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Translational Inertial Dragging 

O. Gr0n 1'2 and E. Eriksen 2 

Received February 4, 1987 

The electrical field inside a uniformly charged, slowly accelerated spherical shell 
is calculated. The result is used to find the inertial translational dragging field 
inside a slowly accelerated spherical shell of dust particles, according to the 
linearized gravitational field equations. The relevance of this effect in connection 
with Mach's principle and the principle of relativity is discussed. 

1. INTRODUCTION 

The inertial dragging due to rotating masses was discovered by Lense and 
Thirring [1-5], who considered solutions of the linearized gravitational 
field equations inside rotating shells. This rotational inertial dragging was 
later found also in exact solutions of the complete gravitational field 
equations, describing rotating black holes [5]. 

The corresponding translational inertial dragging has been considered 
by some authors [6-11]. In the present article we calculate the dragging 
field inside a slowly accelerated spherical shell, according to the linearized 
gravitational field equations. This is performed by first finding the electrical 
field inside a uniformly charged, slowly accelerated spherical shell and then 
translating the result to the gravitational case. 

The resulting field represents a translational analogue of the Lense 
Thirring effect. The significance of the translational inertial dragging field 
in connection with Mach's principle and Einstein's relativity principle is 
discussed in the final sections of the article, where a variant of Newton's 
bucket experiment in which the bucket is uniformly accelerated is con- 
sidered. 
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2. THE ELECTRIC FIELD I N S I D E  A U N I F O R M L Y  CHARGED, 
SLOWLY ACCELERATED SPHERICAL SHELL 

Consider a uniformly charged, spherical shell slowly accelerated in the 
laboratory system as shown in Fig. 1. We calculate the electromagnetic 
field at a point P inside the shell. The point K is the position of a surface 
element da on the sphere at a moment t. The point K is the retarded 
position of this element. We assume that/3 - v/c ~ 1 and rg/c 2 ~ 1, whe~re v 
is the velocity of the shell, g its acceleration, and r the distance from K to 
the field point P. The calculations are performed to first order in these 
quantities. This gives the retarded values: 

= f l  - -  g r / c  2, S = (~ -- gr /2c  2) r t 
? = r - -  fir cos 0 + (gr2/2c  2) cos 0 ~ (1) 

where s is the distance between K and K. 
The charge of the surface element da is 

dQ = ( Q/4r~R 2) da (2) 

where Q is the charge of the shell, and R its radius. The Lienard-Wiechert 
potentials at the point P due to this charge-element are to the required 
order 

d ~  = (r - r . ~ ) -1 dQ = dQ/r  - ( g dQ/2c  2) cos 0"~ 

d A  45 I} = (dQ/r )  I} - ( dR /c  2) g f (3) 

K _a.v_ 

Fig. 1. Uniformly accelerated spherical shell. 
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The integrals over the spherical surface are performed by the introduction 
of spherical coordinates with origin at the center of the sphere. Using the 
addition theorem for Legendre functions, we then obtain 

eb = Q / R  - ( Q g / 3 R c 2 ) x  

A = ( Q / R )  ]J - (Q/c  2) g 
(4) 

where x is the x-component of P's distance from the origin (see Fig. 1). We 
see that A is homogeneous inside the sphere and, consequently, that there 
is no magnetic field in this region. Note, however, that A is time dependent, 
since the motion of the shell is accelerated. 

The electrical field strength E is given by 

E = Vfb - ~?A/Ot = - ( 2 Q / 3 R c  2) g + (Q/c  3) 

With dg/dt  = 0 we get 

E = - ( 2 Q / 3 R e  2) g 

(5) 

(6) 

To first order in fl and rg/c 2 there is a homogeneous electrical field inside 
the sphere. The field strength is proportional to the acceleration of the 
shell, and the electrical field is directed oppositely to the acceleration if the 
shell is positively charged. In this case a test particle with negative charge 
- q  and mass m will get an acceleration 

aq = ~ [ ( Q q / R ) / m e  2 ] g (7) 

in the same direction that the shell accelerates, the proportionality factor 
being essentially the ratio between the particle's binding energy and its rest 
energy. 

3. TRANSLATIONAL INERTIAL DRAGGING INSIDE AN 
ACCELERATED MASSIVE SHELL 

We now consider space-time inside an accelerated (i.e., with an obser- 
ved acceleration), nonrotating, and uncharged massive shell with radius R 
and mass M. Since space-time inside a static spherical shell is flat, the 
deviation from Minkowski metric inside an accelerated shell will vanish in 
the limit of zero acceleration. Thus, even for a shell with an arbitrarily large 
mass, the metric is close to the Minkowski metric, r/~v, if the acceleration is 
sufficiently small. The relevant assumption is Rg/c  2 ~ 1. 
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The metric is written 

guv=tl~v+h~v, ]hurl ~ 1 (8) 

Using harmonic coordinates, the field equations take the form 

D2h~v _16~GSuv, Su v_ 1 ~ = Tu~ - ~q,v T ~ (9) 

where T uv are the components of the energy-momentum tensor. 
The solution of Eq. (9) inside the shell is found from the retarded 

potentials 

hu~ = (4G/c 2) f [S,~/r]ret dV (10) 

To first order in v/c and rg/c 2, radial collapse of the shell does not affect 
the form of the metric inside it. We may therefore, without loss of 
generality, assume that the shell consists of dust particles. Then the quan- 
tities S~  in the shell are given by 

S ~  = p/2, Sm= -pv  (11 ) 

where p is the proper density of the dust. 
For  a slowly moving shell,/~ ~ 1, we can now write the potentials at a 

point P inside the shell directly from our knowledge of the electromagnetic 
potentials that were found in Section 2. The only nonvanishing components 
of h,~ are 

hoo = (2GM/cZR)(1 - gx/3c2) ] 
(12) 

hol - (4GM/c2)(v /R-  g/c) J 
i "  

where M is the mass of the shell. The corresponding line-element has the 
form 

ds 2 = -  1 c2 R \1 gx c2 _ 8 G ~  

In the static case g = v = 0 and the metric can be brought to the Minkowski 
form by a constant adjustment of the coordinates, for shells with an 
arbitrarily large mass. 

To first order in [i and Rg/c 2 the geodesic equation may be written. 

a = �89 - ~?h/~t (14) 
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where h -  h0ie i (with summation) and ei are spatial unit vectors. Here a is 
the coordinate acceleration of a free particle. Inserting the metric (12) and 
performing the differentiations give an acceleration in the same direction as 
that of the shell, with a magnitude 

11 GMm/R 11 Rs 
a 3 mc~--- W -  g = - - ~ - - ~ g  (15) 

where Rs = 2Gm/c  2 is the Schwarzschild radius of the shell. 
Equation (15) is an expression of the translational inertial dragging 

inside a slowly accelerated massive shell. This dragging field is 
homogeneous, which indicates the absence of tidal acceleration fields as far 
as the linearized calculation goes. This is confirmed by calculating the com- 
ponents of the Riemann curvature tensor from the line-element (13). The 
calculation gives the result that the components are proportional to (g/c2) 2. 

The acceleration due to the translational inertial dragging effect may 
suitably be termed inertial acceleration, Equation (15) tells that the inertial 
acceleration inside an accelerated spherical shell is proportional to the ratio 
between the shell's gravitational binding energy and its rest energy or, 
equivalently, to the ratio between its Schwarzchild radius and its radius. 

4. PHYSICAL SIGNIFICANCE OF THE TRANSLATIONAL 
INERTIAL DRAGGING EFFECT 

In the following sections we investigate the physical significance of the 
translational inertial dragging effect in relation to Mach's principle and the 
general principle of relativity. We consider the limit of very massive shells 
with a mass equal to the mass of the universe. Two problems that appear 
in this limit are discussed in this section: (A) Why do we perturb the 
Minkowski metric and not, for example, the Rindler metric? and (B) Is 
the translational inertial dragging effect a physical (observable) effect, in 
the limit of a cosmic shell, or only a nonphysical coordinate effect? 

It is useful to start with a brief look at the corresponding rotational 
effect. 

4.1. Rotational Inertial Dragging 

The rotational inertial dragging effect, which was discovered by Lense 
and Thirring [1-3],  was later investigated by Cohen and Brill [12, 13] 
and by Orwig [14]. It was found that in the limit of a spherical shell with a 
radius equal to its Schwarzschild radius, the interior inertial frames are 
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dragged around rigidly with the same angular velocity as that of the shell. 
In this case of "perfect dragging" the motion of the inertial frames is 
completely determined by the shell. 

The Machian character of this result was noted by Brill and Cohen, 
who write [12]:  

A shell of matter of radius equal to its Schwarsehild radius has often been taken 
as an idealized cosmological model of our universe. Our result shows that in 
such a model there cannot be a rotation of the local inertial frame in the center 
relative to large masses in the universe. In this sense our result explains why the 
"fixed stars" are indeed fixed in our inertial frame, and in this sense the result is 
consistent with Mach's principle. 

It should be noted that the solution of the field equations is found by 
imposing a condition of asymptotic Minkowski metric far from the shell. 
This indicates that the cosmological application of the results represents an 
extrapolation that rests on somewhat unsecure ground. 

4.2. Translational Inertial Dragging 

The situation concerning our deduction of the translational inertial 
dragging is similar to that of the rotational case. 

The deduction of the solution inside the shell is based on a pertur- 
bation of the Minkowski metric. The shell accelerates relative to the chosen 
reference frame. This means that in the limit of a cosmic mass-shell, the 
reference frame is accelerated relative to the inertial frames. If we consider a 
homogeneous universe model, the inertial frames follow the cosmic shell. 
Assume that the observed acceleration of the shell is uniform. It has been 
suggested to us that, in this case, one should perturb the Rindler metric of 
a uniformly accelerated reference frame, and not the Minkowski metric. 

However, according to a Machian interpretation of general relativity, 
an acceleration field must be due to some source (nonvanishing energy- 
momentum tensor) generating it. The acceleration field in the Rindler 
metric does not have this property. It  exists in an empty universe. The 
point of the present article is to investigate if an acceleration field is 
produced by an accelerating mass (the shell), making any sourceless 
acceleration field superfluous. In a homogeneous universe the unperturbed 
solution describes space-time inside a cosmic shell that is observed to be 
static. This shell does not influence the space-time geometry inside it, which 
is thus Minkowskian. 

4.3. Observability of Translational Inertial Dragging 

The existence of a translational inertial dragging effect in general 
relativity has been pointed out by Einstein in connection with Machian 



Translational Inertial Dragging 111 

effects in general relativity [6].  He also discussed a related effect, the 
possible dependence of the inertial mass of a particle upon the mass of the 
universe. It was later shown by Brans [-15, 16] that there is no such 
measurable effect in general relativity. The effect which seemed to be 
apparent in an approximate 3-vector version of the geodesic equation was 
proved to be only a coordinate effect. 

One may wonder if the translational inertial dragging as given in 
Eq. (15) is also a nonmeasurable coordinate effect. The following example 
shows that this effect is, in principle, measurable. Consider a laboratory 
fixed at the surface of the Earth. The laboratory is surrounded by a 
movable shell, which is small enough that the motion of the shell does not 
influence the Earth's motion. 

In the laboratory we have a horizontal spring weight. With the 
surrounding shell at rest, the equilibrium position of the spring weight, 
which is constructed to move along the x axis, is Xo. 

Assume now that the shell is accelerating in the x direction as seen 
from the laboratory. The translational inertial dragging effect then forces 
the spring weight to a new equilibrium position x. The distance x - x 0  is 
proportional to the observed acceleration of the shell. 

In order to estimate the magnitude of this effect, we consider a shell 
with mass M =  1000 kg and radius R = 10 m. Then, according to Eq. (15) 
the acceleration field in the laboratory is of an order of magnitude 
a =  10 -25 g, where g is the acceleration of the shell. This effect is, in 
principle, measurable but extremely small, which leads to practical 
difficulties in obtaining an experimental test of it. 

Let the mass and radius of the shell be increased, so that they 
approach the total mass and radius of the universe. Then it seems that the 
observability of the translational inertial dragging effect vanishes, since 
the cosmic dragging field will now act on the Earth, and thus on the 
laboratory, in just the same way that it acts on the spring weight. Thus, the 
mass of the spring weight will remain at the position Xo. One is therefore 
tempted to conclude that the translational cosmic dragging field due to a 
cosmic shell is not observable. 

It is now shown that if a =  g in Eq. (15) for the dragging field due to a 
cosmic shell, then the above argument and conclusion are not valid. As the 
mass (and radius) of the shell increases, there will be an increasing inertial 
dragging, so that the relative acceleration between the Earth and the shell 
decreases. In the limit of a cosmic shell, the Earth will be at rest relative to 
the shell (neglecting the effect of the sun). 

The cosmic shell is then observed to be static. So we can only conclude 
that, as measured in a reference frame in which the cosmic shell is static, it 
does not induce any translational dragging field. 
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The translational inertial dragging effect appears only in reference 
frames where the cosmic shell is observed to accelerate. The observed 
state of motion of the cosmic shell can be defined by measuring the angular 
distribution of temperature for the cosmic background radiation, with 
equipment fixed in the laboratory. If one also measures, for example, by 
means of a spring weight, an acceleration field in a laboratory and finds 
that it is proportional to the acceleration of the cosmic shell, as inferred 
from measurements of the cosmic background radiation, then one has 
observed an instance of the translational inertial dragging effect. 

We now consider a laboratory in which such an effect can be 
measured, Einstein's lift. Assume that it falls freely. An observer fixed on 
the Earth observes that the lift accelerates downward, and the cosmic mass 
is at rest. In a Machian spirit, and in accordance with the general principle 
of relativity, an observer in the lift may consider himself and the lift as at 
rest. He observes that the Earth and the cosmic mass accelerate in the same 
direction (upward) and with equal acceleration. [assuming that a = g  in 
Eq. (15) for the dragging field due to a cosmic shell]. Also, he calculates 
the gravitational acceleration field due to the Earth and finds that it is of 
equal magnitude to the acceleration of the cosmic mass but oppositely 
directed (i.e., downward). 

The translational inertial dragging effect is essential when this observer 
is going to explain his observations. He finds that the Earth falls freely in 
the cosmic dragging field and that the lift is at rest because it is in 
equilibrium, acted upon by two equally large, oppositely directed 
gravitational acceleration fields: that due to the Earth and the dragging 
field due to the accelerated cosmic mass. 

The effect of the translational dragging field due to accelerated cosmic 

mass is not a small one. In fact we are quite used to it. But with reference 
to Newtonian mechanics we talk of inertial force fields in accelerated 
reference frames. However, according to the general principle of relativity, 
we may consider the laboratory as at rest. We then talk of gravitational 
dragging (acceleration) fields. The concept of "inertial forces," which may 
be regarded as a sort of trick in Newtonian mechanics, is thereby made 
superfluous. 

5. DOES THE GENERAL THEORY OF RELATIVITY CONTAIN 
THE GENERAL PRINCIPLE OF RELATIVITY? 

The consequences of the above results in connection with the principle 
of relativity are now discussed. 
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5.1. Einstein's Position: General Relativity Includes the General Principle of 
Relativity 

In the fol lowing discuss ion we defend Einstein 's  view, that  the 
pr inciple  of re la t ivi ty  is con ta ined  in the general  theory  of relat ivity.  This  
view has been expressed succint ly by Mr  in his s t anda rd  t ex tbook  on 
general  relat ivi ty [ ! 7 ] :  

Einstein advocated a new interpretation of the fictitious forces in accelerated 
systems of reference. The "fictitious" forces were treated as real forces on the 
same footing as any other force of nature. The reason for the occurrence in 
accelerated systems of reference of such peculiar forces should, according to this 
new idea, be sought in the circumstance that the distant masses of the fixed stars 
are accelerated relative to these systems of reference. The "fictitious forces" are 
thus treated as a kind of gravitational force, the acceleration of the distant 
masses causing a "field of gravitation" in the system of reference considered. 
Only when we work in special systems of reference, viz. systems of inertia, it is 
not necessary to include the distant masses in our considerations, and this is the 
only point which distinguishes the systems of inertia from other systems of 
reference. It can, however, be assumed that all systems of reference are equivalent 
with respect to the formulation of the fundamental laws of physics. This is the so- 
called general principle of relativity. 

Note  tha t  the effect of local  mass  d i s t r ibu t ions  has no t  been t aken  into 
cons ide ra t ion  in the p a r a g r a p h  cited. The  "systems of iner t ia"  ment ioned  
by M011er are those of a h o m o g e n e o u s  universe. In  general  the te rm 
"sys tem of  iner t ia"  should  be replaced  by  "frames of  reference in which the 
cosmic  mass  has no observed  ro t a t ion  or  t r ans la t iona l  accelerat ion."  In the 
fol lowing such frames of  reference are called "cosmic  frames." The  
significance of  the cosmic  frames is tha t  observers  at  rest in a cosmic  frame 
experience no g rav i t a t iona l  dragging,  nei ther  ro t a t iona l  nor  t rans la t ional .  
A much-used  cosmic  frame is the one assoc ia ted  with the "comoving  coor -  
d ina te  systems" which are employed  to descr ibe  homogeneous ,  i sot ropic ,  
nonro ta t ing ,  and  expand ing  universe mode l s  by the R o b e r t s o n - W a l k e r  
l ine-element.  

In  o rder  to p repa re  for a t h o r o u g h  discuss ion of  the general  pr inciple  
of relat ivi ty,  we now define precisely the concepts  involved.  

5.2. Definition of the Concept "Gravitational Field" 

We star t  by defining the concepts  " coo rd ina t e  system" and  "reference 
frame." A coordinate sys tem K is a set of  four  var iables  x"  such tha t  each 
event  in that  pa r t  of  space- t ime which is covered by  K co r re sponds  to one 
set of  numbers  (x ~ x 1, x 2, x3), and  all events have different sets of numbers .  
A fi~ame o f  reference R is a set of  noncross ing  t ime-l ike curves in space-  
time. These curves are  wor ld  lines of  a set of " fundamenta l  par t ic les"  or  
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"fundamental observers" defining R. Roughly, one can say that a reference 
frame is a set of fundamental particles with given motion. 

A change of coordinates inside a given reference frame is called an 
internal coordinate transformation. It has the form 

x'i=x'i(xJ), x'~176 i , j =  1, 2, 3, /x=0, 1, 2, 3 (16) 

The Christoffel symbols of the second kind transform according to 

aX ,2 (~X ~ ~X (~X ,2 (~2X~ 
r ' ~  - - -  - -  ( 1 7 )  

,v ~x , #x, ~ #x,V F ~  + ~x ~ #x,~ #x,V 

where the first term represents the tensor transformation and the second, 
2 inhomogeneous term makes F ~v, in general, a nontensor. It follows that 

F;~,v transforms as a tensor under every linear transformation, for example, 
under a Lorentz transformation. 

The particular Christoffel symbols Fiuo= Fio~ transform tensorially 
under internal coordinate transformations. They are called the physical 
Christoffel symbols. 

We also need to make a distinction between the acceleration of a 
particle relative to a chosen frame of reference and the acceleration of a 
particle relative to an observer in free fall. The first type of acceleration 
is frame dependent. It is called observed acceleration. The observed 
acceleration is represented by a 3-vector. It is the ordinary acceleration of a 
body, as measured by standard measuring sticks and clocks fixed in the 
reference frame of the observer. 

The second type of acceleration is frame independent. It is called 
cosmic acceleration. The cosmic acceleration is represented by a space-like 
4-vector, the four-acceleration. It is the acceleration of a body, as measured 
by standard measuring sticks and clocks fixed in the successive instan- 
taneous inertial rest frames of the body. 

A local inertial reference frame is rotation-free and freely falling. The 
fundamental particles of an inertial reference frame have vanishing four- 
acceleration. They have no cosmic acceleration. In addition, the four- 
velocity field of these particles has no rotation. 

The world lines of particles with vanishing four-acceleration are 
described by the geodesic equation. According to this equation the obser- 
ved acceleration of a free particle in a frame with nonvanishing cosmic 
acceleration, i.e., a noninertial frame, arises entirely from the nonvanishing 
physical Christoffel symbols, F~o [18, 19]. 

We are now able to give a definition of the concept "gravitational 
field" which takes into account both Newtonian and Einsteinian properties 
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of gravity. This is performed by including both the Newtonian nontidal 
component of gravity and the relativistic tidal component in an extended 
definition of gravitational field. 

There is a nontidal component of a gravitational field present at a 
point of space-time, if and only if at least one of the Christoffel symbols 
F;~ 0 is nonvanishing at this point. There is a tidal gravitational field present 
at a point of space-time, if and only if the Riemann curvature tensor is non- 
vanishing at this point. There is a gravitational field present at a point of 
space-time, if and only if the Riemann curvature tensor or at least one of 
the', Christoffel symbols Fiuo is nonvanishing at this point. 

The nontidal component of a gravitational field is calculated from 
Einstein's field equations, for a given choice of coordinate system. In order 
to find the nontidal component of a gravitational field, the equations are 
solved for Fi,0 . The tidal component is found by solving the equations for 
the Riemann curvature tensor. 

The tidal component is due to mass energy, localized or not. Even if 
the tidal component of the gravitational field in, for example, the 
Schwarzschild space-time is source-free, in the sense that it represents a 
vacuum solution of Einstein's field equations, one may identify a localized 
spherical mass distribution as "cause" of this field. 

In general a nontidal gravitational field has two contributions. There 
is a contribution associated with localized matter distributions. It is 
proportional to the mass of the system and inversely proportional to the 
square of the distance from its center, in the Newtonian limit. There is also 
a cosmic contribution to the nontidal gravitational field. This is the inertial 
dragging field. It is proportional to the mass of the cosmic matter and its 
observed rotation or acceleration. 

The nontidal component of a gravitational field is not a propagating 
field in the usual (wave) sense. The tidal component propagates as 
gravitational waves. If, say, a galaxy explodes, gravitational waves are 
emitted and the mass of the galaxy decreases. Then the region in which the 
decrease in mass may be (electromagnetically) observed is extending with 
the velocity of light. This is the same as the spreading of a nontidal 
gravitational field, since Fr0o is proportional to the mass of the galaxy in 
the Schwarzschild space-time surrounding it. It is interesting to note that 
gravitational waves have to move with the velocity of light in order that 
the tidal and nontidal components of a gravitational field shall spread 
together. 

From the geodesic equation one finds that the Christoffel symbols F~o 
have the following physical significance. Fioo gives freely moving particles a 
translational acceleration. F~o gives freely moving particles a Coriolis 
acceleration. Thus it is natural to separate a nontidal gravitational field 
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into two components: a translational component and a rotational one, 
defined as follows. 

There is a translational component of a gravitational field present at a 
point of space-time, as measured in a given reference frame, if and only if at 
least one of the Christoffel symbols Fioo is nonvanishing at this point. 
There is a rotational component of a gravitational field present at a point 
of space-time, in a given reference frame, if and only if at least one of the 
Christoffel symbols F;j~ is nonvanishing at this point. 

Note that the translational component of a gravitational field is 
generally not homogeneous (i.e., position independent). Also, a homo- 
geneous field can have nonvanishing tidal components (as in the Friedmann 
cosmological models). 

The existence of a nontidal gravitational field is frame dependent. The 
existence of a tidal gravitational field is frame independent. Our extended 
definition of the concept gravitational field gives meaning to statements 
such as, "A uniform gravitational field is indistinguishable from a uniform 
acceleration of a reference frame" [20, 21 ], where "uniform" is understood 
in the sense "translational," as defined above; and "Locally (in a region of 
space-time not too large) one cannot in principle distinguish between the 
action of a gravitational field and an acceleration" [22]. A related 
statement is that one can transform away a gravitational field locally by 
going into a local inertial frame [23-25]. The precise meaning of the word 
"local" in this context is that the observations are to be temporally and 
spatially restricted so that tidal forces cannot be measured for a specified 
measuring accuracy. Thus the statements above concern the nontidal 
components of gravitational fields, 

We now proceed to a discussion of the two usual versions of the 
principle of equivalence and the general principle of relativity. 

5.3. The Fundamental Principles 

According to the weak principle of equivalence the inertial mass of a 
particle is proportional to its gravitational mass. 

The strong principle of equivalence may be formulated as follows: given 
a certain measuring accuracy, then there exists a local inertial system JCR, 
SO that to every physical process P1 in JCR, there exists a physical process 
P2 in an inertial system JSR in flat space-time, with the property that P2 is 
observed in JSR just like P1 is observed in J6R, assuming that P1 and P2 
are sufficiently restricted in space and time. 

The strong principle of equivalence concerns the existence and 
physical equivalence of inertial systems in arbitrary regions of space-time. 
However, if we compare observations in noninertial and inertial reference 
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frames, we find differences. Light, for example, is deflected in a noninertial 
reference frame but moves along a straight line in an inertial frame. There 
are generally several ways, both mechanically and optically, to discover if 
one is in an inertial or a noninertial reference frame. 

In spite of this, Einstein generalized the special principle of relativity 
to a general principle of relativity, encompassing noninertial reference 
frames. Even if one restricts oneself to using inertial frames, the chain of 
events considered in a process will depend not only upon the laws of 
nature, but also upon the boundary conditions. If arbitrary reference 
frames are employed, the process will also depend upon the metric. If the 
laws of nature are formulated in a metric-independent way, one may state 
the general principle of relativity as follows: the laws of nature may be stated 
in the same way in every frame of reference. As for the motion of light, for 
example, the law is that light follows null geodesic curves. From this law it 
follows that light is deflected in noninertial frames and follows straight 
paths in inertial ones. 

Actually, there exist two versions of the general principle of relativity. 
The above one, which is equivalent to the formulation of M011er cited 
above, is henceforth referred to as "the weak principle of relativity." It 
concerns all types of physical phenomena. 

The second version of the general principle of relativity, which is not 
equivalent to the first one, is loosely referred to as "the principle of 
relativity of all motion" and may be stated: as far as gravitational 
phenomena are concerned, every observer may consider his laboratory as 
at rest. This is referred to as "the strong principle of relativity." The 
expression "gravitational phenomena" means that the observed bodies are 
neutral with respect to all types of charge (except mass). 

The weak principle of relativity concerns our formulations of the laws 
of nature. The strong principle of relativity, on the other hand, concerns 
the consequences of these laws, as to observable phenomena. It says that 
the gravitational laws must, among others, have as a consequence that all 
gravitational phenomena observed in an arbitrary laboratory can be 
explained, while considering the laboratory as at rest. As shown below, the 
translational inertial dragging effect is of vital importance in this respect. 

The special principle of relativity says that there is no absolute 
velocity. This applies to all types of phenomena. The strong principle of 
relativity says that, with respect to gravitational phenomena, there exist no 
absolute acceleration. One may note that Newtonian dynamics and 
gravitational theory obey the special principle of relativity but not the 
strong principle of relativity. 

As an illustration of the role of inertial dragging for the validity of the 
strong principle of relativity, we consider the Moon orbiting the Earth. As 
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seen by an observer on the M o o n  both  the M o o n  and the Ear th  are at rest 
(disregarding the observed spin of the Earth,  which is of  no concern here). 
If the observer solves Einstein's field equat ions for the vacuum space-time 
outside the Earth,  he might  come up with the Schwarzschild solution and 
conclude that  the M o o n  should fall toward  the Earth,  which it does not. So 
it seems impossible to consider the M o o n  as at rest ,  which would imply 
that  the strong principle of relativity is not  valid. 

This problem has the following solution. As observed from the M o o n  
the cosmic mass rotates. The rotat ing cosmic mass has to be included when 
the M o o n  observer solves Einstein's field equations. Doing  this he finds 
that  the rotat ing cosmic mass induces the rotat ional  nontidal  gravitat ional  
field which is interpreted as the centrifugal field in Newt  onian theory. This 
field explains to him why the M o o n  does not  fall toward  the Earth. 

As we have shown above, corresponding results are valid for observers 
with accelerated translational motion.  

5.4. The General Principle of Relativity Is Not Included in the General 
Theory of Relativity: An Argument 

An argument  against the extension of  the principle of relativity to 
accelerated mot ion  has recently been given, by considering a variant  of 
Newton ' s  bucket  experiment in which the bucket  is uniformly accelerated 
[4, 26].  In  order  to make our  discussion of  this impor tan t  question as self- 
contained as possible, we cite the whole a rgument  given in Ref. 4. 

Mach considered all motion to be relative. In rejecting the notion of absolute 
space Mach had predecessors in Leibniz and Berkeley, among others. If only 
relative motion has significance, the inertial frames must be determined by mat- 
ter. To give these vague ideas a more definite formulation, one may extend the 
principle of relativity to accelerated motion and postulate that inertial forces are 
due to the gravitational field generated by all matter in the universe. According 
to Einstein's relativistic theory of gravitation (which has observational support 
for macroscopic phenomena), however, these notions must be rejected since 
they imply the global equivalence of inertial and certain gravitational forces in 
contrast to Einstein's principle of equivalence which is purely local. To illustrate 
this point, consider a variant of Newton's bucket experiment in which the 
bucket is uniformly accelerated. Other than forces of electromagnetic origin 
(such as viscosity), the fluid in the bucket is also subject to a uniform inertial 
force field (relative to the bucket). A contradiction arises, however, if the bucket 
is now treated as freely falling in the gravitational field generated by all the mat- 
ter in the universe in accelerated motion, since according to Einstein's theory 
the only external gravitational forces that affect the motion of the fluid relative 
to the bucket are tidal forces. 
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5.5. Nonvalidity of the Argument 

This argument is now discussed in light of the results above. 
In the following the term "accelerated" or "acceleration" means 

"(with) observed acceleration." 
The calculations in Sections 2 and 3 gave the result that a freely falling 

object in the field generated by an accelerated cosmic mass will accelerate 
in the same direction as the cosmic mass [see Eq. (15)]. The mass density 
of the universe is near the critical density. This indicates that the propor-  
tionality constant between the acceleration of the free test body and the 
acceleration of the cosmic mass is of order unity. We assume that the mass 
and radius of the universe have magnitudes such that a = g. 

Consider now the argument cited above. One first talks about  a 
uniformly accelerated bucket and then points out that a contradiction 
arises if the bucket is treated as moving freely in the gravitational field 
generated by all the matter  in the universe in accelerated motion. But 
according to our results and the assumption above, concerning the mass 
and radius of the universe, a bucket that moves freely in a horizontal 
direction will have vanishing acceleration relative to the cosmic mass. 

In the argument cited in Section 5.4. the uniform acceleration of the 
bucket is a "cosmic" acceleration. Therefore, in order to give the bucket 
this acceleration, a nongravitational force must act on it. The bucket may, 
for example, be acted upon by a rocket. The two situations referred to 
above are dynamically different. A contradiction would have been present if 
the argument of Ref. 4 referred to one and the same situation as described 
from different frames of reference. That  is not the case. 

5.6. Nonvalidity of the Strong Principle of Relativity Extended to Encom- 
pass Electromagnetic Phenomena 

In Section 2 we found, with reference to an inertial reference frame, 
that there was an electric field inside an accelerated charged shell. The same 
situation can, of course, be described from the uniformly accelerated rest 
frame of the shell (see Appendix). 

Below we consider a variant of Newton's bucket experiment in which 
a bucket with water, at the surface of the Earth, is given a horizontal 
cosmic acceleration by, for example, a rocket. 3 

In the electromagnetic case this corresponds to a situation where a 
test-charge accelerates inside a static charged shell. As described from the 
inertial rest frame of the shell, it is obvious that the electromagnetic field 

3 The rotation of the Earth is of no relevance for our considerations and is therefore neglected. 
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tensor vanishes inside the shell. Thus the test-charge does not experience 
any electrical force. 

This leads to an argument in which the general principle of relativity 
seems to defy our result given in Eq. (13), which predicts the existence of 
an electrical field inside a charged, uniformly accelerated spherical shell. 
Assuming relativity of all motion, the electrical field determined by a static 
observer inside the accelerated, charged shell should be the same as that 
determined by an observer accelerating in the opposite sense inside a static 
shell. Since the electromagnetic field t e n s o r  is zero inside the static shell, it 
should remain zero for the accelerated observer. 

The conclusion that we are led to by the above argument is that the 
strong principle of relativity is not valid for electromagnetic phenomena. 

But it c a n  be applied to the corresponding gravitational situation. This 
leads to the following: the gravitational field determined by an inertial 
observer inside the accelerated shell must be the same as that determined 
by an observer accelerating in the opposite sense inside an inertial shell. 
This is perfectly correct. But a statement such as, "If a static observer finds 
that the electromagnetic field tensor vanishes inside a nonaccelerated shell, 
then it vanishes for an observer that accelerates through it, too," cannot be 
applied to the gravitational case. A uniform gravitational field is described 
not by a field tensor, but by certain Christoffel symbols. These are not 
invariant with respect to a transformation between an inertial and a non- 
inertial reference frame. 

Like other laws of nature the strong principle of relativity has a 
restricted range of validity. An example of a similar kind is the nonvalidity 
of the principle of parity-invariance for the weak interaction. An interesting 
possibility should be mentioned, however. According to the Kaluza-Klein 
theory electromagnetism may be given a geometrical interpretation in a 
five-dimensional world, free of charges and electromagnetic fields. We 
conjecture that there exists a five-dimensional version of the strong 
principle of relativity with a region of validity encompassing electro- 
magnetic phenomena. 

5.7. The Translational Bucket Experiment 

We now consider the variant of Newton's bucket experiment in which 
a bucket with water at the surface of the Earth is accelerated horizontally 
by, for example, a rocket [22]. Since the Earth moves freely, the observed 
acceleration coincides with the horizontal component of the bucket's 
cosmic acceleration, which is due to a nongravitational force F ~. 

Because of the force from the accelerated bucket upon the water, the 
surface of the water will not be horizontal. 
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The frame-independent law governing the shape of the water surface in 
the bucket is the equation of motion of the liquid particles, which may be 
stated as follows: the rate of change of four-momentum of a particle equals 
the sum of the four-forces acting on it. For  a particle with constant rest 
mass mo this gives 

Fl'=moU~;vU v (18) 

where U ~ are the components of the four-velocity of the particle. To first 
order in v/c and ~b/c 2 the spatial components of Eq. (18), as referred to an 
arbitrary frame of reference, reduce to 

F = mo[a - 1c2 Vho0 + Oh/#t] (19) 

where a is the observed acceleration of the test particle. 
According to our assumption above, concerning the mass and radius 

of the universe, the translational inertial dragging due to the cosmic mass 
makes an inertial reference frame coincide with a cosmic reference frame as 
far as horizontal motion is concerned. 

Referred to a member of this class of reference frames, the equation 
reduces to the ordinary form of Newton's second law. The water accelerates 
due to the force F, and one finds that the surface of the water is inclined at 
an angle ~ to the horizontal, given by tan ~=a/go, where go is the 
acceleration of gravity. 

Observed in the rest frame R 1 of the bucket, the force F keeps the 
bucket at rest. According to this observer the gravitational field at the 
position of the bucket has two components: one due to the Earth and one 
due to the accelerated cosmic mass. Thus the equipotential surfaces are not 
parallel to the surface of the Earth. Using the expression for 
-�89 Vho0 + Oh/~t given in Eq. (15), we find that the water is inclined at 
an angle fl to the horizontal, given by tanfl=(llGM/3c=R)(a/go). If 
l lGM/3c2R = 1, this will be consistent with the analysis as referred to R. 

5.8. The Strong Principle of Relativity, Mach's Principle, and Translational 
Inertial Dragging 

The induced gravitational acceleration observed in R 1 has a Machian 
character. In a homogeneous universe it tends to minimize the relative 
acceleration between a free test particle and the mass of the universe. This 
acceleration field gives an explanation of why it is necessary to apply a 
nongravitational force to accelerate a particle relative to the average 
motion of the matter in the universe. Also, the existence of this field is 
necessary in order for the strong principle of relativity to be valid for 
gravitational phenomena. 

842/21/2-2 
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All four-forces F ~ may, in principle, be reduced to the known interac- 
tions of nongravitational nature (electroweak and color interaction). They 
are determined by the distribution of matter surrounding the test particle. 
If one such force acts on the test particle as referred to R, then one such 
force acts on the particle as observed in R 1 also. Then it would be 
impossible to explain how the particle can stay at rest in R 1 if there were 
no induced gravitational forces acting in R 1. Thus the kinematical and 
dynamical consequences of a transformation between R and R 1 would be 
inconsistent with each other. This would constitute a violation of the 
strong principle of relativity. 

This example illustrates an important difference between the four- 
forces F u and the induced gravitational acceleration. The existence of a 
four-force F ~ depends upon the distribution of mat ter ,but  not upon its 
motion. This is a property of the physical situation that does not depend 
upon the choice of reference frame. Thus it is not, in general, possible to 
transform away a four-force F ~. The induced gravitational acceleration, on 
the other hand, depends upon the motion of the surrounding matter. It can 
be transformed away by locally going into a reference frame in which the 
surrounding matter is at rest (in the cases that such a rest system exists). 

Note that the strong principle of relativity, as stated above, does not 
imply a global equivalence of inertial acceleration fields (in Newtonian 
sense) and gravitational dragging fields. There may exist inertial 
acceleration fields with properties that cannot be produced by gravitational 
induction. The inertial acceleration field in a rotating reference frame, for 
example, has the property that the acceleration of a free test particle is 
proportional to its distance from the axis. Presumably no vacuum solution 
exists where this appears as a property of the gravitational field induced by 
a distant rotating distribution of mass. 

The strong principle of relativity, however, says only that an observer 
with arbitrary motion is allowed to consider himself (his laboratory) as at 
rest. No gravitational experiment in his laboratory can tell whether the 
laboratory moves or not. In order for this to be true, gravitational force 
fields must be induced by moving masses, so that results of local 
experiments may be explained equally well under the assumption that the 
laboratory is at rest, as under the assumption that it moves in an arbitrary 
manner. 

A P P E N D I X  

We consider the electrical field inside an accelerated, charged shell, as 
described from the hyperbolically accelerated rest frame K' of the shell. In 
this references frame there is Rindler space with a horizon at x = 0. 
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The potentials at a point P(x,  y , z )  due to a charge q 
(xl, Yl, zl) are [27] 

45 = (q/r)(xl/x)1/2 (1 + rZ/4xxl ) - 1/2 ( 1 + r2/2xxl)  

A = ( - q / x ) e l  

where r is the distance between the charge and the field point. 
The fields are 

at rest at 

(A1) 

(A2) 

B = V •  E =  - ( 1 / x ) V ( x 4 5 )  (A3) 

Let: the center of the shell be at x = b = c 2 / g .  We put x = b + ~  and 
xl = b + ~1 and get, for the potential at P due to dq at the shell, 

d45 = (dq/r)(1 + ~l/b) 1/2 (1 + ~/b) -I/2 [1 + rZ/4(b + ~)(b + ~1)] 1/2 

x [1 + rZ/2(b + ~)(b + ~1)] (A4) 

The acceleration is assumed to be small, i.e., g ~ cZ/R, so that R ~ b and 
~ b, ~1 ~ b. To first order in ~g/c 2 this gives 

d ~  ~ (dq/r)[1 + ( ~  - ~)/2b] (A5) 

Integrating over the spherical shell, we find at a point inside the shell 

45 = (Q/R)(1 - gr 2) (a6) 

To lowest order Eqs. (A3) and (A6) give 

E = - ( 2 Q / 3 R e  2) (a7) 

in accordance with Eq. (6). 
One point seems to require a comment. In the electromagnetic case the 

calculation, as referred to the rest frame of the shell, is based on the Rindler 
metric, while the corresponding gravitational calculation is based upon the 
Minkowski metric. This difference is due to the following circumstance. The 
electromagnetic case concerns the calculation of an electromagnetic field in 
a given metric. But in the gravitational case the field is essentially the 
metric itself. The field is a perturbation of the metric inside a static shell, 
which is the Minkowski metric. 

The difference between the electromagnetic and the gravitational cases 
is an expression of the fact that the strong principle of relativity is valid as 
far as gravitation concerns, but it is not generally valid in connection with 
electromagnetic phenomena. For example, there is no electromagnetic field 
tensor inside an inertial shell, whether the description is referred to an 
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inertial or a noninertial observer. But in a Shell with cosmic acceleration 
there is a nonvanishing electromagnetic field tensor, which cannot be trans- 
formed away by going into the accelerated rest frame of the shell. 

In the gravitational case the electromagnetic field tensor is replaced by 
an acceleration field, which is given by certain Christoffel symbols. This is 
not a tensor field. The Christoffel symbols may be transformed away by a 
suitable choice of reference frame. This nontensorial property of the 
gravitational acceleration field is compatible with the validity of the strong 
principle of relativity. 
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