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The importance of Weber-Maxwell electrodynamics in electrical
engineering

Steffen Kühn
steffen.kuehn@aurinovo.de

January 21, 2023
Weber-Maxwell electrodynamics combines classical Weber electrodynamics and Maxwell’s equations, including all four field

equations and the Lorentz force, into a single de facto equivalent three-dimensional wave equation. From classical Weber
electrodynamics, Weber-Maxwell electrodynamics inherits properties in which the concept of the magnetic field is unnecessary,
and Newton’s third law is satisfied under all circumstances. From Maxwell’s electrodynamics, Weber-Maxwell electrodynamics
inherits the ability to be compatible with electromagnetic waves. This article shows that in Weber-Maxwell electrodynamics, all
conservation laws are satisfied, and that electromagnetic waves in an isolated system do not possess energy and momentum, but only
mediate them between particles of matter. Furthermore, the article shows that the modern formulation of Weber electrodynamics
is clearly superior to standard electrodynamics in electrical engineering, because it not only eliminates the internal contradictions,
but also represents considerable simplification and compression.

Index Terms—Vector wave equation, Electromagnetic forces,
Electromagnetic propagation, Weber electrodynamics, Computa-
tional electromagnetics

I. Introduction

Weber electrodynamics is a theory of electromagnetism from
before the time when Maxwell’s equations and special rel-
ativity were developed; it dates back to the works of A.-
M. Ampère, W. Weber and C. F. Gauss in the middle
of the 19th century [1]–[3]. Weber electrodynamics is now
considered obsolete, although it has some remarkable and
highly attractive features that are absent in Lorentz-Einstein
electrodynamics.

The most important of these features is that, in Weber elec-
trodynamics, the concepts of the magnetic field1, are obsolete,
because Weber electrodynamics generalizes the electrostatic
Coulomb force to a velocity-dependent electrodynamic force.
A highly important and essential aspect of the Weber force is
that, despite this modification, it remains a central force that
satisfies Newton’s third law.

In contrast, the Liénard-Schwarzschild force [4, Eq. (26)],
which follows from the canonical application of Maxwell’s
equations and the Lorentz force for two point charges, vio-
lates Newton’s third law, even at non-relativistic velocities.
Consequently, at everyday speeds, a formal violation of the
law of conservation of momentum occurs. J. P. Wesley, for
instance, has addressed this subject [5]:

It should be remarked that a failure to obey Newton’s
third law is a very serious matter; as it implies
drastic consequences, such as the violation of the
conservation of energy, the ability to propel a space
craft using only forces internal to the space craft
itself, and the ability to lift oneself by one’s own
boot straps.

1magnetic flux density B, magnetic field strength H and Lorentz force

Later, J. P. Wesley showed that Lorentz-Einstein electro-
dynamics allows for absurd conclusions, even for standard
engineering problems. Slightly sarcastically, he writes:

Depending upon how one chooses portions 1 and 2,
one can obtain a nonvanishing force with any value
at all (within limits). Such a loop would be very
convenient to drive an automobile or propel a space
ship. One could obtain the desired magnitude of the
force without having to change anything physically;
one need only alter the mathematical labels.

Experienced electrical engineers know that Lorentz-Einstein
electrodynamics must be used with caution, and they instinc-
tively know the limits of the theory. However, from a scien-
tific point of view, this situation is unsatisfactory, especially
because Lorentz-Einstein electrodynamics repeatedly tempts
inexperienced practitioners to think about perpetual motion
machines or to research propulsion devices that violate the
conservation of momentum.

Physicists have also long studied the intrinsic contradictions
of Lorentz-Einstein electrodynamics. For example, the miss-
ing momentum has often been argued to be carried by the
radiation field [6]. However, good arguments in the literature
have shown that this explanation is not sufficient [7]–[9].
Furthermore, experiments have investigated these aspects and
demonstrated that, in the low energy domain, Weber elec-
trodynamics not only explains the behavior of nature in a
simpler and more satisfactory manner, but also provides better
predictions [10]–[14].

Unfortunately, Weber electrodynamics has two critical draw-
backs that severely limit its practical value in electrical en-
gineering and modern physics. One is the lack of connection
with Maxwell’s equations and the absence of a field concept,
thus disqualifying Weber electrodynamics from use in all fields
of electrical engineering involving electromagnetic waves and
their propagation. In addition, classical Weber electrodynamics
cannot be applied at relativistic velocities, thereby rendering it
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largely useless for particle physics, although it would actually
be predestined for work with point charges. In addition, its
value in atomic and plasma physics is low, although some
interesting approaches have been reported [15]–[18].

The two aforementioned drawbacks are substantial and are
clearly the reason why Weber electrodynamics, despite its ele-
gant concept and superior properties, never became accepted in
the low-energy domain and nearly fell into obscurity. However,
the first drawback exists only if Weber electrodynamics is
used in its original form from the middle of the 19th century,
i.e., before the introduction of Maxwell’s equations. Indeed,
Weber electrodynamics can also be generalized to Weber-
Maxwell electrodynamics and can be formulated as a field
theory in which Maxwell’s equations are compressed and
summarized into a single wave equation [19]. That this is
possible demonstrates that Weber electrodynamics is as closely
related to Maxwell’s equations, as is canonical Lorentz-
Einstein electrodynamics. Furthermore, the fusion of Weber
electrodynamics with Maxwell’s equations eliminates one of
the two fundamental disadvantages of Weber electrodynamics.

This article is primarily aimed at showing that the conservation
laws hold in Weber-Maxwell electrodynamics. In particular,
in Weber-Maxwell electrodynamics, the radiation field is
demonstrated to have neither energy nor momentum, and the
electromagnetic field serves only as a mediator. Why this
finding does not represent an experimental contradiction is
also explained.

In conclusion, Weber-Maxwell electrodynamics is shown to be
a theory that is clearly superior to standard electrodynamics
in the non-relativistic domain, because the concept of the
magnetic field is no longer necessary, and the conservation
laws are guaranteed to be valid even in the presence of
electromagnetic waves. Moreover, from a purely practical
point of view, Weber-Maxwell electrodynamics has consider-
able advantages because it allows engineering problems to be
solved quickly and easily through numerically integrating the
solutions for point charges or point antennas along arbitrary
conductor paths or antenna structures2. Therefore, Weber-
Maxwell electrodynamics possesses all the properties expected
of a good theory in electrical engineering.

II. Modern formulation ofWeber electrodynamics

In contrast to standard electrodynamics, Weber electrodynam-
ics is a theory describing the force between two moving
point charges. Terms such as current density, charge density,
and magnetic or electric field strength do not yet appear at
this level of abstraction. Instead, a formula is given for the
electromagnetic force between a force-emitting point charge
and a force-absorbing point charge. However, the original
formulation of Weber electrodynamics is not yet based on
a differential equation; consequently, only oscillations, but
no wave phenomena, can be represented by classical Weber
electrodynamics.

2With Lorentz-Einstein electrodynamics, this is not possible, because the
Liénard-Schwarzschild force does not represent a reasonable solution for the
electromagnetic field of the force of a point charge

However, classical Weber electrodynamics can be combined
with Maxwell’s equations and expressed with the wave equa-
tion [19]

□ F(r, t) = G(r + rds(t), ṙds(t)) (1)

with

G(s, u) := −
qd qs

ε0

(
∂

∂t
u

c2 γ(u) δ(s) + γ(u)∇ δ(s)
)
. (2)

and
Fds(t) = F(0, t). (3)

In words, the equations (1), (2) and (3) describe the relation
of the force Fds exerted by the point charge qs on another
point charge qd by expressing how the force depends on the
time-varying distance vector rds. The Lorentz factor is defined
as usual by:

γ(u) :=
1√

1 − u·uc2

. (4)

δ(s) is the Dirac delta function in three dimensions. The vector
rds represents the difference or distance vector of the two
trajectories rd and rs:

rds(t) := rd(t) − rs(t). (5)

The time derivative of the difference vector of the two trajecto-
ries is consequently the difference velocity or relative velocity:

ṙds(t) = ṙd(t) − ṙs(t). (6)

The general solution of the wave equation (1) is well-known
(e.g. [19, Eq. (33)]) and reads, since r is zero,

Fds(t) =
$

V

G (r′ + rds(t′), ṙds(t′))
4 π ∥r′∥

dr′, (7)

with
t′ := t −

∥r′∥
c
. (8)

Note that Fds(t) has no explicit dependence on the location
r, but can nevertheless represent a field. To understand this,
one needs to realize that an electromagnetic field represents
the force that a test charge qd would perceive if it were at the
corresponding location. The field in the conventional sense at
time t = 0 is therefore obtained, for example, by varying the
location rds(t = 0) := r0 and setting velocity ṙds(t = 0) := u to
a specific value. One can also plot such fields. In the following
we will make use of this option several times. Interpretatively
new and unfamiliar about Weber-Maxwell electrodynamics
is that the electromagnetic field is no longer thought of as
something that exists independently of the involved point
charges. Instead, each receiver perceives the same field in a
different way according to its relative velocity.

The wave equation (1) summarizes all four Maxwell equations
and the Lorentz force. In the form (1), it differs from the
wave equation of Lorentz-Einstein electrodynamics in the rest
frame of the receiver by only an additional Lorentz factor.
However, this factor has no effect on the time behavior of the
electromagnetic waves. The purpose of the additional Lorentz
factor is only to re-normalize the force such that the concept of
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the magnetic field becomes obsolete. Compared with canonical
electrodynamics, with its four-dimensional electromagnetic
field tensor, this equation represents an immense simplifica-
tion, which should not be underestimated.

From the wave equation (1), both of Einstein’s postulates are
clearly fulfilled, because the force Fds depends on only the
difference vector rds and the difference velocity ṙds. Both
are relative quantities, and the velocity of an observer does
not enter the wave equation. Consequently, the principle of
relativity is concluded to be satisfied, and the force has
exactly the same value in each inertial frame. Furthermore, the
d’Alembert operator shows that the force between the point
charges qs and qd propagates with velocity c independently of
their relative velocity ṙds.

For approximately uniformly moving point charges the wave
equation (1) has the solution [19, Eq. (54)]

Fds = FW (qd, qs, rds, ṙds) (9)

with

FW (qd, qs, r, u) :=
γ(u)2(

1 +
(
γ(u)

c
r·u
∥r∥

)2
) 3

2

Fc(qd, qs, r) (10)

where Fc is the Coulomb force

Fc(qd, qs, r) =
qd qs

4 π ε0

r
∥r∥3
. (11)

For ∥v∥ ≪ c, FW becomes the classical Weber force (27), as
will be shown below, and for ∥u∥ = 0, the Coulomb force is
obtained.

For illustration, Figure 1 shows the shape of the force for
rd(t) = r0 + u t and rs(t) = 0 at time t = 0. Therefore, rds(0) =
r0 and ṙds(0) = u. Figure 1 demonstrates that the force (9),
although it has no explicit dependence on the location r, is
nonetheless a field in terms of the parameter r0.

Figure 1 indicates furthermore that the force is elliptically
deformed but nevertheless remains a central force. Figure 2
shows the force component that results when the Coulomb
force is removed from the force in Figure 1. Because the
Coulomb force has no time dependence, the remainder is the
velocity-dependent part and hence the component correspond-
ing to the magnetic force in Weber electrodynamics. However,
splitting into magnetic and electric components is not usually
performed in Weber electrodynamics, because doing so is
unnecessary.

However, the wave equation (1) not only provides the clas-
sical Weber force as a solution but also enables analysis
of considerably more complex problems. In particular, the
electromagnetic field Fds of a point antenna, which may
also move with high relative velocity, can be calculated.
The calculated solutions are consistent with the solutions in
textbooks, provided that the point antenna and receiver are at
rest relative to each other. For a fast moving point antenna,
solutions are automatically obtained that clearly indicate that
the force between the point charges propagates at the speed

Fig. 1. The electromagnetic force of a point charge located at the coordinate
origin is shown from the perspective of a test charge moving with relative
velocity u = c/2 ex. As indicated, the force is elliptically deformed with respect
to the Coulomb force, but it is nonetheless a central force.

Fig. 2. The same situation as in Figure 1 is shown, but all force components
not depending on the velocity (Coulomb force) have been removed. The resid-
ual shown is the equivalent of the magnetic force in Weber electrodynamics.
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of light. The Lorentz transformation is not required. In a later
section, the field of the point antenna is discussed in more
detail.

As can easily be seen, the force (10) satisfies Newton’s third
law FW (qd, qs, r, u) = −FW (qs, qd,−r,−u), because when the
source and the receiver are swapped, the force only changes
its sign. It is very important that this aspect is true even in
general, i.e., when electromagnetic waves are present, or when
the two point charges are far from each other, so that the
finite propagation velocity of the force is relevant. This can
be proven by exchanging the source and recipient of the force
in the wave equation (1), because with aid of the relations
∇ δ(rds) = −∇ δ(rsd), δ(rds) = δ(rsd), γ(ṙds) = γ(ṙsd) and ṙds =

−ṙsd, it follows that

Fds = −Fsd. (12)

That Newton’s third law (12) is satisfied even in the pres-
ence of electromagnetic waves is highly important for the
validity of the conservation laws. In particular, it shows that
in Weber-Maxwell electrodynamics, electromagnetic waves
have no energy and no momentum, but mediate both. Thus,
Weber-Maxwell electrodynamics is strongly distinguished on
an interpretive basis from Lorentz-Einstein electrodynamics,
wherein energy and momentum must be assigned to the waves
themselves. From an experimental point of view, however, no
problem exists, because an electromagnetic wave can cause a
measurable change in energy and momentum at the receiver
in Weber-Maxwell electrodynamics. This is true even if the
wave might have traveled a very long distance. Importantly,
in Weber-Maxwell electrodynamics, the total energy and total
momentum of all particles in the universe are conserved
quantities without the electromagnetic field. However, if only
a small part of the system, consisting only of the receiver
and the incident electromagnetic wave without the transmitter,
is considered, one must of course also assign energy and
momentum to the wave, because the system without the
transmitter does not represent an isolated system.

III. Proof of the conservation laws

The following section formally proves that in Weber-Maxwell
electrodynamics in isolated systems, energy, momentum and
angular momentum are conserved quantities. This proof is
presented for several reasons. The first reason is to show that
J. C. Maxwell and H. Helmholtz [20, p. 396-397] were incor-
rect in their conjecture that Weber electrodynamics violates
the conservation of energy. The second reason is to clarify that
conservative forces may also depend on the relative velocity
and relative acceleration, and that the concept of potential
energy can easily be applied to such generalized conservative
forces. Finally, the requirements to guarantee compliance with
the conservation laws are identified. This aspect is important,
because whether and how Weber-Maxwell electrodynamics is
suitable for the relativistic domain, and how the formulas for
kinetic energy and momentum must be adapted are not yet
clear.

A. Potential energy in Weber electrodynamics

We start with the total energy E of a two-particle system:

E = Td + Ts + Uds, (13)

where Uds = Usd is the potential energy possessed by the point
charge qd in the field of the point charge qs. Ts and Td are
the kinetic energies

Td =
1
2

md ∥ṙd∥
2, Ts =

1
2

ms ∥ṙs∥
2 (14)

of the two point charges. Of note, for the kinetic energy, the
differential velocity ṙds is not used; instead, the velocities from
the perspective of a laboratory system are used. Consequently,
the kinetic energies as well as the total energy E usually have
different values in each frame of reference. This aspect is not a
property of Weber electrodynamics but is a basic characteristic
of Newtonian mechanics.

If the energy E is to be a conserved quantity, then the time
derivative of equation (13) must disappear. For this reason, we
insert equation (14) and calculate the derivative. In this way,
we obtain the following equation

Ė = md ṙd · r̈d + ms ṙs · r̈s + U̇ds = 0. (15)

A comparison with Newton’s second law

Fds = md r̈d, Fsd = ms r̈s (16)

shows that equation (15) is equivalent to

Fds · ṙd + Fsd · ṙs + U̇ds = 0. (17)

Because in Weber-Maxwell electrodynamics, Newton’s third
law (12) is always valid, it follows that

Fds · (ṙd − ṙs) + U̇ds = 0, (18)

which in turn can be rewritten as

Fds · ṙds + U̇ds = 0 (19)

because of the definition (5). This equation is fulfilled if the
relation

Fds = −
rds

rds · ṙds
U̇ds (20)

is valid, as can be easily verified by inserting it into equation
(19).

Therefore, the conservation of energy in the two-particle
system is guaranteed if the force (9) can be expressed with
equation (20) based on potential energy Uds. In fact, such a
formula exists:

Uds = UW (qd, qs, rds, ṙds) (21)

with

UW (qd, qs, r, u) :=
Uc(qd, qs, r)√
1 +

(
γ(u)

c
r·u
∥r∥

)2
(22)

where
Uc(qd, qs, r) :=

qd qs

4 π ε0

1
∥r∥

(23)
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is the potential energy of a point charge qd at rest in the field of
another resting point charge qs. Note that in Weber-Maxwell
electrodynamics, potential energy and the scalar potential must
be clearly distinguished.

That equation (21) together with equation (22) in fact provide
a valid definition of the potential energy can be verified
through substitution into equation (20) and calculation of the
derivative. This process gives the force

Fds =

(
κ + γ(ṙds)2

)
Fc(qd, qs, rds)(

1 +
(
γ(ṙds)

c
rds·ṙds
∥rds∥

)2
) 3

2

, (24)

with

κ :=
γ(ṙds)4

c4 (r̈ds · ṙds) (rds · ṙds) +
γ(ṙds)2

c2 r̈ds · rds (25)

which for r̈ds ≈ 0 corresponds to the solution (10) of the wave
equation for uniformly moving point charges.

Furthermore, the force (24) is for small relative velocities
∥ṙds∥ ≪ c equivalent to the Weber force (27). To provide
a demonstration, the substitution ṙds → v ṙds is performed,
and the resulting equation with respect to the auxiliary scalar
variable v is developed into a Taylor series of second order. If
v = 1 is set, the following is obtained

Fds = 1 +
1
c2

(
∥ṙds∥

2 −
3
2

( rds · ṙds

r

)2
+ rds · r̈ds

)
Fc +

1
c4 (. . .) Fc + O(∥ṙds∥)3.

(26)

Because the term with the factor 1/c4 can be neglected, this
corresponds exactly to the classical Weber formula, which in
vector notation reads

Fds =

1 − 3
2

(
rds · ṙds

∥rds∥ c

)2

+
∥ṙds∥

2

c2 +
rds · r̈ds

c2

 Fc. (27)

The previous derivations show that a potential energy (22) can
be defined for which, together with the kinetic energy (14) and
Newton’s second law (16), the law of conservation of energy
is satisfied. Furthermore, the potential energy (22) is clearly
compatible with classical Weber electrodynamics and the wave
equation (1) obtained from Maxwell’s equations. The latter is
not the case for alternative definitions of the potential energy
in Weber electrodynamics [21]. Moreover, the potential energy
(22), like the force (24), is recognized to be a purely relative
quantity that does not depend on the velocity of a uniformly
moving observer.

B. Conservation of energy

We now prove that in Weber-Maxwell electrodynamics, the
total energy is a conserved quantity even if the system consists
of n particles, where n may be arbitrarily large. To provide a
demonstration, we write the total energy E of the system as a
sum of all kinetic and potential energies:

E =
n∑

k=1

Tk +

n∑
k=1

n∑
i=k+1

Uki. (28)

The n equations of motion (16) are for k = 1, . . . , n
n∑

i=1

Fki = mk r̈k. (29)

We define the force Fii of the i-th particle on itself as zero
in order to avoid handling exceptions in the summation.
Multiplication by ṙk yields

n∑
i=1

Fki · ṙk = mk r̈k · ṙk. (30)

The time derivative of the kinetic energy of the k-th particle
is due to equation (14)

Ṫk = mk r̈k · rk, (31)

i.e., equation (30) can be rewritten as
n∑

i=1

Fki · ṙk = Ṫk. (32)

The sum of all n equations of motion gives
n∑

k=1

n∑
i=1

Fki · ṙk =

n∑
k=1

Ṫk. (33)

By formally manipulating the summation indices, we obtain

1
2

n∑
k=1

n∑
i=1

Fki · ṙk +
1
2

n∑
k=1

n∑
i=1

Fik · ṙi =

n∑
k=1

Ṫk. (34)

Because of Newton’s third law (12), Fik = −Fki applies. By
using this and the relation ṙki = ṙk − ṙi, equation (34) can be
simplified to

1
2

n∑
k=1

n∑
i=1

Fki · ṙki =

n∑
k=1

Ṫk. (35)

But because of equation (20), it follows that

Fki · ṙki = −U̇ki. (36)

This allows formula (35) to be written as
n∑

k=1

Ṫk +
1
2

n∑
k=1

n∑
i=1

U̇ki = 0. (37)

However, because of the symmetry of the potential energy
Uki = Uik, the equation

1
2

n∑
k=1

n∑
i=1

U̇ki =

n∑
k=1

n∑
i=k+1

U̇ki (38)

holds, and it follows that
n∑

k=1

Ṫk +

n∑
k=1

n∑
i=k+1

U̇ki = 0. (39)

However, this corresponds to the time derivative of the total
energy, as can be recognized by comparison with equation
(28). Clearly, Ė = 0 applies, thus indicating that the total
energy E is a conserved quantity.
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C. Conservation of momentum

For an isolated system of n point charges, the temporal change
in the momentum pk of the k-th point charge is equal to the
sum of all forces acting on this point particle. Therefore

ṗk =

n∑
i=1

Fki, (40)

provided that Fii := 0 is defined. The temporal change in the
total momentum p of the system is the sum of the temporal
momentum changes of all point particles. For this reason,

ṗ =
n∑

k=1

ṗk =

n∑
k=1

n∑
i=1

Fki. (41)

Again, Newton’s third law (12) is ensured to be valid under
all circumstances, and it follows that:

ṗ =
n∑

k=1

n∑
i=1

Fki = −

n∑
k=1

n∑
i=1

Fik. (42)

By formally renaming the summation indices, the following
is then obtained:

ṗ =
n∑

k=1

n∑
i=1

Fki = −

n∑
i=1

n∑
k=1

Fki = −

n∑
k=1

n∑
i=1

Fki, (43)

which can be true only if ṗ is exactly zero. Therefore, the total
momentum p must be a conserved quantity.

Furthermore, the sum of all forces acting on the matter
particles disappears in an isolated system. Consequently, elec-
tromagnetic waves themselves do not have any momentum.
Instead, momentum is a property that only particles of matter
can possess. The electromagnetic force, in contrast, is only the
mediator. Nevertheless, in a subsystem of an electromagnetic
wave and a receiver of the force without the source, the
electromagnetic wave seems to possess momentum, because
it causes a momentum change at the receiver. However, one
must not forget that in another location, the source of the wave
also simultaneously experiences a compensating momentum
change. Electromagnetic waves therefore have momentum
only in non-isolated systems.

D. Conservation of angular momentum

The conservation of angular momentum L can also be demon-
strated. The total angular momentum of a system of n point
charges is defined by

L :=
n∑

k=1

rk × pk. (44)

The derivative with respect to time yields

L̇ =
n∑

k=1

ṙk × pk +

n∑
k=1

rk × ṗk. (45)

Because the momentum pk is always parallel to the velocity
ṙk, it follows that ṙk × pk = 0. Thus, equation (45) becomes

L̇ =
n∑

k=1

rk × ṗk. (46)

Substituting equation (40) gives

L̇ =
n∑

k=1

rk ×

n∑
i=1

Fki =

n∑
k=1

n∑
i=1

rk × Fki. (47)

This can be further rewritten as

L̇ =
1
2

n∑
k=1

n∑
i=1

rk × Fki +
1
2

n∑
k=1

n∑
i=1

rk × Fki

=
1
2

n∑
k=1

n∑
i=1

rk × Fki +
1
2

n∑
k=1

n∑
i=1

ri × Fik.

(48)

Because of Newton’s third law (12), it follows that

L̇ =
1
2

n∑
k=1

n∑
i=1

rk × Fki −
1
2

n∑
k=1

n∑
i=1

ri × Fki, (49)

i.e.,

L̇ =
1
2

n∑
k=1

n∑
i=1

rki × Fki (50)

applies. However, the Weber force (10) is a central force, and
rki × Fki = 0 holds. Thus, we obtain

L̇ = 0. (51)

This shows that the total angular momentum of an isolated
system must also be a conserved quantity.

E. Necessary features of valid dynamics

The previous sections show which features are needed for
which steps in the proofs of the conservation laws. Of note,
Newton’s second law and the kinetic energy could also be
defined such that they would converge to the classical versions
for small relative velocities, on the one hand, and would
become compatible with the empirical results of high energy
physics, on the other hand. We must only ensure that the
presented proofs retain their validity. Therefore, certain con-
ditions must be met, which should therefore be identified and
summarized.

The following features are central to the proofs of the conser-
vation laws:

1) Newton’s third law (12): this property is necessary for
the proof of all three conservation laws.

2) The time derivative of the kinetic energy must be equal
to the scalar product of time derivative of momentum
and velocity: this property is needed in the step from
equation (15) to equation (17), i.e., to prove the conser-
vation of energy.

3) The momentum must be parallel to the velocity: this
is required in the proof of conservation of angular
momentum.

4) The force formula between two point charges must be
a central force: this is also needed in the proof of
conservation of angular momentum.

As becomes clear, the last two features are needed only in
the proof of the conservation of angular momentum. The
property 4) in Weber electrodynamics is satisfied only if
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the two point charges are so close to each other that the
finite propagation speed of the force is unimportant. The
conservation of angular momentum is therefore the weakest
of the three conservation laws. Conservation of momentum, in
contrast, is always guaranteed in every case in Weber-Maxwell
electrodynamics. Somewhat less clear is the conservation of
energy, because the possibility of defining a potential energy
is required.

Of note, a fourth conserved quantity exists in Newtonian
mechanics, which is referred to as the Runge-Lenz vector.
This conservation law is satisfied for only very simple force
laws, such as Coulomb’s law or Newton’s law of universal
gravitation. In fact, measurements show that the Runge-Lenz
vector is often not a conserved quantity in real physical
systems [22].

IV. Magnetism inWeber-Maxwell electrodynamics

Because this article is also intended for readers unfamiliar
with Weber electrodynamics, a brief discussion of the question
of why the concept of magnetism is obsolete in Weber
electrodynamics follows. We begin with a simple example and
consider an infinitely long straight wire on the x-axis. Let an
electric current I flow in this wire. Furthermore, somewhere
on the z-axis at z, let there be a point-like test charge q moving
with velocity u = vx ex + vy ey + vz ez.

In standard electrodynamics, an infinitely long wire in which
a current I flows is surrounded by a magnetic field B =
−
µ0

2 π z I ey. The force on the test charge q is obtained by using
the Lorentz force F = q E + q u × B. Because the wire is
electrically neutral, and therefore the electric field E vanishes,
the force is

F = −
µ0 q I
2 π z

u × ey. (52)

The same result can be obtained with Weber electrodynamics.
To provide a demonstration, we model the current I with
resting metal ions +e and an equal number of moving electrons
of charge −e, which move with an average drift velocity of
u = −u ex. Because the electrons drift to the left, the technical
direction of the current points to the right. The current strength
of the resulting current is I = e n u, where n represents the
number of moving electrons per meter of the conductor length.

In contrast to Lorentz-Einstein electrodynamics, magnetism in
Weber electrodynamics is not a fundamental force but is a
multi-particle effect, i.e., the net force of all individual forces
between the test charge q and the charge carriers inside the
wire. Expressed as an integral, the resulting force is

F =
+∞∫
−∞

FW (q, n (−e), z ez − s ex, u − u) ds +

+∞∫
−∞

FW (q, n (+e), z ez − s ex, u) ds,

(53)

where FW is the Weber force (10) in modern representation.
This integral can be solved exactly, and the following approx-
imation can be obtained

F ≈ −
c4

√
c2 − v2 + v2x

(c2 − v2)3/2 (c2 − v2y)
q e n u

2 π c2 ε0 z
u × ey (54)

for very small electron drift velocities u ≪ c. This in turn
becomes identical to equation (52) when e n u = I and
c2 ε0 = 1/µ0 is used, provided that equation (54) regarding
∥u∥ := v is expressed as a Taylor series of second order. Of
note, the Fechner hypothesis is indeed not necessary [2, p. 87-
88]. Moreover, it is irrelevant with which velocity an observer
moves relative to the wire and to the test charge. This aspect
is not the case in Lorentz-Einstein electrodynamics.

The simple example above illustrates that magnetism is not a
fundamental force from the viewpoint of Weber electrodynam-
ics. In fact, the concept of the magnetic field is obsolete not
only in the case of an infinitely long wire but in general. This
represents a significant conceptual simplification, even though
solving integrals of the type (53) may seem somewhat tedious.

However, this integration method allows every practical prob-
lem to be solved numerically. This aspect is also true for high-
frequency alternating current, because the solution of the wave
equation (1) can be used for the point antenna3:

F =
qd q γ(u)

(
1 − uc ·

r0
∥r0∥

)
2 π ε0 c2 ∥r0∥

(
r0

∥r0∥
×

(
r0

∥r0∥
× s̈ (t + τ)

))
−((

u

c
×

r0

∥r0∥

)
× s̈ (t + τ)

)}
.

(55)

In equation (55), s(t) is the time-dependent infinitesimal dis-
placement of the charges +q and −q in a bound particle located
at the coordinate origin. The time constant τ is given by

τ =
r0 · u −

√
c2 r2

0 − ∥r0 × u∥2

c2 − v2
(56)

thereby ensuring that the electromagnetic wave travels at speed
of light c in the rest frame of any test charge qd moving with
relative velocity u at location r0.

Figure 3 shows the field of the force of a point antenna
polarized in the z-direction at the coordinate origin, from the
perspective of a test charge qd resting relative to the point
antenna somewhere in the x-z plane. As can be seen, the field
of the force corresponds exactly to the electric field of the
Hertzian dipole, as indicated in many textbooks.

The situation is different when the test charge is moving.
Figure 4 shows an example of the same field from the
perspective of a point charge moving with speed c/3 to the
right. As clearly indicated, a Doppler effect now occurs. If the

3The derivation of the wave equation (1) from Maxwell’s equations and
finding the solution for a point antenna is described in [19]. Only the far-field
approximation is given here, and an adjustment of the sign of the velocity u
was performed.
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Fig. 3. The figure illustrates the field of the electromagnetic force of a point
antenna oscillating with a frequency of 50 MHz in the z-direction. The field is
shown as would be perceived by a test charge at rest in the x-z plane (in m).
The darker the background, the smaller the magnitude of the field strength in
N.

Fig. 4. The same situation as in Figure 3. Here, however, the test charge
moves to the right with speed c/3.

test charge is located at the left side of the point antenna, a
blueshift occurs, because the test charge moves toward the
point antenna. On the right side of the point antenna, in
contrast, a redshift is seen.

For basic understanding, an important and critical aspect is
that this field is real only for a moving point charge. A
stationary observer would perceive the same field as in Figure
3. However, the observer could measure the acceleration of

Fig. 5. Only the velocity-dependent force components are shown. The test
charge moves to the right with speed c/3. In the x-y plane; i.e., transverse
to the axis of oscillation, the force acts perpendicularly to the direction of
motion.

the test charge and indirectly infer the field that is actually
perceived by a moving test charge, which would correspond
exactly to the field in Figure 4 and not to the field measured
by the observer.

The figures 3 and 4 show the electromagnetic forces on a
test charge in its entirety; consequently, the effects that would
resemble the Lorentz force are difficult to recognize. However,
the magnetic effects are also very real in Weber-Maxwell
electrodynamics, even though the concept of the magnetic field
is no longer needed. To illustrate this aspect, Figures 5 and 6
show the force components that remain when all components
of the electromagnetic force that do not depend on the velocity
are subtracted4. In this way, the counterpart of the magnetic
force qd u×B in Weber-Maxwell electrodynamics is obtained.

Figure 5 shows this velocity-dependent force component for a
test charge qd moving to the right. As can be seen, the force
component in the x-y plane agrees exactly with the expectation
according to Lorentz-Einstein electrodynamics, because the
moving test charge experiences a force that is oriented exactly
perpendicular to the direction of motion. The same is true for
Figure 6. Here, the test charge is moving in the z-direction. As
can be seen, the force also acts in the x-y plane orthogonally
to the direction of motion of the test charge.

However, the equivalence to the Lorentz force is present in
only the x-y plane, i.e., transverse to the axis of oscillation.
Above and below, in contrast, the predictions of Weber-
Maxwell electrodynamics and Lorentz-Einstein electrodynam-
ics are partly diametrically different. However, these differ-
ences often do not matter in practice, because an alternating

4Set u to zero everywhere except in τ and subtracte this from the force.
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Fig. 6. Only the velocity-dependent force components are shown. The test
charge moves upward with speed c/3. In the x-y plane; i.e., transverse to the
axis of oscillation, the force acts perpendicularly to the direction of motion.

current carrying wire can be interpreted as a chain of many
point antennas in the direction of oscillation. Therefore, in the
examples in Figures (3) to (6), the fields of additional point
antennas must be imagined on the z-axis. The fields of all
point antennas superimpose, and the force components typical
of Weber electrodynamics are cancelled out because of the
symmetry.

This symmetry is the reason why Lorentz-Einstein electro-
dynamics and Weber-Maxwell electrodynamics are de facto
equivalent for closed conductor loops. However, in many ap-
plications in electrical engineering, this equivalence is not the
case. For example, a capacitor represents a gap in a conductor
loop. Indeed, forces between the plates can be calculated
with Lorentz-Einstein electrodynamics, which cannot be real,
because they violate the conservation laws. However, if the
force effects are calculated with Weber-Maxwell electrody-
namics, realistic forces are always obtained that satisfy the
conservation laws and agree perfectly with the measurement
results in reality.

V. Summary and conclusion

The article has shown that the modern formulation of Weber
electrodynamics by means of the wave equation (1) is a
theory of electromagnetism that, in the nonrelativistic domain,
is clearly superior to standard electrodynamics, because the
concept of the magnetic field becomes completely obso-
lete, and the conservation laws are ensured to hold even in
the presence of electromagnetic waves. Furthermore, Weber-
Maxwell electrodynamics is also considerably more compact
and decreases the necessary number of fundamental equations
to a single equation.

The last field of application in which Lorentz-Einstein elec-
trodynamics seems necessary is when electric charges move
with velocities close to c. This scenario is usually the case only
in designing particle accelerators or nuclear fusion research.
How Weber-Maxwell electrodynamics can be applied in such
extreme applications is currently an open question and a
subject of current research.

Importantly, in the field of electrical engineering, Weber-
Maxwell electrodynamics allows many types of problems to
be rapidly and easily solved; applications include electri-
cal power engineering, radio-frequency engineering, plasma
physics, electronics and computational electromagnetics. In
particular, the basic solution for a uniformly moving point
charge in the case of direct current, or a point antenna in
the case of alternating current, can be numerically integrated
along the current paths. Therefore, the need to solve Maxwell’s
equations, which not only requires experience in dealing with
partial differential equations, but also can lead to paradox-
ical and unrealistic results, is eliminated. However, Weber-
Maxwell electrodynamics ensures that the solutions always
satisfy the conservation laws and are consequently reasonable
and realistic.
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