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Abstract
It is pointed out that recent cosmological findings seem to support the view
that the mass/energy distribution of the universe defines the Newtonian inertial
frames, as originally suggested by Mach. The background concepts of inertial
frame, Newton’s second law and fictitious forces are clarified. A precise
definition of Mach’s principle is suggested. Then, an approximation to general
relativity discovered by Einstein, Infeld and Hoffmann is used and it is found
that this precise formulation of Mach’s principle is realized provided the
mass/energy density of the universe has a specific value. This value turns
out to be twice the critical density. The implications of this approximate result
are put into context.

1. Introduction

In 2011, the final report from the Gravity Probe B experiment was published by Everitt et al
[1]. This satellite experiment verified for the first time the frame dragging prediction of general
relativity, thereby corroborating one aspect of Mach’s principle. This principle states that the
inertial frames of classical mechanics are defined as being those that do not accelerate with
respect to the average mass/energy distribution of the universe. Since the early work on Mach’s
principle by Bondi [2, 3], Sciama [4–6], Dicke [7], Lynden-Bell [8], and others, cosmology has
progressed considerably. Cosmic microwave background radiation has been discovered and
studied in detail. Dark matter has been found to dominate over normal matter in the universe.
The recent discovery of the acceleration of the Hubble expansion by the groups of Perlmutter
and of Schmidt and Riess (Nobel prize 2011) has given new observational information on
the mass/energy distribution of the universe. In particular, it is now clear that matter, dark
matter and dark energy together represent a mass/energy density close to the critical density
of cosmology [9, 10]. It seems appropriate to reassess the status of Mach’s principle in view
of these empirical advances in recent decades.

After a brief survey of the most relevant literature, I first discuss Newton’s second law and
its interpretation. The concept of inertial frame and the related ideas about real and fictitious
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forces are elucidated. This part can be understood by undergraduates who have studied vector
mechanics and I try to give a deeper motivation for the various terms that appear in this law.
Then, I demonstrate how this law arises by approximation from general relativistic equations
of motion, and how this seems to support Mach’s principle as a consequence. This part relies
on the Einstein–Infeld–Hoffmann (EIH) Lagrangian formulation and requires that the students
have been exposed to analytical mechanics.

Mach’s principle has been subject to much discussion and speculation in the literature.
Some more recent studies can be found in the volume edited by Barbour and Pfister [11] and
in Mashhoon et al [12], where the gravitomagnetic analogy is studied in detail. Many points
of view are of a philosophical and metaphysical nature, but here I concentrate on empirical
aspects. There are also quite a few accounts in the pedagogical literature, e.g., [13]. Interesting
discussions can be found in the textbooks by Berry [14], Ciufolini and Wheeler [15], Peacock
[16] and, most recently, by Cheng [9]. Frame dragging and its relation to Mach’s principle and
general relativity have been discussed by Grøn [17, 18], Grøn and Eriksen [19], Harris [20],
Holstein [21], Hughes [22], Lynden-Bell et al [23], Martı́n et al [24], Nightingale [25, 26]
and Vető [27, 28]. It has been pointed out that general relativity does not, in itself, imply
Mach’s principle, the counter example being Gödel’s solution [29] to Einstein’s equations. In
this solution, however, time travel is possible. There have been speculations that banning time
travel will restrict us to solutions that obey Mach’s principle [30], but these matters are still
far from clear.

2. Inertial frames, real and fictitious forces

Newton’s second law for a particle is now normally written in the form

ma = F. (1)

Here, m is (inertial) mass, which is determined by means of a common balance and a reference
mass (unit of mass). The acceleration a is a purely kinematic quantity which is determined
by recording the positions with respect to time relative to a chosen reference frame. This
requires the choice of origin, axes, measuring rods and clocks (reliable periodic phenomena).
The force F then turns out to be a quantity which is the cause of the acceleration. All known
forces decay at least as the inverse distance squared so that forces have a local origin, i.e. they
arise from local sources near the moving particle and they obey Newton’s third law of action
and reaction. The success of Newtonian mechanics comes largely from the fact that there is a
limited catalogue of forces. We have very accurate mathematical models for electromagnetic
and gravitational forces. All other forces of macroscopic importance are material contact
forces (normal force, dry friction, pressure, viscosity, drag, force from elastic deformation,
pull from a string, etc) for which there are often reasonably accurate mathematical models,
albeit of a limited range of validity.

In the paragraph above, I have emphasized the words reference frame and local source.
In order for the above theory to work, the reference frame must be the so-called inertial,
or non-accelerated. We can use accelerated frames, however, if we know their translational
acceleration af and their angular velocity ω about an axis through the origin. The appropriate
equation of motion is then

ma∗ = F + F∗, (2)

where

F∗ = −m[af + ω × (ω × r∗) + 2 ω × v∗ + ω̇ × r∗]. (3)
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Here, r∗, v∗ and a∗ are position, velocity and acceleration with respect to the accelerating
system, while ω̇ is the time derivative of the angular velocity vector. The new force F∗ on the
right-hand side of (2) is the vector sum of the so-called fictitious forces (3). These forces do
not have local sources and Newton’s third law does not apply to them. The crucial questions
are now the following. Acceleration relative to what? Which are the inertial frames? How are
they found?

When it comes to rotation, these questions are fairly easy to answer. In a non-rotating
reference frame, the fixed stars (or even better, the distant galaxies) have fixed directions.
Since the Earth rotates with respect to such a frame, the fictitious forces containing the angular
velocity ω are necessary to get the correct motion of, e.g., a Foucault pendulum. Also the fact
that rotating astronomical bodies are flattened is well accounted for by the fictitious centrifugal
force −m ω × (ω × r∗). There is a tiny difference between the angular velocity of the Earth
relative to the fixed stars and the angular velocity appearing in these equations that was
discovered by Gravity Probe B [1]. The inertial frames near the Earth rotate slightly because
the Earth rotates, according to general relativity. Today there is no observational evidence that
our universe is a rotating Gödel universe [29].

The question is much more complicated when it comes to translational acceleration. When
studying motion in a laboratory on the Earth, we are used to including the gravitational force
mg arising from our planet. If we denote the non-gravitational force on our particle by K, we
then normally write down the equation of motion

ma = K + mg. (4)

A critical reader may now note that the particle, in fact, must also be affected by the gravitational
forces from the Sun, the Moon, the galaxy and so on. Let us denote the acceleration that these
gravitational forces would impart to our particle by gf(r) at position r. To obtain an accurate
equation of motion mgf must then be added on the right-hand side of (4).

We now realize, however, that the reference frame at rest on the Earth is not really inertial
(even neglecting rotation). The Earth is freely falling in the external gravitational fields from
bodies other than itself. This acceleration will vary with position, but not that much. Let us
choose the value at the origin and put gf(0) = af. The true equation of motion for a particle
on the (non-rotating) freely falling Earth is then

ma∗ = K + mg + mgf(r) − maf ≈ K + mg. (5)

The approximation can be made since gf(r) ≈ af for r-values of interest. The fact that there is
an exact equality only at a point gives rise to tidal effects. The Earth falls freely in the field of
the Sun and the Moon, but since the Earth is extended all points are not subject to the same
acceleration af = gf(0).

To summarize, when working in a laboratory on the Earth I am in fact working in
an accelerated reference frame that accelerates in such a way that gravitational forces
mgf(r) from other bodies than the Earth itself are transformed away by a fictitious force
F∗ = −maf = −mgf(0). The usual equation of motion (4) thus works quite well, but a
occurring in it is in fact relative to an accelerated reference frame and is thus really a∗.

The precise acceleration of the Earth relative to the universe as a whole is quite difficult
to measure. The phenomenon of Doppler shift, however, makes it possible to find the velocity
of the Earth with respect to the cosmic microwave background (CMB) quite accurately. Such
measurements reveal that a constant velocity with respect to the CMB seems to correspond
to inertial frames. This possibility of identifying the rest frame of the CMB (the frame in
which the radiation is as isotropic as possible) with the frame in which the mass/energy of the
universe as a whole is at rest constitutes an observational verification of Mach’s principle (see
[9, section 10.5.4]).
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3. Newton’s second law and Einstein’s equations

Mach’s principle was one of the inspirations behind Einstein’s work on general relativity but
the precise connection is still not clear. Einstein discusses the connection in The Meaning of
Relativity [31] and outlines how the cosmic mass/energy density influences the equations of
motion of a particle (on pages 100–102). A detailed derivation of these equations is given by
Harris [20].

Let us make Mach’s principle more precise. Assume that the equation of motion of a
particle is of the form

m(a − gu) = F, (6)

where gu is the acceleration of the universe as a whole. Then, only the acceleration relative to
the universe as a whole is what matters in the equation of motion. I now proceed to show that
this at least is a possibility.

I will approach this problem from the point of view of the EIH equations of motion
[32–34]. Fock found the Lagrangian that yields these equations [35] and this Lagrangian is
also derived and discussed in [36–38]. The Lagrangian is given by

L = L0 + L1 + L2, (7)

where

L0 = T0 − V0 =
∑

a

1

2
mav

2
a + 1

2

∑
a

∑
b�=a

Gmamb

rab
(8)

and

L1 = 1

4c2

∑
a

∑
b�=a

Gmamb

rab

[
3
(
v2

a + v2
b

) − 7va · vb − (va · rab)(vb · rab)

r2
ab

]
. (9)

L2 contains the first relativistic correction, i.e. ∼ (v/c)2, to the classical kinetic energy T0, and
higher order corrections to the gravitational interaction ∼ G2. These terms are not of interest
here since they will not influence the inertia of a slow particle. Here, rab = rb − ra is the vector
from particle a to particle b, and rab = |rab|.

The equation of motion for particle 1 is given by the Euler–Lagrange equation
d

dt

∂L

∂v1
= ∂L

∂r1
⇔ ṗ1 = F1. (10)

All terms involving accelerations will occur on the left-hand side here, so this is what we need
to calculate. Calculation gives

∂L

∂v1
= m1v1 + Gm1

2c2

N∑
b=2

mb

r1b

[
6v1 − 7vb − r1b(vb · r1b)

r2
1b

]
, (11)

for the so-called generalized momentum p1 = ∂L/∂v1. Now assume that particle 1 is at the
origin in a homogeneous isotropic expanding universe of density ρ, and with Hubble parameter
H. The particles mb are then replaced by the mass elements ρ dV of position r and velocity
v = Hr + u. Here, u is an overall velocity of the universe relative to the origin. We can then
replace the sum in (11) with an integral and obtain

p1 = m1v1 + Gm1

2c2

∫
ρ

r

[
6v1 − 7(Hr + u) − r(Hr2 + u · r)

r2

]
dV. (12)

We now calculate the integral on the right-hand side.
We introduce spherical coordinates (r, ϕ, θ ) and perform the integration over the

visible universe. At the radius R of the visible universe, the Hubble expansion leads to
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recession at the speed of light, i.e. HR = c. The volume element in spherical coordinates
is dV = r2 sin θ dr dϕ dθ . Without loss of generality, we assume that u = uez. Since
r = r(sin θ eϕ + cos θ ez), where eϕ = cos ϕ ex + sin ϕ ey, the scalar product term becomes

r(u · r) = r2u(sin θ eϕ + cos θ ez) cos θ. (13)

The integrations over the sphere of radius R will make the terms involving H vanish for
symmetry reasons, since these are multiplied by r. Nothing depends on the angle ϕ in the
integral so the term multiplying eϕ also vanishes. Two different integrals then remain to
calculate: first, ∫

ρ dV

r
= 4πρ

∫ R

0
r dr = 2πρR2 (14)

and, then, ∫
ρ cos2 θ dV

r
= 2πρ

∫ R

0
r dr

∫ π

0
cos2 θ sin θ dθ = 2

3
πρR2, (15)

due to the scalar product term.
This gives us the result

p1 = m1

[(
1 + 6

GπρR2

c2

)
v1 −

(
22

3

GπρR2

c2

)
u
]

. (16)

In order to understand this, the meaning of the quantity GπρR2/c2, which we can rewrite as

σ ≡ GπρR2

c2
= Gπ

H2
ρ, (17)

using R = c/H, must be investigated.
Studying cosmology using general relativity and the assumption of an expanding

homogeneous, isotropic universe, one finds that there is a specific mass/energy density ρc

that makes (three-dimensional) space flat [9, 10]. This density is called the critical density and
is given by

ρc = 3H2

8πG
. (18)

It is interesting to note that the critical density corresponds to the mass M of the universe inside
the Hubble radius R = c/H being such that the Hubble radius is equal to the Schwarzschild
radius R = 2GM/c2.

Comparing (18) with (17), we see that

σ = 3

8

ρ

ρc
≡ 3

8
�, (19)

where � is the standard notation in cosmology for the ratio of the density to the critical density.
The generalized momentum (16) of particle 1 now becomes

p1 = m1

[(
1 + 9

4
�

)
v1 −

(
11

4
�

)
u
]

. (20)

Returning to my formulation of Mach’s principle in (6), it is seen to be realized with this ṗ1 if
� = 2. For this value of the density ratio, the generalized momentum is

p1 = m1
11

2
(v1 − u) ⇒ ṗ1 = m1

11

2
(a1 − gu). (21)

That is, for � = 2, the acceleration in Newton’s second law is relative to the acceleration u̇ = gu
of the universe as a whole. One also notes that the ‘bare’ mass m1 has been ‘renormalized’ to1

m = 11m1/2.
1 If this renormalization is not permissible, one can interpret equation (20) requiring that all of the kinetic energy
is due to interaction. Then, the m1v1-term in p1 vanishes and one concludes that the actual mass is m = m19�/4.
Mach’s principle would then require that the second term also has a factor 9/4 instead of the 11/4 obtained here.
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4. Conclusions

We see that while forces, arising from F1 = ∂L/∂r1 in (10), decrease at least as r−2, the inertial
terms in p1 decrease only as r−1. Consequently, inertia has an intrinsic non-local nature. It is
thus difficult to investigate by local measurements—the main reason that these matters remain
obscure and intimately connected to cosmology. This should be an important insight of these
investigations.

In [28], Vető has found that the fictitious Coriolis force −2m ω × v∗ can be understood as
being due to the gravitomagnetic field from the rest of the universe if � = 1. Support for such
a standpoint also comes from investigations by Martı́n et al [24] where numerical �-values
near 1 are found. In both these works, however, linearized forms of general relativity were
used that neglect the gravitational back-reaction of the accelerating particle on the background
universe, whereas the EIH formalism used here retains back-reaction effects to linear order in
the mass m1. This makes the results of [24, 28] comparatively unreliable.

In conclusion, I have elucidated Mach’s principle and found that a precise formulation
of the principle can be consistent with the EIH approximation to general relativity if the
density of the universe is twice the critical density. This is in qualitative agreement with other
investigations that find that Mach’s principle requires the density parameter to be of order
of magnitude unity. Already, Berry [14, p 39] in his 1976 book found that simple estimates
required that the density of the universe should be ρBerry = H2/(2πG) = 4ρc/3 to obey
Mach’s principle. At that time the observed and inferred amount of galactic matter was only
4% of this value. Now we definitely know that the order of magnitude of the mass/energy
density of the universe is such that Mach’s principle is physically viable.
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