - to . This contradicts part d, establishing part e. 

3. COMMUTING PARTICLES 

In this section we shall obtain some estimates on the behavior of the particles 
during the time period when they change from a 3-l to either another 3-l or a 
2-2 configuration. The first lemma studies the behavior of the center of mass of 
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the natural subsystems formed by these configurations. Extending the notation 
used in the preceding section, for set of indices S, define fi;l, = CjeS ~FQ , and 

LEMMA 3.1. If  on the time interval (tl , t,), 15 $ S implies rkj : 
any j E S, where A is some positive constant, then 

c,(t) = C&,) + 0((t, - tJRm2) 

and 

C&(t) = G(t,)(t - td + G(t,) + O(((f, - f,jkLd‘? 

fw t E Or , Q- Rn, = min~t,,t21 R(t). 

Proof. According to the definition of C, , 

2. AR(tj f& 

(3.1j 

(3.2) 

The first double summation vanishes by the symmetry of the scalar terms and 
the antisymmetry of the vector terms with respect to subscripts. By hypothesis, 
k $5’ implies Irk?(t) > AR(t) for any j E S, or 

es = O(R-“(t)) = O(R;;‘). (3.3) 

The conclusion follows by integrating both sides of this relationship. 
Since the center of mass is at 0, since R + CT, and since three of the particles 

are within c distance of each other infinitely often, it follows that all the ~~ become 
unbounded. As shown in the previous section, the driving force which permits 
this unbounded motion in finite time is caused by the close approaches of particles 
when they commute to form the various 3-l or 2-2 configurations. For the 
particles to do all this commuting infmitely often over distances which are 
becoming infinitely large and over time intervals which are becoming arbitrariiy 
small, the velocities must approach infinity. From the corkervation of energy 
integral and the definition of T, it follows that r approaches zero quite ra$dly. 

The next lemma provides asymptotic bounds on these rates of expansion. 

LEMMA 3.2. After some value of time 

I < BV”(t, - ty (3.4) 

and 

rR2 < E(to - t)‘; (3.5) 

where positive constant B depends on the masses and exceeds (201;t3/t~zO)S in vale. 
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Proof. Inequality (3.5) follows from inequality (3.4) by using part b of 
Lemma 2.1 and Eq. (1.5). 

Assume the lemma is false; that is, assume the existence of a sequence {ta}, 
t, + to , such that at time t = t, inequality (3.4) is violated. 

Let 1 > E > 0. Define &I = inf(t 1 t > t,; at time t the particles form either 
a 3-l or a 2-2 configuration}. At time t,,, > t, , two clusters of particles are 
defined. 

Define t,,, = sup{t / t < t,; at time t at least one particle from one of the 
clusters in the configuration resulting from the definition oft,,, is within distance 
1 of some particle from the other cluster}. 

Clearly t,,, < t,,, , and during the time interval [ta,, , t,,,] the distances 
between particles in different clusters is bounded below by unity. The existence 
of values of ta,l and taa2 is immediate for t, sufficiently close to to . Finally, it is 
clear we can assume sequence {f,} is such that tepl < tu,2 . (If not, then replace 
{tu} with a subsequence which does possess this property.) 

Let S, and Ss be the sets of indices defining the two clusters at time t,,r . Then 
by the definition of the involved terms 

By the definition of the 3-1 and 2-2 configurations, at time t = ta,l , we have 

I rj - CS, I < Ed jES2,, p = 1,2. 

This forces the left-hand side of Eq. (3.3) to be bounded above by kk2/2. 
Consequently, 

(3.7) 

On the other hand, at time t = t,,, two particles from some cluster, say r, and rs 
where 1, 2 E S, , are at least R/2 units apart. From the inequality 2(a2 + b2) 3 
(u - b)“, it follows that 

m,(r, - CsJ2 + m2(r2 - CS,)~ 3 m,(r, - r&2 3 q$V)P. 

It now follows from inequality (1.5) that at time t = t,,, the right-hand side 
of Eq. (3.6) is bounded below by nz,J(t~,J4M. Thus since I is monotonically 
increasing (proof of Lemma 2.1, part a), we find that 

J(L2) < (1 - kb/w>I(t,,2> -c (1 - (%/4W)1(t,.,). (34 
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I f  1 is sufficiently large (that is, t, is sufficiently close to to), the combination of 

inequalities (3.7) and (3.8) implies that 

This string of inequalities forces one of the terms on the left-hand side, say 
for p = 1, to satisfy the inequality 

Since m,C,P(t,,,)/2 < I(tDIsl) (this follows from Eq. (3.6)) we have the inequality 

I G&1> - G&,,)l >, (~z,~(tJ,,l))l’“/lO~~?I”. (3. IO) 

We now demonstrate that should inequality (3.4) be repeatedly violated, 
this would lead to a contradiction of Eq. (3.10). 

Following the ideas of the proof of Lemma 3.1, and using the fact that 

rkj(t) 3 1 for t E [ta,2 , ta,J, k E S, , j E Sa , we have that 

or that 

(Recall, t,-, < t,,, .) 
The assumption that inequality (3.1) is violated at time t = t, and the 

definition of &I , combined with the above inequality shows that for all 

t E [to;,2 7 t,,J the inequality 

j C:s,(t)l < M((I(t,,,)/qto - Ll)y + @I - Ll)) 

holds. 
According to this inequality, Eq. (3.10), and the mean value theorem, there is 

some 6 E [tR,? , ta,i] such that 

,,G,;;Ya e I W~,l) - C1(tti,!Jl 
= 1 Cl(%$)I (t&,l - tn.J < qgp + M(t, - t,-,y. 
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Since M/B112 < ~,J2OAP, the sought after contradiction can be obtained by 
choosing tapI sufficiently close to t,, . This completes the proof of the lemma. 

4. CONFIGURATIONS 

The next lemma provides a refined picture of the evolving 2-2 configurations. 
Essentially it states that the “lighter” particles do the commuting and if 2-2 
configurations appear, then we can expect the lighter particle to approach 
the singleton and return to the binary. (Although stronger statements are 
possible, we shall not derive them since they detract from our main goal of 
establishing Theorem 2.) 

L.snlnu 4.1. I f  a nomollision singularity exists, and 2-2 co@gurations occur 

infinitely often, then the values of the nzasses satisfy the relatiomhip 

m, > ?ns and ml $ m, > m3. (4.1) 

Actually 

(ml + mJh > h + d/m4 . (4.2) 

If the 2-2 configuration occurs infinitely often, then it evolved from a 3-I 
configuration, and it will evolve into a 3-l configuration. Furthermore, the 
particle commuting to the singleton will return to the binary, forming again a 3-1 
configuration, and it is the lighter of the two masses. The masses must satisfy 
Eq. (4.1) for some choice of the indices. 

Proof. The only way a 2-2 configuration can arise is if it came from a 3-l 
configuration. This means a particle commutes from a binary to the singleton. 
We shall show that this original binary must remain intact. This means that one 
particle from the newly formed binary (the singleton and the particle which 
approaches it) must commute back to the original binary. 

Assume that particles 1 and 2 form the original binary; that is, the intact 
binary when the 3-l configuration evolves into a 2-2 configuration. Let 
r,, = r2 - ri , and define hl, = -$vlz - ((ml + m,)/rlls). The goal is to show 
that rle must remain bounded above by a small positive constant, at least until 
some other particle enters some small neighborhood of this binary. We shall do 
this by showing in the time interval when the 2-2 configuration is being formed 
and until some particle returns to this binary, that j h,, j is “large” but h,, is 
negative. This establishes the claim since 0 ,( ((m, + ~zs)/ris) + lz,, , or 
r12 < (ml + d/l h12 I- 

First we shall show that at some time h,, assumes a large negative value. 
According to the definition of the terms and the conservation of energy integral, 



A GLOBAL EXISTENCE THEZREM 91 

Since one particle, say particle 3, is commuting to the singleton, at some timet, 
all the distances in the brackets are bounded below bv unity. Using the fact that h _ - 
is a constant, we have at time t, that 

where according to our notation A is a constant depending on the masses and 
the value of h. 

Equation (3. lo), Lemma 3.10, and the mean value theorem imply that either 
/ C&(tr)j or / ea2(tl)j are bounded below by some multiple (depending on the 
masses) of R(Q’(tt, - tI). Since MJ&(t) = -M3&&t,) this is true for both 
of the terms. Substituting this estimate into Eq. (4.3) implies for t, sufficiently 
close to f,  , that 

h&r) < --B(R(t,)i(t,, - Q)‘. (44 

This completes the proof of the assertion. 
Before studying how h,, can vary, the equation for rly will be derived. Frorn 

the equations of motion we have 

Define pi to be the vector from the center of mass of the binary formed by 
particles 1 and 2 to particle j. Then r;f = pj”(l -(- O(r,,/p,)) for 111 < pi and 
12 = 1 or 2. 

Thus, for 712 < pi, Eq. (4.3) can be expressed as 

(4.6) 
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We can now investigate changes in the value of h,, . Differentiating both sides 
of the defining equation and using Eq. (4.6) yields 

= Wl, I +12 0. 

Since 2r&, = (Y~~w~,,,)~ - ~M,,Y~, , in some neighborhood of tl , r,,v,, = 

O(r12 I h,, lljz) or I(d/dt)(h,,)1/2 I = O(r,,). 
Therefore, until either particle 3 or 4 approaches within distance unity of 

some particle in the binary 1 and 2, or until h,, = --BR(t,), we have that 

I(d/dt)(h,,)l/” / = qQ2) = O(R-l(Q). 

However, function h,, cannot equal SR(tr) without some particle approaching 

the binary. To see this, note that the above relationship bounds the changes 
in h1 s, and consequently the changes in hif , namely, 

A(h:;) = O((t, - tl) R-l@,)). 

For t1 sufficiently close to t,, , this is too small of a change to allow a change in h,, 
from the value given in Eq. (4.4) to that of --BR(t,). Thus, the condition 

R - co and a center of mass argument, similar to that found in the proof of 
Lemma 2.1, implies that either particle 3 or particle 4 returns to a neighborhood 
of the binary. 

Assume that particle 3 leaves the binary and approaches the singleton particle 4. 
We know from the above that one of these two particles must return to the 
binary. What we establish next is that it will be particle 3 and that 112s < ??zq . 

From the equations of motion, if on some time interval of length dt, 
(tl , t, + At), the distance from a given particle K to any other particle is bounded 
below by unity, then Pk = O(l), r,(t) = f8(tl) + O&b) and 

r,(t) = r,(h) + b(h)(t - tl> + WW. (4.7) 

That is, if dt is small, then the motion of r,(t) is restricted to a small neigh- 

borhood of a straight line. In our case k = 3, ti is the exit time when either 
rls(tl) or r,,(tl) equals unity, and ti + At is the approach time when rsa equals 
unity. During this time interval the motions of C,, and Cl, are restricted to a 
small neighborhood of a line (Mi,C,, = -M&a4 , and Lemma 3.1). It turns 
out that these two lines can be chosen to agree with each other. 

To see this, note that at time ti , the initial conditions establishing the lines 

approximating the motion of Cl,, , Ci, , C,, , and rg are determined. Also, at 
t = tl there are some obvious inequalities, namely, Cl,, , Cl, , and ra are all 
within distance unity of each other. At time t, + At, vectors ra , r4, and 
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C,, = -M,,M$l, are within distance unity of each other. It is now an 
elementary task to establish the existence of a line L such that all the motion lies 

within distance unity of it. Also, since dt is small, R is large, the directions of the 
velocities are also approximately given (except for orientation) by L. 

During the binary encounter of particles 3 and 4, Cs:,, = O(R-"), so a similar 
argument shows that line L serves as an approximation to the motion at least 
until some particle returns to a small neighborhood of binary 1, 2. (Of course, it 
may not define the velocity directions during a close encounter.) 

Define the positive direction, or “right-hand side” of L by C&t,). 
Equation (3.10), the inequality preceding it, and the fact that MJ!,, = 

-ilIs~& show that Ca4 > 0. So particle 3 is coming from the binary on the 
left and going to the right. 

Let E be a small positive constant, and let t* be the value of time when particle 3 
is approaching particle 4 where r&t*) = M&. Let t1 be the value of time 
when one of the two particles is returning to the binary where rs4(t1) = &&e-1.. 

Since mav, + WZ~V~ = M32&1 and since the velocity of the returning particle is 
directed to the left (when projected on L), the velocity of the remaining particle 
must be directed to the right. By Eq. (4.7), the velocity will remain essentially 
the same until some particle returns within distance unity of it. 

This is a center of mass argument, and it holds independently of the particies 
involved. By assuming t* is sufficiently close to t, , it follows from Lemma 2.1 
that at some time previous to t* some other particle or binary left a neighborhood 
of particle 4. Therefore, the projection of V~ on L at t = t* is directed to the 
right. 

This means, 

mps(t”) + nzgJ,(t”) = f&j, 1 C&t*)/ f O(1). (4.8) 

I f  at time tl, particle 3 is returning to the binary, then 

If particle 4 is returning to the binary then 

-“w,(tl) + “Zig@) = n/l,, / C,,(t*)1 + O(1). (4.5%) 

Next we need an estimate on ~&tl) and V&P). This is obtained by studying 
Fz~~ . So, define h, = &z& - (Ma&s,). Distance yal is very Iarge when particle 3 
is halfway from the binary to particle 4. At this time h,, is given by +u& plus 
small error terms. Since zi3 and plq remain essentially constants (Eq. (4.7)) until a 
close approach, since v,(t*) is directed to the right, and since particle 3 must 
commute at least the distance R(t*), we have that 

h&*) > A& > A(R(t”)@, - t*))’ 
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for some positive constant A depending on masses. Using arguments similar 
to those following Eq. (4.6) it follows that (d/dt)(hic) = O(R(t*)-5/z). 

Consequently, ha, ‘I2 changes very little in value during this time interval. This in 
turn implies 

Z’sa(t*) = z@) + O(c). 

At time t*, both v, and vg are directed to the right. So, I = pa - 
am + O(1). At time tl, one particle is returning to the binary and its velocity is 
directed to the left; the other particle’s velocity is directed to the right. This 

means I,,, = pa + a,(tt) + O(1). 
The combination of these two equations yields 

ws(t”) = a&“) + w&l) + w&l) + O(1). (4.10) 

If  particle 4 returns to the binary, then from Eqs. (4.X), (4.9b), and (4.10) we 
find that 

or 

m2(.U2(t*) - zJn(tl)) = -7n,(zJ,(t*) + zqtl)) + O(1) 

mz,/m, = -1 + O(l/(v,(t”) + v&l))) < 0. 

This contradiction means that particle 3 must return to the binary. According 
to Eqs. (4.8), (4.9a), (4. IO), we have 

m,(w,(t”) + zp)) = m&l~(tl) - aa( + O(1) 

or 

% 
w&l) - z@) 

-zzz 

m4 1+ O ( zgt*) :  w&l) w&l) + Z’&“) + z$ ) 1 .  

(4.11) 

This means ma < m4 . 
Notice that the above argument combined with Eqs. (3.9), (3.10) show that R(t) 

is equal to a monotonically increasing function plus terms O@r,) during this 
transit time. Eq, 4.2 follows from a similar center of mass argument using the 
fact that the singleton must catch the binary. 

5. THE 2-2 CONFIGURATION 

Sharper estimates are needed on the behavior of particle 3 relative to particle 4 
during the time interval when a 2-2 configuration is being formed. The basic idea 
is to approximate this behavior by a two-body Kepler motion. If  r8a = r3 - rd , 
then the goal is to estimate the normal component of vz4 during the period of 
time that particle 3 is commuting to particle 4. The way we do this is to find a 
bound on the magnitude of cJ3 = rqS x vaa . 
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The equations of motion for r, are 

Since rIj = rzj + O(r,,), for r$(l + O(Y~~/T~~)) forj = 3, 4, the right-hand side 
of the above equation becomes 

But r3 - rB = rz3 = r2$ + r= . 
so 

y23 = r2* 
( 
‘1 - 2f24’ + ($)2)1~27 

2.2 24 

Therefore, 

. . 
r43 = 

- M3,r4, w*43 
y3 ---$--I- r42r; r34 0 (( ?j’” ) -t- (y?),. (5.1) 

43 24 

Let t* denote the time when particle 3 is halfway between the binary and 
particle 4, and let t* + At be the value of time when particle 3 is halfway on the 
return trip to the binary. 

The angular momentum is given by 

C 43 = rm x r43. (5.2) 

So, from Eq. (5.1) it follows that 

e43 = r,, x F43 = ((r43 x r&Q O(r43/r,4) = W-l(P)). 

That is, 

AC,, = O(dtpqt*)). (5.3) 
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The next important element is the eccentricity, where we follow Pollard 
[6, Chap. l] and define vector e, as 

~34((r43/r43) + e43) = VU x cg3 - 

It follows from [6, p. 351 that &,a = ~O(l/p(t*)), or 

(5.4) 

de4, = cq30(At/R2(t*)). (5.5) 

We now show that c43 is bounded above by constant D where 

D = (lO(] cos 80” 1-r + 1)/M34)1/s. 

Assume this statement is false. It follows from Eq. (5.4) that 

JI34k43(1 + e4, cosf)) = r4, - v43 x c43 = r4, x v43 - c43 = CL, 

where f is the angle between vectors eG and r, . 

so, 

r43 = ci3Af&‘/( 1 + e4, cos f ). (5.6) 

Since c43 remains essentially a constant (Eq; (5.3) and the assumption c.r3 
exceeds D), r43 attains its minimum value near the time when 1 + e34 cos f 
attains its maximum value. But rs4 must be less than unity at some time t’, 
which implies that 

e,,(P) > c~,M;~~ - 1. 

Consequently, from Eq. (5.5), and by assuming t* is close enough to t, so that 

1 de, 1 < (5M,,)+,, , we have 

taco > c;~AJI~’ - 1 - (5M3,)-r c43 > j @OS 80” 1. 

This in turn means that the domain off is contained in [-loo’, 100°] (this 
follows from the condition 1 ;t e,, cos f > 0) which means that particle 3 
cannot return to a neighborhood of the binary provided vector eG3/eG remains 
essentially the same in the time interval (t*, t* + At). But 

d e -“3= e43ei3 - (e43 - C43> e43 = (ee3 x b3) x e43 
dt e43 63 e3 - 

Therefore, I(44(e431e,3)l G I e43/eQ I. 
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However, it follows from Eqs. (5.4) and (5.1) that 

fi14,r, n/f,,%, = F, x c43 + v43 x e43 + 3 
l’43 

x c43 

= v43 x c,, + 0 (Fj 

_ v43 x (r43 :: r4J 
p;4 

+0(F) 
_ 

=o(~)+o(+-) 

=o(+j+q~). 

Thus, 

and 

42 = 0 (-&dt) + 0 (J1:o=“*+“tpj. 

The first term on the right can be made arbitrarily small by choosing t* 
sufficiently close to t, . 

To eliminate the second term, notice that 

h:: = O(v3(t*)) = O(i;,>. 

A simple energy argument using I&‘, and Eq. (4.7) and the fact that particle 3 

must return to a neighborhood of the binary 1, 2, shows that if after close 
approach r3,r > 1, then particle 3 returns to some neighborhood of the binary- 
This means ra4 > C,, . 

so, 

= 0 ((&JZ + (g&y),,) = O ( Rli.&*) )- 
This can be made arbitrarily small by choosing t* sufficiently close to t, . 

Consequently, cA3 f  D, and de,, = 0(4t,/IP(t*)), That is, the value of e4a 
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cannot vary by much in this time interval. We now compute a bound for the 
value of e,, . 

The motion is described by r4a = c&M&‘/(1 + eU cosf), where f = 0 
corresponds to the closest approach between the particles. At time t*, f = 
-n + Q and at time t* + dt, f = z- - Q . This means that 1 f  e,, cosf 
does not vanish in this domain, or that 

0 < 1 - e4s cos 7ji = 1 - e,,(l - 7$ + O(yiQ)). 

That is, 

0 < e43 < 1 + qi2 + O(77i4) = 1 + W/&t*))“). (5.7) 

(The motion of rs is close to a straight line, and it must approach the binary 
within distance unity. Thus Q = O(R-l(t*)).) 

Squaring both sides of Eq. (5.4) yields 

v;3c;3 = Mi,( 1 + 2e43 . (r43/r43) + ei3> < A’. 

Therefore, 

(5.8) 

An immediate consequence is that at closest approach 

Of greater interest to us is the fact that the normal component of v,, , denoted by 
v: , is bounded by 

Consequently, in the period of time from t* until r43 = 1, 

I $3 I = W/v43(t*N (5-9) 

&d the path of particle 3 can stray from the line determined by r4a(t*) and 
v,,(t*) by at most O(At/zv43(t*)). 

We now determine the behavior of the other particles. The angular momentum 

integral can be rewritten as 

c = t mi(ri - C,,) X (vi - f&) + : mi(r, - C,) x (vi - C&) 
i=l i=l 

+ M&z x f%, + &,C,, x (234 . 

The first summation is a multiple of rra x vr? , which is bounded above by 
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0($-j (& < 0 and Y 1% = r; see the proof of Lemma 4.1). The second summation 
is a multiple of cqa . Defining h as the vector from the center of mass of particles 

1, 2 to the center of mass of particles 3, 4, h = C,, - C,, , and using the fact 
that M&,, = -M&a, , it follows that 

c = BX x A + O(l/n,,(t”)). (5.10) 

This means for nonzero c, that 

where B is some constant (clearly not the same as above). 
The next step is to relate k(t*) to the line defined by r,,(P) and v,, . This will 

be done in Section 7. 
We conclude this section by pointing out that since Q is bounded above by a 

multiple of R-l(t*), we have c& = 0(1/R”(P) v&(t*)). 

6. THE 3-l CONFIGURATION 

The dynamics of a 3-l configuration need to be examined in order to under- 

stand the behavior of a particle returning to the binary after passing a singleton, 
or the behavior of 3-l configurations evolving into a second 3-l configuration by 
the ejection of a binary. In either case, we will assume the binary consists of 
particles 1 and 2, and particle 3 is either approaching or leaving binary 1, 2. Let 
ai be the position of the ith particle, i = 1, 2, and p the position of particle 3 
relative to the center of mass of the binary. Therefore f?zlal + “z2a, = 0 and 
a, - a, = r,, . 

The equations of motion for p are 

Since (p - a>2 = p” - 2a . p + $, and since 

IP-~~-~=P i 
-3jl -3 -2a.p 

2 ( P2 
+ if)') + 0 ((+E + j;)')')[ 

we have 

The main difficulty in the study of the dynamics of a 3-1 configuration is to 
determine a lower bound on p which will permit the motion of p to be 
approximated by a solution for the two-body problem. Even when we know it 
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can be approximated in this fashion, we are mainly concerned with estimating 
how close the motion must be to a straight line. For our purposes it suffices 
to show that 

Cl23 = g,r x + + g2p x (5 = o(Ypy, (6.2) 

where g, = m,m,/(m, + ma), g, = nz,(nz, + ~zJ/Mraa, rm is some local maximum 
for Y during the considered time interval, and E > 0. Notice that &a = O(p/P), 
so dc,,, can be made arbitrarily small. 

By using an argument similar to the one preceding Eq. (4.3), and by using 
Eqs. (3.1) and (4.7) it follows that h, = $~,zJ,~ - (mrm&r,J is positive, it 
differs by only a small amount from &IZ,V,~, and it remains essentially a constant 
until another particle approaches particle 4. Thus 

remains essentially equal to the constant (-.BzJ~~). A center of mass argument of 

the type found in Section 4 (Eqs. (4.8), (4.9)) d emonstrates that / 6 1 is essentially 
a positive multiple of v4 , where the multiple is bounded by a positive constant 
depending on other constants of the system. (If it is a binary which is returning 
to particle 3, then a slight modification of the argument is needed.) The argument 
following Eq. (4.6) shows that lz,, = -Avq2, and Ah:/,2 = O(7At) over any time 
interval such that particle 3 is bounded away from the binary by unity. 

Define Y* = 1O-2M,2 ( k,, j-l, where h&t) is evaluated at the time when 
p = R/2. It is clear from the representation for hi, and Lemma 2.1 that 

r(t) < &lJ” (6.3) 

and j i( > A,r” at least until p(t) = 1. Near the end of this section we shall 
establish the existence of several values of time t such that r(t) > Y* where t is in 

the time interval defined by particle 3 commuting to the binary. 
We shall show for E > 0 that as long as p(t) > 4,(~*)l-~, then a solution for 

the two-body problem approximates the behavior of p(t). At the same time, we 
show that the dynamics of the 3-l configuration demand that p violates this 
inequality. We obtain both results by assuming that throughout the total 3-l 
configuration dynamics, this inequality is satisfied by p(t). To accomplish these 
goals it will be shown that the elements of the orbit remain essentially constant as 
long as this inequality is satisfied. However, the techniques of the preceding 
sections are too crude to obtain these facts. What we need is a sharper estimate 
on the time intervals. 

To this end, define tel as the first time since particle 3 left a neighborhood of 
particle 4 that p(t) = A, . Let tr = min{t 1 t > t-r , p(t) = 2AJ. The value tr 
.exists since some particle must approach a neighborhood of particle 4. (If this is 
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particle 3, then tl is the exit time.) Define k* to be the first integer such that 

F7’* < E. Let 

and 

t-, = min(t ] t > t-, , p(t) = /11(r*)1-2-“j 

t, = min(t 1 t > t-, , p(t) = 2$,(r*)“-s-“}. 

where k = 1, 2,..., R*. Finally, define t, = max{t / t < t, , p(t) = A, + 1). 
Not all of these values of time need exist. However, for those that do, as long as 

(Al) r(t) < &r*, (A2) / i(t)* j > Ag*lO-“, and (A3) the two-body approxi- 
mation for p remains valid, then 

t, - t-% and t-(rtl) - t-, = O(r*r-z-‘r*r!x) 

= Op.*'"!"'-2-7, 

and t, - t, = O(r*rp). 
Our approach will be the following. We shall assume that the assumptions 

A,, A,, A, remain valid until time t*. By computing the elements of the orbit 
p and of the orbit for rn , it will follow that t* > t+r . (It is obvious that t* > tels) 

We commence with an analysis of p. Let cs = p x b, and M&p-r + ea) = 
p x c, . It follows that 

and 

rcif,2,(e3” + 2e, * pp-1 + 1) = 1 6 1’2 c3* 

p = ~~~fM&l + es cosf)-“. 

(6.5) 

So, if es and cs remain essentially constant, then the first of these equations 
provides an estimate for 1 6 1, and the second allows an estimate on the closeness 
of the approach with the binary 1,2. 

Let t, = min(t*, tl). Since k, = p x i = 0(+-s), it follows that on the time 
interval [ts , t,J, 

AC3 = O(l) C (r2/(r*1-2-k)3) 1"C3/2)-21-" 

k=l 

Since ~(1 + es) > css (from Eq. (6.5)), we have 

fT3 = c30(r2p4) = (1 + e3)1~O(r2p-7P), 
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or (d/&)(1 + Q/z = O(rzp-7/2). Therefore, 

A(1 + e3)li2 = O(I) C {r2/y*1--2-7c)7/2) y*(3/2)-21-k 

k=l (6.7) 
= 0(7~+3(2)-(~+~*) 

> on the interval [ts , t.J. 

The next estimate will be for O(e,e$), where the equation [(d/dt)(ese;l)l = 
O(l C, [ e;‘) will be used. But 

65, = 6 x c, + O(c&-4) 
= O(l b 1 7”~~“) + O(r2p-7/2(1 + e,)lp) 

= 0(73~p--3) + o(r2/?-‘~a(l + e,)@). 

Since e3 remains close to a constant value (Eq. (6.7)) and since p was arbitrarily 
large before it approached the binary (R ---f co), it follows from the second of 

Eqs. (6.5) that e, > 3/4. Thus 

or 

(d/dt)(e,eTl) = O(r3’2p-3e,1) + O(72p-7’2e;1’2) 

= O(y+,--3) + 0(+79, 

d(e,e;l) = O(Y*~-~*) during the time interval [ts , tnJ. (6.8) 

In summary, Eqs. (6.6), (6.8) show that the elements of the orbit for ,o remain 
essentially the same during passage of particle 3 from particle 4 to p(t) = 
,&(~*)l-~, prooided condition A, remains satisfied. The verification of this is the 
goal of the following perturbation analysis. 

The equations of motion for r = rrs are given in Eq. (4.6), and they are 

i: = (-&212r/r") + O(rp-3). 

Defining clz = r x v, we have that 

k12 = r X i: = r X O(rp-s) = O(r2p”), 

from which it follows that 

/j(.,, = o(7*w2)+2-~*) on the time interval [ts , t,]. (6.9) 

Using Lemma 2.1, it follows that cl2 = O(rl”). Therefore, (d/dt) e,, = 
c120(7p4) = O(73/2p3), or 

de,, = O(r*2-““) (6.10) 

where A&(r,,r-l + e,,) = +I2 + cl2 . 
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Defining h,, = &i$, - M,,+, we have 

R,, = +,, . (F,, + f%2r,,r-3) = O(rVp-“) = O(+pp-3). 

Thus, on the interval [& , tm], 

From the above, we have that Ain = -AV,8 = c/r*. This means that in the 

time interval [t, , tm], 

A,, = (1 + O(I)) k,(t-l), (6.11) 

which in turn implies that 

0 < +vv’ = lz,, + (M12/P-), (6.12) 

or that 2r < My,/1 lz&tJj. Thus, condition A, is satisfied and it now follows that 
tp, = tl . Furthermore, it follows that as long as p(t) >, dl(~+)l-EI the motion of 
r is closely approximated by that of a two-body elliptic motion. It foilows from 
the two-body theory that the semimajor axis of this ellipse is $iV1, 1 ?zra 1-1, and 
the period of the motion is 2~(10)32-3/21c~~~(~~)3/.2. Thus it follows for any time 
interval of length A(v*)~/~ intersecting the time interval whereby p(t) > A(r*)r--~ 

that there exist values of time whereby r(t) > T*. 
In summary, as Iong ,as p > Ar(~*)l-~, both the motion of p and r can be 

approximated by two-body motions. This, in turn, implies that should this 
inequality be satisfied throughout the whole 3-l configuration encounter, then 
it is the particle (or particles) which left a neighborhood of particle 4 which 
returns to a neighborhood of it. By using arguments similar to those used in 
Section 5 and using Eq. (6.Q this provides an estimate for css and es , namel.y, 
c32 = O(r*), which in turn implies that p = O(T*) at close approach. This 

violates our basic assumption, thus either the two-body approximations do not 
suffice to handle the 3-1 encounter, or there exists some time such that 

p = o((r*)y (6.13) 

for any choice of E > 0. In either case, Eq. (6.13) is satisfied for some value of 
time, and at this time 

cl23 = glr x-v -t g2 p x 6 = o(+“) + o((l-*)I-’ v) 

E o((y*)l-). 
(6.14) 

It remains to show that this value for c1s3 persists in a time interval covering the 
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flight of particle 3 from distance p = R/2 until some other particle is halfway on 
the return trip to particle 4. So, according to the definitions of the terms, 

3 

c = C mi(ri - C,,,) x (vi - Clz3) + Mp,,C,,, x l& + m,r, x v, 
i=l (6.15) 

= L4c,,, + Br, x v, , 

where we have used the fact Mr,,C,,, = -m8r’4 . Thus 

A&,, = -B $ (ra x v~) = -Br, x F4 = -B c 3 mjr4 X rf 

j=l 
rij . 

In the period of time when the perimeter of the triangle defined by the three 
particles 1, 2, and 3 is O(r *1--4) we have rj = -Ar, + O(Y*~-$ so r4 x rj = 

O(RR2 sin 0,) = 0(R2r*1-ER-2), or cr2s = O(T*~-~R-~), where 0,$ is the angle 
defined by r, and rj . Thus in this period of time &a, = O(r*l-E). 

Consider now the time period when p is between 3R/4 and ar(r*)r+. It was 
shown above that a two-body approximation for the motion of p holds during 
this time span. At t = t-,, , c3 = O(F*~~-,), and the change in c3 in the time 
interval [ts , t-&*1 is at most O((r*)1/2+2 -“). Let t,,-, be the first time whereby 

3R/4 3 p > -4, + 1. During this time interval, Cs = O(r2) + O(R-2) = O(Re2). 
Consequently, dc, = O(R-“(t, - tnl,-J). Since (ts - tm,-l) F O(R/a,), it follows 
from Eq. (6.1) that dc, = O(Y*~/~). 

Some particle or particles must leave the 3-body configuration to approach 
particle 4. If  it is either the binary 1, 2 or particle 3, then we continue our 
analysis with p. I f  it is some other particle or binary, then we define a new 
variable p* as the position from the center of mass of the binary to the remaining 
particle. In any case, a definition for t, holds and a similar argument shows that 
p* x b* = O(r*l/&--E), at least until p*(t) = 3R(t)/4. (Since some particle must 
approach particle 4 which is escaping with velocity > A+*)-lp, and since 

1 b* j > Ar*-1/2, it follows that this bound can be made sharper. We shall 
return to this point in a later section). In any case, we have that cs = O(r*rp+), 
whether we are describing ejection from or approach to a three-body configura- 
tion, i.e., a 3-l configuration. Thus c1a3 = O(~*)lp-~) in the period whereby 
3R(t)/4 > p(t)l+, until 3R(t)/4 = p*(t). 

7. THE TRNSITION ORBIT 

We are now prepared to piece together the various estimates of the 
orbit to describe the motion of the particle or particles in transit from one 
configuration to another, whether it be from a 3-1 to a 2-2, or to another 3-l 
configuration. Let p describe the motion of particle 3 from the binary 1, 2. 
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Since c3 = O(r *l/aeE), the normal component of 6, which is designated by 

PN, can be computed: 

fp 1 0(,*1/2-y-l). 

This means for the time interval defined by 1 < p < 3R(t)/4, we have 

(7.1) 

dp, = o(r*+-E At). (7.2) 

That is, p differs from the line defined by 6 by at most O(rk1ls--E At). (Or, 
p x 6 / (5 j--l = o(r+-c j 6 I-‘). 

In the epoch commencing with p(t) = R(t)/2, the description of the motion is 
most easily achieved by introducing a new vector --A which describes the 
behavior of the commuting particle(s) with respect to particle 4. If  particle 3 is 

approaching particle 4, then let h be the vector r4 - ra . Similarly, should it be 
the binary which is commuting to particle 4, then let A be the vector from the 
center of mass of the binary to particle 4. In either case it follows from the 

developed theory in Sections 5 and 6 that A x X = O(F*~/%-~) and 

iN = O(r*l12-~;\-l), (7 1\ .J/ 

These estimates imply that the motion becomes extremely close to a straight 
line collinear behavior as t -+ t, . Indeed, the value of b(tr), where tr is such that 
p(tr) = 1, defines the line. In fact it is easily seen that +, differs from this 
direction by at most O(c/R) + O(T*‘+~). We shall indicate why this is so for 
the case where particle 3 commutes to particle 4; the remaining possibility of the 
binary doing the traveling is handled in the same fashion. 

Let t, be when p(ts) = (~*)l-~ and t, be when A(t,) = (~,*)r-~ where r* is in 

terms of ( b(t)]-” for some time during the time period when R(t)/2 > p > 1. 
Now, since C ??ziri = 0, we have C,,, = --m,M&r, . Using the estimate 
C,, = Cr,, + O((r*)l-‘) at t = t, , it follows that 

C&2) = -m&-&J + ottr*)7--E). (7.4) 

Likewise, at time ta , 

C12(t3) = -M&f~‘r, + O((r*)l+). 

But, for t > tl , C,N, = O(c/R). Also, 

C,, = Cm - -M&J = A!&;(--m,r, - WZ,~), 
or 

Combining these estimates and the two-body approximation for p and h shows 
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that krs and f, differ from the line defined by b(t,) by at most 0(&-r) + 

w >a 
*1/p--E 

Should c = 0, then in the adopted coordinate system, the velocity of r4 
differs from this line by at most terms of the order O(r*1/2--E). However, if 
c # 0, this same error term applies only in the direction out of the invariable 
plane. Notice from Eq. (6.15) that r4 x k, = AC + O(r*r/e*). The above 
estimate for v4 shows that v,dvdt = O(cr*lp). A standard vector analysis 
argument now shows that the components of r4 and v4 orthogonal to the plane 
defined by c and the center of mass are of order 0(~*r+~R-~). 

All of this means that r;” = 0(&-r At) = O(,*rp). 

8. COMPLETION OF THE PROOF 

Before completing the proof, the basic idea will be outlined. The goal is to use 
the estimates to determine the measure of the set of initial conditions which could 
lead to this motion. Fixing thecenterof mass at the origin, phasespace is 18 dimen- 
sional. During the transition to a 3-1 configuration, the binary occupies (TV)” 
units of measure. At apicenter, r > r*, so this can be expressed as A(~3/f. 
The velocity of the commuting particles, when they are still, say, 1Oro units 
away, defines the line which approximates this motion. Taking all possible 
directions into account plus the velocity of i yields a region of measure ] (; I3 = 
A(#-3/P. The position vector fares much better having magnitude lOlo but 

differing from the line by no more than A(Y*)~-~ units. Finally the velocity of the 
last particle differs from the line by almost BR-I, and the position is bounded 
by AR, but differs from the line by O(r*ljz). Thus, in total, the particles are 
restricted to a region of measure 

a term which is small for small Y*. 
The value of r* changes with each exchange. In the proof which follows I,* is 

approximated by 2-2a for some choice of 0~. The value of R is approximated by 
2s. The main difficulty is to select the partition points spaced sufficiently close 
together so that all of this motion, particularly the behavior of the binary, is 
captured at a partition point. 

We now complete the proof of the theorem. Let NC([n, a + 11) denote the 
set of initial conditions for which the corresponding solutions satisfy the following 
constraints. 

(i) The center of mass is fixed at 0 for all t. 

(ii) Corresponding to p E lVC([n, ?z + 11) is a t* E [n, n + I] with the 
property that the solution evolving from p exists on [0, t*), but it suffers a 
noncollision singularity at t = t*. 
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We shall demonstrate that this set is of Lebesgue measure zero. Once this is 
shown, the proof of Theorem 2 follows since the initial conditions for a non- 
collision singularity lie in one of these sets for some integer n. 

In proving this statement, the three-dimensional case will be handled first. 
Then the necessary modifications to prove the assertion for the planar case will 
be given. Furthermore, restrict attention to those initial conditions for which the 

center of mass is fixed at 0. 
Let a be a positive integer. Divide the time interval [zz - l/2, n + 3/2] into 

2aT5 parts. 
Starting at each of the resulting partition points, add ~2s~ addition partition 

points which are located distance 1/2~(2~z~)~~~(5~2~~~(2~~) apart, where v  is some 
positive integer greater than (M/mo)5P. This defines 1 + y2z02a+6 = /3 partition 

points (t,jfZl , t, = a - l/2, ts = n + 3/2. 
For each t., define DLy(tY) to be the set of points in phase space satisfying the 

following constraints for some permutation of the indices I, 2, 3, 4, given as 

(C .i, k Q 

(1) Viewing the point as an initial condition at time t, , the solution 
exists on the time interval [0, t,] (or [a , 01, whichever applies. For simplicity 
assume f  > 0.) 

(2) For some choice of the indices, say A and I, j r,z(t,,)j < IlJ3rzz;“2-a~+10 
and \ +&jj < 2EYf10. 

(3) Let p be the vector from the center of mass of the binary defined by 

particles k and I to particle j. Vector i(t,) and the center of mass of the binary 
defines a line 0. We require 

(4 d4J B 10 lo; the normal component of p(t,) with respect to 0 is 
bounded by 105(2-aa)1-o~oa1; 

(b) / i&l < Za; 

(c) for the remaining index i, ZQ < 2”, and the normal component of 6, 

with respect to 0 is bounded by unity. Furthermore ri < 2”, but the normal 
component of ri with respect to 0 is bounded by (2-2)1-o.oo1. 

From 1 and the continuity of solutions with respect to initial conditions, 
it follows that set P(t,,) is measurable and that it has is-dimensional measure 
E’(2-yo.00” where E’ is some positive constant depending on the masses. 

Let P[zz - l/2, n + 3/2] be the set of initial conditions such that the solution 
will be in (J~=r P(t,,). By condition 1, O”[n - l/2, n f  3/2] is measurable. 
Since the system is measure preserving, the measure of Z?fzz - l/2, zz + 3/2] is 
bounded by p’(‘p)~-0.006 = ~‘(2-a)3-o.oo~. 

Let D[n - l/2, n + 3/2] = lim sup P[zz - 112, n + 3/2]. Since D[zz - l/2, 
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n + 3/2] C uzzN W[n - l/2, n + 3121, the measure of this set is bounded 
above by 

E" f (243-0.006' )a < 2E" 2-'3-0.006'N 

a=N 

for arbitrary N > 1. Thus, the measure of D[n - l/2, n + 3/2] is equal to zero. 
By construction of sets Doi( it is clear that p E NC([n, 12 + I] implies that 

p E D”[n - l/2, n + 3121 f  or an infinite number of choices of 01. Indeed, whenever 
a 3-l configuration is being either formed or desolved, and this must occur 
infinitely often, there is some choice of 01 such that 1 b(t)I. 6 2~. This in turn 

defines a bound for the term r* in terms of O(2-2u), and all the estimates in 
condition three hold during the transition from, or to, a 3-1 configuration. 
A partition point can be found during this transition period since the partition 
points tY are close enough together so that p can commute a distance of less than 
unity between successive points. The only problem is to satisfy the velocity 
constraint in condition 2. But since the orbit of rkl is elliptical, since the second 
type of partition points divide the period of this orbit into lo3 equal parts, it 

follows that a partition point can be selected during the transition of particle j 
such that I;.~ is near a local maximum, and rja is bounded below by some constant 
multiple of 2-2~. That the velocity constraint in condition 2 holds at such a 
partition point now follows from Lemma 2.1. 

All this shows that NC([n, n + 11) C D[H - l/2, n + 3/2], which implies it 
is of measure zero. This completes the proof for the three-dimensional problem. 

To handle the planar problem, we make the following modifications. Divide 

the interval [YZ - l/2, n + 3/12] into the B partition points as described above. 
For each partition point and positive integers E, 8 < a define P”(ty , E) 

to be the set of points in phase space which satisfy the following constraints. 

(1) Constraint 1 is the same except that we require, in addition, that the 
angular momentum of the system is bounded in magnitude by E. 

(2) There are no changes in constraints 2 to 3b. Constraint 3c is changed 
to require the normal component of +‘i with respect to B to be bounded by 
1020E(M,h,)32-6 and ri < 2”. The remaining constraints are the same. 

This set is clearly measurable, and its measure is bounded by E’(2-“)“-0.0°2. 
Set W”([n - l/2, z + 3/2], E) is defined to be the set of initial conditions 

leading to U LW(t,, , E). This set is measurable and its measure is bounded by 
E”(2-9l4002. Define set O([n - l/2, n + 3/2], E) to be the 

lim sup fi PJ([n - 112, n.+ 3/2], E),. ) 
ci+a, 6=1 I 
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For any choice of N, the measure of this new set is bounded above by 

f~~E”(2-a)1-D~O”z = E”fN~(2-1+0.0”“). < 1~~(2-1+0.002yv~ 

Since this holds for any N, the measure of D([?z - l/2, rz + 3/2], E) is equal to 
zero. 

Let D([n - l/2, n + 3/2]) = (Jz=r D([n - l/2, n + 3/2], E). Clearly, the 
measure of D([n - l/2, ~z + 3/2]) is zero. 

The argument that NC([n, fz + 11) C D([n - l/2, n + 3121) is similar. The 
only changes are due to the 2” term which corresponds to bounds in terms of R. 

(Since R < [ 6 /, we have 6 < a.) 
The proof for initial conditions restricted to a fixed angular momentum 

surface is similar. While we do not supply any details, we shall outline some of 
the differences. There are two approaches. One is to reduce the order of the 
system of differential equations by eliminating the node, as done in [14]; and 
then using the above estimates in the new variables. A second approach would be 
to compute the invariant measure on these angular momentum surfaces. (See, 

for example, [l, pp. 101-1031). 
I f  c f  0, a reduction in the order of the terms results from the fact that B 

can be selected to be on the invariable plane, that is, the plane orthogonal to c, 
This reduction in the degrees of freedom of 6 helps when computing what 
corresponds to Ds(tY , E). Here the estimates on how fast the motion is 
approaching the invariable plane help out. I f  c = 0, the extra degree of freedom 
in the choice of 0, which enlarges the size of DRsd(t,, , E), is compensated for by a 
sharper estimate for the normal component of r4 with respect to 6’. 

9. COMMENTS 

In this section we use some of the lemmas to point out some additional 
properties of noncoltision singularities. The first follows from Lemma 4.1. 

THEOBBM 3. There exist ratios of the mas$es for dzick cmtain. types of non- 
collision singularities cannot occur. I?z particular, unless one mass is muclz smaZler 
than the others, tlze 2-2 conjigzuation camzot OCCUY infirzitely eftm. 

It is a simple center of mass argument to show that certain mass ratios are 
inconsistent with this type of motion. Sharper mass estimates result by 
determining how fast the commuting particle(s) must travel to overtake their 
target. 

While this fact follows from a center of mass argument, reasonably strong 
results should follow from a careful velocity analysis. (For example, see 
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Eq. (4.11)). Although this is clearly a problem of interest, we have not investigated 
it beyond the above comments. 

A combination of the crude arguments of Section 2 with the analysis used in 
the Mather-McGehee [2] existence theorem, shows that all collinear non- 

collision singularities (actually, limit points of binary collisions) are caused by a 
mechanism similar to the one they employed. Namely, if there is a collinear 
noncollision singularity, then the initial condition leading to this behavior does 
not belong in any triple-collision manifold, but it is in the closure of some 
triple-collision manifold. (Indeed, the same holds for motion such that R/t -+ co; 
see [3, 121.) This means there exist values of masses such that some triple 
collision manifold is immersed in phase space, while there are other mass ratios 

such that these manifolds are embedded. 
One might hope that a similar argument employing “almost triple collisions” 

could be used to establish the existence of noncollision singularities in the 
four-body problem. This leads to problems in the values of the angular momen- 
tum. First of all, in order that the particles “almost” suffer a triple collision, it is 

necessary that I$&,, be sufficiently small, for otherwise one particle will be 
bounded away from:the binary (see [4]). S econdly, a perturbation analysis shows 
that cs and q, must decrease in value with an infinite number of the 3-l con- 
figuration passes. Since clzs remains essentially a constant during a pass, this is 
only possible should one orbit, say r, be direct and the other, p, be retrograde, 
or should the elliptical orbit be “nearly” collisions. The first possibility also 
satisfies the condition concerning c2h. 

As it was mentioned earlier, noncollision singularities are equivalent to 
unbounded motion in fmite time. Lemma 2.1 provides a bound on how fast the 
system must become unbounded in physical space. 

THEOREM 4. FOP the four-body problem, if there is a noncollision singularity 
at t = to , then for any positive constant 01, 

1((t) > I@(& - t)-l as t + to . 

A similar statement can be found for arbitrary 12. 

Proof. From Lemma 2.1, we have r*R2 = O(t - tJz. Using the second part 
of inequalities (1.5) and Eq. (1.4), it follows that 1 3 A(t - to)-“, or that 
I > A In (to - t)-l. Using the first of inequalities (1.5), and Lemma 2.1, this 
estimate yields 1 > A In (to - t)-l(t - t,)-2. Continual integration and sub- 
stitution yields the stated result. 
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