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Fig. 2 A partial term scheme for Fe 111, showing the observed
transitions, some lower-lying terms of the same even parity and
the first two terms of odd parity. Term energies are given in cm™".

abilities found by Garstang® for lower-lying levels are in each
case ~1. Thus it is likely that the upper levels have populations
close to their Boltzmann values with collisional de-excitation
rates exceeding radiative decay rates. Then the ratio of the
[Fe 111] line fluxes to those of permitted transitions would be
sensitive to the electron density. Detailed calculations of the
atomic data are required to establish the collisional-radiative
regime for the individual lines. The upper levels may attain only
a pseudo-Boltzmann population if collisional excitation to
higher states of odd parity exceeds the rate for collisional de-
excitation to lower levels. In any case the new [Fe 111] iden-
tifications will provide more information on the structure of the
solar chromosphere-corona transition region.

If the a°G, a°P and b°D levels are collisionally de-excited in
the solar-atmosphere, they could become stronger, relative to
permitted transitions of species of similar excitation, in
astrophysical sources of lower electron density. For this reason
their presence is being investigated in such sources, including
the Seyfert galaxy NGC 4151, which has unidentified emission
features around 1,575, 1,581 and 1,518 A (refs 13 and 14).
[Fe 111] emission is observed in the optical spectrum of NGC
4151'>'®, The relative intensities of the quintet transitions in
NGC 4151 and other sources cannot be predicted until collision
cross-sections and transition probabilities are known, and these
are urgently required to establish whether or not the [Fe 111]
lines are of wider astrophysical significance.
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A hierarchical O(N log N)
force-calculation algorithm

Josh Barnes & Piet Hut

The Institute for Advanced Study, School of Natural Sciences,
Princeton, New Jersey 08540, USA

Until recently the gravitational N-body problem has been modelled
numerically either by direct integration, in which the computation
needed increases as N2, or by an iterative potential method in
which the number of operations grows as N log N. Here we
describe’ a novel method of directly calculating the force on N
bodies that grows only as N log N. The technique uses a tree-
structured hierarchical subdivision of space into cubic cells, each
of which is recursively divided into eight subcells whenever more
than one particle is found to occupy the same cell. This tree is
constructed anew at every time step, aveoiding ambiguity and tang-
ling. Advantages over potential-solving codes are: accurate local
interactions; freedom from geometrical assumptions and restric-
tions; and applicability to a wide class of systems, including
(proto-)planetary, stellar, galactic and cosmological ones. Advan-
tages over previous hierarchical tree-codes include simplicity and
the possibility of rigorous analysis of error. Although we concen-
trate here on stellar dynamical applications, our techniques of
efficiently handling a large number of long-range interactions and
concentrating computational effort where most needed have poten-
tial applications in other areas of astrophysics as well.

Until recently, the dynamics of a system of self-gravitating
bodies (the gravitational N-body problem) has been modelled
numerically in two fundamentally different ways. The first one,
direct N-body integration, involves the computation of all
1N(N —1) forces between all pairs of particles. This allows an
accurate description of the dynamical evolution but at a price
that grows rapidly for increasing N'. The second way involves
a two-step approach: after fitting the global potential field to a
special model with a number of free parameters, each particle
is propagated in this background field for a short time before
the same procedure is reiterated. The potential method involves
a number of operations that grow only as N log N. Thus
calculations can be performed more quickly, but with a loss of
accuracy and generality. The special nature of each potential-
solving code is caused by the néed to use some technique that
is tuned to the geometry of the problem being considered (such
as Fourier transforms or spherical or bispherical harmonics?).

Recently, some of the advantages of both approaches have
been combined by using direct integrations of force while group-
ing together increasingly large groups of particles at increasingly
large distances. This corresponds to the way humans interact
with neighbouring individuals, further villages and increasingly
further and larger states and countries—driven by increasing
cost and decreasing need to deal with more removed groups on
an individual basis. The first implementation of such a hierar-
chical grouping of interactions was given by Appel®, who used
atree structure to represent an N-body system, with the particles
stored in the leaves of the tree. An independent implementation
by Jernigan* and Porter® incorporated regularization of close
encounters. However, in both codes the logarithmic-growth gain
in efficiency comes at the price of introducing additional errors
that are hard to analyse because of the arbitrary structure of
the tree. Nearby particles may be grouped as leaves of nearby
branches, but the phase-space flow of realistic self-gravitating
systems demands a continuous updating of the tree structure to
avoid tangling and unphysical grouping, requiring complicated
book-keeping. It is not at all clear how to understand and
estimate the errors caused by the process of approximating
lumps of particles together as single pseudo-particles, because
individual lumps can take more or less arbitrary shapes and sizes.
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Fig. 1 Hierarchical boxing and force calculation, presented for
simplicity in two dimensions. On the left, a system of particles and
the recursive subdivision of system space irduced by these parti-
cles. Our algorithm makes the minimum number of subdivisions
necessary to isolate each particle. On the right, how the force on
particle x is calculated. Fitted cells contain particles that have been
lumped together by our ‘opening angle’ criterion; each such cell
represents a single term in the force summation.

We present here a new way of realizing a tree-based force
calculation with logarithmic growth of force terms per particle
that avoids the tree-tangling complications mentioned above,
allows rigorous upper bounds for errors that arise from neglect-
ing internal lump structure, and also offers a well-defined pro-
cedure for estimating more typical, average errors. The essential
ingredients are (1) a virtual cubical division of empty space in
(sub)cells with daughter cells having exactly half the length,
breadth and width of their parent; (2) the construction of the
actual tree of cells from the virtual one by (i) discarding empty
subcells, (ii) accepting subcells with one occupant, and (iii)
recursively dividing shared occupancies in sub-subcells; and (3)
performing this reconstruction ab initio at every time step.

Given this book-keeping structure, the dynamics are imple-
mented by assigning to every non-empty cell, as well as to
higher-order cells containing more than one particle, a
(pseudo-)particle that contains the total mass in the cell located
at the centre-of-mass of all the particles it contains. Any single
real particle feels the force of all (pseudo-)particles in the system
that represent a cell small enough and far enough to forego the
need of further division, thereby screening all its component
(pseudo-)particles.

A computer program that implements the hierarchical force
calculation is available from us upon request. It contains less
than a thousand lines of C code: 150 lines of definitions, 150
lines for tree construction, 100 lines for force calculation and
100 lines for a simple integrator; the remaining lines handle
input-output book-keeping.

In what follows we summarize some of the more technical
details. The method we use to compute a force in time of
O(log N) is based on a representation of the mass distribution
as a hierarchical tree structure, constructed as follows. Begin
with an empty cubical cell big enough to contain the system.
One by one, load particles into this ‘root’ cell. If any two particles
fall into the same cell, divide that cell into eight cubical subcells
(thus the first such division occurs as soon as the second particle
has been loaded in, splitting the system into at least eight pieces).
Each divided cell is represented by a data structure that holds
information about the subcells it contains: a summary of global
physical quantities (mass and centre-of-mass position) as well
as pointers to the daughter cells, which may be referenced to
obtain more detailed information. Continue this process of
subdividing to as high a level as required. When all N particles
have been loaded, the system space will have been partitioned
up into a number of cubical cells of different sizes, with at most
one particle per cell. These particle-bearing cells are grouped
together into larger cubical cells, which are grouped together
into still larger parent cells, and so on down to the root cell,
which contains the entire system. The average size of a particle-
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Fig. 2 Box structure induced by a three-dimensional particle

distribution. This example was taken from the early stages of an

encounter of two N =64 systems, and shows how the boxing

algorithm can accommodate systems with arbitrarily complicated

geometry. The particle distribution corresponding to a system with
32 times as many members is shown in Fig. 3.

bearing cell is of the order of the interparticle spacing, so the
‘height of the tree’ (that is, the number of subdivisions required
to reach a typical cell, starting at the root), is of O(log, N'/?) =
O(log N), and the time required to construct the tree is of
O(N log N). The final step in constructing the tree is to tag the
subdivided cells with the total mass and centre-of-mass position
of the particles they contain; by propagating information down
the tree from the particles towards the root, this step may also
be accomplished in a time of O(N log N).

Having constructed such a tree, the force on any particle p
may be approximated by a simple recursive calculation. Start
at the root cell of the tree, which contains the entire system. Let
I be the length of the cell currently being processed and D the
distance from the cell’s centre-of-mass to p. If I/ D < 6, where
@ is a fixed accuracy parameter ~1, then include the interaction
between this cell and p in the total being accumulated. Other-
wise, resolve the current cell into its eight subcells, and recur-
sively examine each one in turn. The core of the force calculation
routine may be compactly expressed in SCHEME, a dialect of
LISP:

(define (acceleration partigle ensemble)
(cond ((singleton? ensemble)
(nevton-acceleration particle (the-element ensemble)))
((< (/ (diameter ensemble)
(distance particle (centroid ensemble)))
theta)

(neston-acceleration particle (centroid ensemble)))
(else

(reduce sum-vector

(map (lambda (e) (acceleration particle e))
(subdivisions ensemble))))))

Note that in LISP, a function with arguments f(x,y,...) is
written as (f x y...). For example, (newton-acceleration p, p,)
calls a function to compute the acceleration of particle p, due
to p,. The (cond . . .) form is a three-way conditional, computing
the acceleration directly in the first two cases, and by recursion
in the final (else...) clause. Elements of the SCHEME
programming language are presented in Abelson et al®. Figure 1
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Fig. 3 Encounter of two 2 r
spherical systems, simu-

lated by using our hierar-

chical acceleration - tech- 1
nique in combination with
a simple leap-frog
integrator. The incoming
systems were launched on
parabolic orbits, but
become bound because of
dynamical friction. Note the
striking  wakes  lagging

=0

behind the density centres
of the two systems at ¢ =3,

4 (in our units the gravita-
tional constant, the mass of
each galaxy and the total
binding energy of the whole
system all equal unity). With
atotal of N = 4,096 particles
in the system and an open-
ing angle criterion of 8 =1,
the number of two-body -1
interactions computed by

our technique is less than

0.1 of the IN/(N-1)
required by a direct-summa-
tion force calculation. The

-2

calculation took 10h on a VAX 11/780 (in double precision because of compiler limitations; a single-precision calculation would take hailf
as long). With a time step At = 0.05 and softening parameter ¢ = 0.025, energy was conserved to ~1%.

illustrates this process for a small number of particles in two
dimensions; increasing the number to 10°~10° in three
dimensions typically increases the number of interactions per
particle to only of order 10°.

The number of interactions considered by this procedure in
computing the force on p is of order log N for large N. Suppose
the mass distribution is homogeneous within the root cell.
Increasing the total number of particles eightfold is roughly
equivalent to adjoining eight similar root cells together. The
seven new cells not containing p will contribute some ‘relatively
small’ number AN, of additional terms to the force approxima-
tion. Now the expectation value (AN,) depends on 6, but not
on the total number of particles or the size of the system. Thus
the time required to calculate the force on a particle increases
by a constant increment (of (AN,)), whereas N increases by a
constant factor (of eight). In other words, the time required by
the CPU (central processing unit) to compute the force on a
single particle is on the scale of O(log N).

A rigorous error analysis of the force-calculation algorithm
is possible because our prescription yields a unique, well-charac-
terized tree structure based on up-to-date particle positions.
Each compound cell that we choose not to subdivide introduces
a small error due to quadrupole and higher-order moments of
the mass distribution within the cell (the dipole term vanishes
when expanding around the centroid). The magnitude of this
error may be bounded by a ‘worst-case’ analysis for which the
quadrupole moment is maximized (for example, two lumps
placed in opposite corners of the cell), and estimated from an
analysis of root-mean-square fluctuations within each cell
together with estimates of the coherence time scales for these
fluctuations. We shall present this analysis in a more detailed
paper. In practice, forces computed even with an opening angle
parameter as large as 6 = 1 are still accurate to ~1% with little
dependence on N. Empirically, we find the force error scales
approximately as the —1.5 power of the computing time. These
errors are only weakly correlated from one time step to the next,
resulting in a build-up close to a random walk rather than a
steady drift.

As a test of our new method, we have written a simple N-body
code using our force-calculation scheme with a time-centred
leap-frog integrator, in which positions and velocities are alter-
nately advanced. A parabolic encounter of two galaxies is initi-

ated at a distance of several galactic radii, leading to a box
structure as shown in Fig. 2. The results of a 4096-body calcula-
tion of such an encounter are shown in Fig. 3. This calculation
took 10 h of CPU time on a VAX 11/780 with a floating point
accelerator.

There are several ways in which the code can be made more
efficient. We are now investigating these, and we shall discuss
our results in detail elsewhere. We just mention three possible
improvements: (1) using a higher-order integration scheme such
as Aarseth’s fourth-order polynomial method rather than our
second-order leap-frog method, which will require careful
adjustments to avoid glitches caused by discrete differences
between the grouping of particles in cells from one time step to
the next (for example by multiply covering space in partly
overlapping virtual grids); (2) including quadrupole moments
in the description of cells as pseudoparticles characterized by
the total mass in the cell as located in the centre of mass; (3)
introducing individual time steps for particles which undergo
strongly changing interactions, which could be accomplished
by subsequently halving the time step when needed—thus
extending the three-dimensional spatial halving of cells to a
four-dimensional space-time division in rectangular subcells.

An interesting aspect of our new code is the different emphasis
it places both on software and hardware, in comparison with
other codes. On the hardware side, the hierarchical structure of
our code does not lend itself easily to vectorization (although
this may well be worth exploring). In contrast, we expect our
code to be most useful on computers with highly parallel archi-
tectures (with one processor per particle, computer time is
reduced approximately by a factor of N). On the software side,
the hierarchical decomposition of the problem is best realized
by using recursive descriptions. Recursive function calls and
other general control and data structures are not well supported
or clearly represented in FORTRAN. This has led us to consider
other programming languages such as C, PASCAL and LISP.
Another advantage offered by these languages is that they permit
a clarity of presentation of our ideas, which makes the underlying
techniques available to other researchers. Of course, if a par-
ticular computer has a FORTRAN compiler which is an order
of magnitude faster than other compilers, it makes sense to
translate a version of our program into FORTRAN, trading
clarity and modularity for efficiency.
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Our application to N-body calculations is only one in a range
of possibilities including the calculation of radiation fields
(replacing particles with sources) and self-gravitating fluid flow
(cell division being governed by the complexity of the local flow
pattern). Thus our technique forms a general tool for simul-
taneously handling a large number of long-range interactions
and for concentrating computing resources locally where most
needed.

We thank John Bahcall, Jeremiah Ostriker and especially
Gerald Sussman for interesting discussions. Part of this work
was supported by the NSF through grant PHY-8217352; P.H.
is an Alfred P. Sloan Foundation fellow.
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The 400-km seismic discontinuity
and the proportion of
olivine in the Earth’s upper mantle

Craig R. Bina & Bernard J. Wood

Department of Geological Sciences, Northwestern University,
Evanston, Illinois 60201, USA

The 400-km seismic discontinuity has traditionally been ascribed
to the isochemical transformation of a-olivine to the B-modified-
spinel structure in a mantle of peridotitic bulk composition’®. It
has recently been proposed’® that the observed seismic velocity
increase at 400 km depth is too abrupt and too small to result
from a phase change in olivine but instead requires that the
transition zone be chemically distinct in bulk composition from
the uppermost mantle. By requiring phase relations in the
Mg,Si0,-Fe,SiO, system to be internally consistent thermody-
namically, we find that the a—p transition in olivine of mantle
(Mg, oFeg 1),Si0, composition is extremely sharp, occurring over
a depth interval (isothermal) of ~6 km. The magnitude of the
predicted velocity increase is in agreement with that observed
seismically>® if the transition zone is composed of ~60-70%
olivine. Thus, our results indicate that seismic velocities across the
400-km discontinuity are consistent with a transition zone of
homogeneous peridotitic composition and do not require chemical
stratification.

The 400-km seismic discontinuity reflects a change in elastic
properties of the mantle and has been attributed to a phase
transformation of olivine to a spinel-like structure at high press-
ures'. Subsequent work has given rise to a generally accepted
model in which the discontinuity is attributed to such an
isochemical phase change in a mantle of homogeneous olivine-
rich, or peridotitic, composition>®. This model has the advan-
tage of simplicity and can be tested experimentally.

Recently, it has been suggested’® that a phase transition in
olivine would produce a gradual velocity increase over an
appreciable depth interval—rather than the abrupt increase
observed seismically—and that the magnitude of the increase
would be more than twice that actually observed. It was pro-
posed that the seismic data require the transition zone to be
chemically distinct in bulk composition from the uppermost
mantle, with the transition zone consisting of a pyroxene-garnet
rich ‘piclogite’ composition containing either 16%’ or 30%?
olivine. The 400-km discontinuity is ascribed to either a change
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Fig. 1 Isothermal pressure-composition diagram showing calcu-

lated boundaries for olivine polymorph stability fields at 1,273 K.

Also shown are experimental data points'?>-*%1%-2° delimiting the

high-pressure stability limits of the low-pressure assemblages (A),

the low-pressure stability limits of the high-pressure assemblages

(V¥), and the compositions of y phase which coexist with a phase

at the indicated pressures (@). Dashed line shows
(Mg, gFe, ),Si10,4 composition.

in chemical composition from peridotite to underlying piclogite
or—if this periodotite/piclogite boundary is referred to shail-
lower depths—to the transformation of pyroxene to a garnet-like
structure.

In a previous study'!, we showed that the transformation of
pyroxene to a garnet structure would produce a smooth and
gradual increase in seismic velocity, rather than the discontinuity
observed at 400 km. In the present study, we have examined the
olivine-spinel phase transitions to determine whether the
observed seismic velocity variations may be attributable to such
a phase change. The a-olivine to B-modified-spinel transition
has been commonly represented by a broad ‘a+ g8 divariant
loop’, a region in which both phases caexist in stable equili-
brium. If this representation were accurate, the @ phase would
transform to the B phase in a continuous and gradual manner,
and this phase change would not produce a sharp discontinuity
in seismic velocity. However, the available experimental data
(Fig. 1) do not constrain the width of this « + 8 loop, since no
high-pressure experiments have yet produced both phases
together in equilibrium for olivine of mantle (Mg, Fe,,),Si0,
composition. We have used available thermoelastic and
calorimetric data on the olivine polymorphs (a-olivine, B-
modified-spinel, and y-spinel) to constrain the width of the
a+ B divariant loop. By requiring the phase diagram for the
Mg,Si0O,-Fe,SiO, system to be internally consistent thermo-
dynamically, we have attempted to determine the sharpness and
magnitude of a seismic discontinuity resulting from a phase
change in olivine.

If the partial molar free energies of Mg,SiO, and Fe,SiO,
components are known as functions of pressure, temperature,
and composition, then the boundaries of the stability fields for
the various phase assemblages (a, a+8, 8, B+ v and so on)
can be calculated explicitly. To compute the free-energy func-
tions, we require knowledge of the enthalpies, entropies,
volumes, and solution activities of the components in the various
phases at the pressures, temperatures and compositions of inter-
est. We used the available experimentally-measured values of
the enthalpies and entropies™'?'4) heat capacities'’, molar
volumes and coefficients of thermal expansion®, elastic moduli'®,
and activity coefficients'’ for the phases and components in
question. Where measured values were extremely uncertain or
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