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Abstract If one has to attain high accuracy over long timescales during the numerical com-
putation of the N -body problem, themethod called Lie-integration is one of themost effective
algorithms. In this paper, we present a set of recurrence relations with which the coefficients
needed by the Lie-integration of the orbital elements related to the spatial N -body problem
can be derived up to arbitrary order. Similarly to the planar case, these formulae yield iden-
tically zero series in the case of no perturbations. In addition, the derivation of the formulae
has two stages, analogously to the planar problem. Namely, the formulae are obtained to the
first order, and then, higher-order relations are expanded by involving directly the multilinear
and fractional properties of the Lie-operator.

Keywords N-body problem · Planetary systems · Numerical methods · Lie-integration

1 Introduction

In terms of effectiveness, the method of Lie-integration is one of the most competitive algo-
rithms for numerical computation of gravitational N -body dynamics. Unlike the “classical”
ways for numerical integration, this method computes the Taylor-coefficients of the solution
(see Gröbner and Knapp 1967). Hence, the integration itself is relatively straightforward
once these coefficients are known. The derivation of the Taylor-coefficients for a particular
ẋi = fi (x1, . . . , xN ) ordinary differential equation is based on the so-called Lie-operator.
Recalling the basics of this method, we define this operator as
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98 A. Pál

L :=
N∑

i=1

fi
∂

∂xi
, (1)

and by involving this definition, an advancement by �t of the ordinary differential equation
can be written as

xi (t + �t) = exp(�t L)xi (t) =
∞∑

k=0

�tk

k! Lkxi (t). (2)

The numericalmethod called Lie-integration is the finite approximation of the above equation
for exponential expansion (up to a certain order which can either be fixed or be adaptively
varied, see also Sect. 3.1 in Pál 2010). In order to effectively obtain these coefficients,
recurrence formulae can be applied for the Cartesian coordinates of the orbiting bodies
which are directly bootstrapped with the initial conditions. Such formulae are known for the
gravitational N -body problem (Hanslmeier and Dvorak 1984; Pál and Süli 2007). A similar
kind of relation has been obtained for the restricted three-body problem (Delva 1984), and
relativistic and non-gravitational effects (such as Yarkovsky force) can be included as well
(Bancelin et al. 2012). In addition, semi-analytic calculations can also be performed to obtain
parametric derivatives of observables with respect to orbital elements (Pál 2010).

In this paper, we present such recurrence formulae for the orbital elements in the case
of spatial gravitational N -body problem. Recently, the relations for planar orbital elements
have been derived (Pál 2014). Therefore, our goal now is to extend these relations to the third
dimension by including the orbital elements related to the orbital inclination and ascending
node. It should be noted, however, that the relations are not obtained for the longitude of
ascending node directly, since it is meaningless in the i → 0 limit.

In the following section, Sect. 2, we describe the problem itself and the recurrence relations
for the Cartesian coordinates and velocities. The discussion of the spatial problem is split into
three parts. Section 3 details the angular momentum vector and the related orbital orientation.
The next part, Sect. 4, shows how the orbital eccentricity can be treated in the spatial problem.
The set of relations is ended with the mean longitude (Sect. 5). In Sect. 6, we demonstrate
how higher-order derivatives are obtained. Our conclusions are summarized in Sect. 7.

2 The N-body problem

If we consider Cartesian coordinates and velocities, the recurrence relations for the spatial
gravitational N -body problem have the same structure as in the planar case. Similarly to Pál
(2014), let us fix one of the bodies (e.g., the Sun in the case of the Solar System) at the center
and this body is orbited by N additional ones, indexed by 1 ≤ i ≤ N . In total, we deal with
1 + N bodies, having a mass of M and mi , respectively. If we denote the coordinates and
velocities of the i th body by (xi , yi , zi ) and (ẋi , ẏi , żi ), we can define the central and mutual
distances ρi and ρi j as ρ2

i = x2i + y2i + z2i and ρ2
i j = (xi − x j )2 + (yi − y j )2 + (zi − z j )2, the

inverse cubic distances φi = ρ−3
i and φi j = ρ−3

i j and the standard gravitational parameters
μi = G(M +mi ). The quantities Λi = xi ẋi + yi ẏi + zi żi and Λi j = (xi − x j )(ẋi − ẋ j ) +
(yi − y j )(ẏi − ẏ j )+ (zi − z j )(żi − ż j ) are also employed in the series of recurrence relations.
With these quantities, the recurrence relations for the xi coordinates and ẋi velocities can be
written as

Ln+1xi = Ln ẋi , (3)
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Lie-series for orbital elements: II. The spatial case 99

Ln+1 ẋi = −μi

n∑

k=0

(
n

k

)
Lkφi L

n−k xi

−
∑

j �=i

Gm j

n∑

k=0

(
n

k

) [
Lkφi j L

n−k(xi − x j ) + Lkφ j L
n−k x j

]
, (4)

while the relations for yi and zi also have the same structure. The relations for the reciprocal
cubic distances can be computed in a similar manner as it is done in the planar case, for
instance, using Eqs. (3)–(6) from Pál (2014). Once the recurrence relations are obtained and
evaluated with the appropriate initial conditions, temporal evolution can be computed with
the finite approximation of

xi (t + �t) = exp (�t L) xi (t) =
∞∑

k=0

(�t)k

k! Lkxi (t) ≈
kmax∑

k=0

(�t)k

k! Lkxi (t). (5)

Here the summation limit kmax refers to the maximum integration order. Of course, this
calculation is performed not only for the xi coordinates but for all of the Cartesian coordinates
and velocities.

3 The angular momentum and the orientation of the orbit

In the following, we detail the computations and relations comprehending the orbital angular
momentum and the orientation of the orbit.

3.1 Angular momentum

In the case of the planar problem, the angular momentum is a pseudoscalar since it is the
Hodge dual of a skew-symmetric tensor of rank 2. In the spatial case, the angular momentum
is still a skew-symmetric tensor of rank 2; hence, it will have a three-component dual in a
form of a pseudovector. For the i th body, let us denote these 3 components by Cxi , Cyi and
Czi , respectively. These are computed as

Cxi = yi żi − zi ẏi , (6)

Cyi = zi ẋi − xi żi , (7)

Czi = xi ẏi − yi ẋi . (8)

The first-order Lie-derivatives of these pseudovector components can similarly be computed
like the pseudoscalar angular momentum in the planar case, viz.

LCxi =
∑

j �=i

Gm j φ̂i j S
[x]
i j , (9)

LCyi =
∑

j �=i

Gm j φ̂i j S
[y]
i j , (10)

LCzi =
∑

j �=i

Gm j φ̂i j S
[z]
i j , (11)
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100 A. Pál

where S[x]
i j , S

[y]
i j and S[z]

i j are defined as

S[x]
i j = yi z j − zi y j , (12)

S[y]
i j = zi x j − xi z j , (13)

S[z]
i j = xi y j − yi x j , (14)

and φ̂i j = φi j −φ j . In order to compute the magnitude of the angular momentum vector, Ci ,
we can employ two approaches, as well. First, using the fact that C2

i is the sum of squares of
the pseudovector components Cxi , Cyi and Czi , we can write

1

2
L

(
C2
i

) = Ci LCi = Cxi LCxi + Cyi LCyi + Czi LCzi . (15)

The second alternative is to exploit Lagrange’s identity for cross products, namely

1

2
C2
i = 1

2
Ci · Ci = 1

2
(ri × ṙi ) · (ri × ṙi ) = 1

2
r2i ṙ

2
i − 1

2
(ri · ṙi )2 = 1

2
ρ2
i U

2
i − 1

2
Λ2

i ,

(16)

whereU 2
i = ẋ2i + ẏ2i + ż2i . Here, ρ

2
i U

2
i can be written as 2μiρi −Hiρ

2
i where Hi is twice the

negative specific energy, Hi = 2μi/ρi − U 2
i . Since both Hi and Λi are scalars, the planar

and spatial forms of the first Lie-derivatives are going to be the same:

LHi = 2
∑

j �=i

Gm j

[
φi jΛi − φ̂i j Λ̂ j i

]
, (17)

LΛi =
(
U 2
i − μi

ρi

)
+

∑

j �=i

Gm j

[
φ̂i j Ri j − φi jρ

2
i

]
. (18)

Here Ri j = xi x j + yi y j + zi z j and Λ̂ j i = x j ẋi + y j ẏi + z j żi (see also Pál 2014). Using
the relation 1

2 L(ρ2
i ) = Λi , the above two equations and Eq. (16), it can be seen that

1

2
L

(
C2
i

) =
∑

j �=i

Gm j φ̂i j

[
ρ2
i Λ̂ j i − Λi Ri j

]
. (19)

We should emphasize here that although |Czi | is equal to Ci in the planar limit1, it does not
mean that expressions valid in the planar case could automatically be extended into the spatial
form if such expressions are functions of pseudoscalars. In the calculations presented in Pál
(2014), such differences were tacitly ignored; therefore, one should examine the individual

terms before applying these in the third dimension. In fact, Ci =
√
C2
i is a scalar (hence

Eq. 19 is valid in both the planar and spatial cases), but Czi is not—despite the validity of
Eq. (11) for the angular momentum in the planar case.

3.2 The orientation of the orbit

Using the well-known relations for the longitude of the ascending nodeΩ and the inclination
i , one can compute these byknowing the components of the angularmomentumpseudovector:

1 When zi → 0 and żi → 0 for all 1 ≤ i ≤ N .
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Lie-series for orbital elements: II. The spatial case 101

sin ii cosΩi = −Cyi

Ci
, (20)

sin ii sinΩi = +Cxi

Ci
, (21)

cos ii = Czi

Ci
. (22)

We note that in the case of small inclinations, the longitude of ascending node is not so well
constrained, so in order to avoid roundoff errors or parametric singularities, it is easier to
use the Lagrangian orbital elements sin ii cosΩi and sin ii sinΩi instead of the angles. Due
to the simple relations between the Lagrangian orbital elements and the components of the
angular momentum pseudovector, it is also sufficient to deal purely with the Cxi , Cyi and
Czi terms.

3.3 Lie-series for fractions

In the above relations for the Lagrangian ascending node and inclination, fractions appear
for quantities whose Lie-series are known. Although recurrence relations for such fractions
can be computed in two steps (first by computing the denominator’s reciprocal and then by
multiplying it using the Leibniz’ product rule with the numerator), it can be performed in
a single step. Let us have two quantities, A and B for which the relations are known up
to the order n. It can be shown by mathematical induction that the nth Lie-derivative of
A/B = AB−1 can be written as a function of the Lie-derivatives of A, B up to the order n
and AB−1 up to the order n − 1:

Ln(AB−1) = (Ln A)B−1 − B−1
n∑

k=1

(
n

k

)
Ln−k(AB−1)Lk B. (23)

Employing this relation reduces the number of auxiliary quantities that would otherwise have
to be introduced for the computation of (more complex) recurrence relations.

4 Eccentricity and related quantities

In the spatial case, the longitude of pericenter � is defined as the sum of longitude of
ascending nodeΩi and the argument of pericenter,ωi , namely�i = Ωi +ωi . This definition
yields the continuity of the longitude of pericenter in the planar limit of ii → 0 when both
Ωi and ωi are meaningless. Once �i is obtained, the Lagrangian orbital elements ki and hi
are defined accordingly, i.e.,

(
ki
hi

)
= ei

(
cos�i

sin�i

)
. (24)

It can also be deduced that if the i th orbit is rotated around the line of its nodes into the
reference plane, then �i and hence ki and hi are not altered. The aforementioned rotation
depends only on the components of the angular momentum vector. Hence, we can write the
related rotation matrix as the function of the Cxi , Cyi and Czi components as
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102 A. Pál

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 − C2
xi

C2
i + CiCzi

−CxiCyi

C2
i + CiCzi

−Cxi

Ci

− CxiCyi

C2
i + CiCzi

1 − C2
yi

C2
i + CiCzi

−Cyi

Ci
Cxi

Ci

Cyi

Ci

Czi

Ci

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(25)

For instance, the coordinate xi located in the i th orbital plane is transformed into:

x ′
i = xi − C2

xi

C2
i + CiCzi

xi − CxiCyi

C2
i + CiCzi

yi − Cxi

Ci
zi . (26)

By exploiting the fact that Cxi xi + Cyi yi + Czi zi = 0, the above equation can greatly be
simplified:

x ′
i = xi − Cxi zi

Ci + Czi
. (27)

The similar structure can be used for the yi coordinate, and the velocity components are also
transformed similarly since Cxi ẋi + Cyi ẏi + Czi żi is also 0. Due to the previously noted
invariance of the ki and hi elements, these can be computed as

(
ki
hi

)
= Ci

μi

(+ẏ′
i

−ẋ ′
i

)
− 1

ρi

(
x ′
i

y′
i

)
. (28)

If we substitute Eq. 27 (and the similar relations for yi , ẋi and ẏi ) into the above equation,
we get

(
ki
hi

)
= Ci

μi

[(+ẏi
−ẋi

)
−

(+pyi
−pxi

)
żi

]
− 1

ρi

[(
xi
yi

)
−

(
pxi
pyi

)
zi

]
, (29)

where we defined
(
pxi
pyi

)
= 1

Ci + Czi

(
Cxi

Cyi

)
. (30)

We note that these pxi and pyi quantities are also integrals of motion and can be computed
purely from the inclination and longitude of ascending node (but not as simple as in Eqs. 20
or 21). Let us also define the quantities axi , ayi , azi as

axi =
∑

i �= j

Gm j

[
φ̂i j x j − φi j xi

]
, (31)

ayi =
∑

i �= j

Gm j

[
φ̂i j y j − φi j yi

]
, (32)

azi =
∑

i �= j

Gm j

[
φ̂i j z j − φi j zi

]
. (33)

Using the previously introduced variables, we can compute the first-order Lie-derivatives of
ki and hi as

Lki = +
[
LCi

μi
ẏi + Ci

μi
ayi

]
− py

[
LCi

μi
żi − Ci

μi
azi

]
−

[
+Ci

μi
Lpyi żi − zi

ρi
Lpxi

]
, (34)

Lhi = −
[
LCi

μi
ẋi + Ci

μi
axi

]
+ px

[
LCi

μi
żi − Ci

μi
azi

]
−

[
−Ci

μi
Lpxi żi − zi

ρi
Lpyi

]
. (35)
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Lie-series for orbital elements: II. The spatial case 103

Here, the first-order derivatives Lpxi and Lpyi can be computed as
(
Lpxi
Lpyi

)
= 1

Ci + Czi

[(
LCxi

LCyi

)
− (LCi + LCzi )

(
pxi
pyi

)]
. (36)

The derivation of the above equations is similar to the steps performed in Pál (2014). The
above two equations for Lki and Lhi are clearly zero if mutual perturbations are omitted
since then LCi , axi , ayi , azi , Lpxi and Lpyi are zero.

As an alternative, one can compute the Lie-derivatives of the Laplace–Runge–Lenz vector.
In the spatial case, this vector is defined as

ei = 1

μi
(ṙi × Ci ) − ri

ρi
, (37)

while all of its components,

exi = 1

μi
(Czi ẏi − Cyi żi ) − xi

ρi
, (38)

eyi = 1

μi
(Cxi żi − Czi ẋi ) − yi

ρi
, (39)

ezi = 1

μi
(Cyi ẋi − Cxi ẏi ) − zi

ρi
(40)

are integrals of motion. The Lie-derivatives of each of these components have the same
structure and can be obtained in a similar manner to the planar case. The first-order Lie-
derivatives of the (exi , eyi , ezi ) components are

Lexi = 1

μi

[
LCzi ẏi + Cziayi − LCyi żi − Cyiazi

]
, (41)

Leyi = 1

μi

[
LCxi żi + Cxiazi − LCzi ẋi − Cziaxi

]
, (42)

Lezi = 1

μi

[
LCyi ẋi + Cyiaxi − LCxi ẏi − Cxiayi

]
. (43)

In a practical implementation, one could choose whether to compute the Lagrangian orbital
elements ki , hi or the components of the vector ei . Due to the constraint

Ci · ei = Cxi exi + Cyi eyi + Czi ezi = 0, (44)

these two sets of variables are equivalent. The first-order Lie-derivatives of both (ki , hi ) and
(exi , eyi , ezi ) are multilinear expressions of terms whose derivatives are known in advance.
Therefore, higher-order derivatives can be computed in a straightforward manner: either
using Eq. (24) of Pál (2014) or by introducing auxiliary variables and exploit the product
rule for differentials.

5 Mean longitude

In order to compute the Lie-derivatives of the mean longitude, we can employ two different
approaches. First, similarly to Pál (2014), we write a relatively complex equation for it
and then take the full derivative. Here we follow an alternative approach. First, let us write
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104 A. Pál

the mean longitude in the form of λi = Mi + �i , where Mi is the mean anomaly2 and
�i = arg(ki , hi ) is the longitude of pericenter. Then, take the first-order Lie-derivatives of
both and coadd them in the hope that in the circular limit, the sum LMi + L�i would not
be meaningless. Finally, we use this first-order derivative in order to obtain the recurrence
relations for higher-order Lie-derivatives.

According to Kepler’s equation, the mean anomaly is computed as Mi = Ei − ei sin Ei

where the eccentric anomaly is written in the form of

Ei = arg(ei cos Ei , ei sin Ei ). (45)

Although Ei is still meaningless in the ei → 0 limit, the terms ei cos Ei and e sin Ei can be
computed using the basic relations of two-body kinematics even in the circular case:

ei cos Ei = 1 − ρi

ai
= 1 − ρi Hi

μi
, (46)

ei sin Ei = Λi Ji
Ci

, (47)

where Ji :=
√
1 − e2i (similarly to the definition used in Pál 2014). Then, the first-order

Lie-derivative of Mi is going to be

LMi = L arg(ei cos Ei , ei sin Ei ) − L(ei sin Ei )

= ei cos Ei L(ei sin Ei ) − ei sin Ei L(ei cos Ei )

e2i
− L(ei sin Ei ). (48)

After multiplying by e2i and substituting Eqs. (46) and (47), we get

e2i LMi =
(
1 − ρi Hi

μi

)
L

(
Λi Ji
Ci

)
+ Λi Ji

Ci
L

(
ρi Hi

μi

)
− (1 − J 2i )L

(
Λi Ji
Ci

)
. (49)

The expansion of the above equation yields the form

e2i LMi = μ2
i
J 3i
C3
i

e2i + J 3i
Ci

(
1 − ρiμi

C2
i

)
LΛpi +

(
1 + ρiμi

C2
i

)
JiΛiCi

2μ2
i

LHi . (50)

In this expansion, we use the quantity LΛpi which is defined as follows. Since Λi is not an
integral of motion, we split LΛi into two parts, viz.

LΛi =
(
U 2
i − μi

ρi

)
+

∑

i �= j

Gm j

[
φ̂i j Ri j − φi jρ

2
i

]
=

(
U 2
i − μi

ρi

)
+ LΛpi (51)

and then define LΛpi accordingly. Equation (50) for the mean anomaly has three parts. The
first one correspond to Kepler’s third law after dividing by e2i . Despite the fact that in the
non-perturbed case, the other two parts are zero, in the perturbed case (when LΛpi �= 0 or
LHi �= 0), the multipliers are only O(ei ) functions, not O(e2i ) functions; therefore, LMi is
meaningless in the e0 → 0 limit.

The first-order Lie-derivative of the mean longitude can only be computed if e2i L�i is
added to Eq. (50). The derivative of �i is computed using the relation

e2i L�i = ki Lhi − hi Lki . (52)

2 Note that the symbol M represents the central mass while the symbols Mi (with a single index) denote the
mean anomalies.
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Lie-series for orbital elements: II. The spatial case 105

It can be shown that if we add Eq. (52) to the equation related to the mean anomaly (see
Eq. 50), all of the O(ei ) terms cancel and Lλi is continuous in the ei → 0 limit. Without
going into the details, here we present the results of this computation. Similarly to the planar
case, Lλi is written into two parts: The first part corresponds to Kepler’s third law, while the
another term depends only on the mutual perturbations. Namely,

Lλi = 1

μi
H3/2
i + A0ρ

2
i

∑

j �=i

Gm jφi j + AA

∑

j �=i

Gm j φ̂i j (Cxi x j + Cyi y j ) +

+Az

∑

j �=i

Gm j φ̂i j z j + AP

∑

j �=i

Gm j φ̂i j Ri j + AL

∑

j �=i

Gm j φ̂i j Λ̂ j i (53)

The expressions for A0, AA, Az, AP and AL are the following:

A0 = 1

Ci

(
g−2
i − g−1

i

1 + Ji
+ 2Ji

)
, (54)

AA = zi
(1 + cos ii )2C2

i

, (55)

Az = zi
(1 + cos ii )Ci

, (56)

AP = 1

Ci

(
J 2i (gi − 1)

1 + Ji
− 2

)
+

zi
[
C2
i Λi żi − μ2

i (2g
−1
i − J 2i )zi

]

C5
i (1 + cos ii )2

, (57)

AL = ΛiCi (1 + gi )

μ2
i (1 + Ji )

+ zi
[−C4

i g
2
i żi + Λiμ

2
i zi

]

C3
i μ

2
i (1 + cos ii )2

, (58)

where the dimensionless quantity gi is defined as gi := μiρiC
−2
i .

One should note that the quantity A0 equals to the quantity with the same name used in
Eq. (49) of Pál (2014). We should also warn the reader that in the purely planar case, the
expansion of Lλi involved the quantity Ĉ ji := x j ẏi − y j ẋi . Since this quantity behaves as
a pseudoscalar in the purely planar case, it has no direct counterpart in the framework of the
spatial problem. Hence, in Eq. (53) we express Lλi as the function of Λ̂ j i instead of such
pseudoscalar-like quantities. Therefore, the equivalence of Eq. (53) here and Eq. (49) of Pál
(2014) is not obvious at the first glance in the limit of z → 0 and ż → 0. Nevertheless, one
could verify this equivalence by considering the relation Λ̂2

j i + Ĉ2
j i = ρ2

j U
2
i (where Ĉ ji

cannot even be defined in the spatial case).
We should note that some of the A∗ terms explicitly contain the third coordinate, zi and/or

its derivative, żi . Therefore, in a perturbed system, the time derivative of the mean longitude
is not a scalar and this is only invariant for a subgroup of the group SO(3) of proper rotations.
This subgroup is the SO(2) rotations around the z± axis. On the contrary, the expression
for the derivative of mean anomaly LMi (see Eq. 50) is a function of scalars. Hence, LMi is
invariant under arbitrary SO(3) transformations.

6 Higher-order derivatives

Higher-order Lie-derivatives can then almost automatically be derived since all of the corre-
sponding expressions contain multilinear, power and fractional terms for which recurrence
relations are known. The bilinear relation follows Leibniz’ product rule; for fractions one
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106 A. Pál

can use the derivation presented in Sect. 3.3, while for powers, one can involve Eq. (51) of
Pál (2014). In brief, one can conclude that the Lie-derivatives of any rational function can
be computed once the Lie-derivatives of the terms appearing in the function are known in
advance.

Actually, higher-order relations for the angular momentum based on Eqs. (9)–(11) can be
written as

Ln+1Cxi =
∑

j �=i

Gm j

n∑

k=0

(
n

k

)
Ln−k φ̂i j L

k S[x]
i j , (59)

Ln+1Cyi =
∑

j �=i

Gm j

n∑

k=0

(
n

k

)
Ln−k φ̂i j L

k S[y]
i j , (60)

Ln+1Czi =
∑

j �=i

Gm j

n∑

k=0

(
n

k

)
Ln−k φ̂i j L

k S[z]
i j , (61)

where the corresponding derivatives of Lk φ̂i j are known from earlier works (Hanslmeier and
Dvorak 1984; Pál and Süli 2007; Pál 2014) while

LnS[x]
i j =

n∑

k=0

(
n

k

) (
Ln−k yi L

k z j − Ln−k zi L
k y j

)
, (62)

LnS[y]
i j =

n∑

k=0

(
n

k

) (
Ln−k zi L

k x j − Ln−k xi L
k z j

)
, (63)

LnS[z]
i j =

n∑

k=0

(
n

k

) (
Ln−k xi L

k y j − Ln−k yi L
k x j

)
. (64)

Higher-order relations for the Lagrangian orbital elements k and h are obtained by expand-
ing the bi- and trilinear terms of Eqs. (34) and (35). This expansion has the following substeps:

– First, the fraction Ln
[
(Ci + Czi )

−1
]
is needed to be computed, using the rule presented

in Sect. 3.3. Here, the numerator is 1 (with zero Lie-derivatives), so Eq. (23) can further
be simplified. Alternatively, Eq. (51) of Pál (2014) can be used considering the exponent
of p = −1.

– Once Ln
[
(Ci + Czi )

−1
]
is known, Ln+1 pxi and Ln+1 pxi are derived using the trilinear

Leibniz’ product rule for Eq. 36.
– The higher-order derivatives of the accelerations axi , ayi and azi are obtained using

Leibniz’ rule for two multiplicands, following Eqs. (31)–(33).
– Once these three above steps are done, all of the terms are known appearing in Eqs. (34)

and (35). Hence, the trilinear rule should be applied.

In a practical implementation, a programmer needs to treat
[
(Ci + Czi )

−1
]
as a separate

variable and store it accordingly in conjunction with its higher-order derivatives. In addition,
a trilinear expansion can also be speeded up if a product like Ln(ABC) is expanded in two
bilinear substeps, namely first one compute Ln(AB) in the usual manner and then Ln(ABC)

is written as

Ln(ABC) =
n∑

k=0

(
n

k

)
Ln−k(AB)LkC. (65)
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This kind of optimization reduces the number of operations from O(n2) to O(n); however,
auxiliary variables and the respective arrays are needed to be introduced.

The higher-order relations for Ln+1λi can also be considered similarly since the terms
appearing in Eq. (53) are bi-, tri- or quadrilinear functions of the terms Ax and quantities
for which the recurrence relations have already been obtained. The terms A0, AA, Az, AP

and AL are complex expressions; however, these are still rational functions of quantities for
which the recurrence series are known.

7 Summary

This paper completes the recurrence relations for the Lie-derivatives of the osculating orbital
elements in the case of the spatial N -body problem. These relations can be exploited to
integrate directly the equations of motions that are parameterized via the orbital elements.
Qualitatively, the advantages and disadvantages of this approach are the same what has been
concluded for the planar problem. Namely, evolving orbital elements instead of Cartesian
components results in larger stepsizes. On the other hand, the complex implementation and
the need of more computing power (for the actual evaluation a single step) could yield only
marginal benefit.An initial implementation for a demonstration and validation of the formulae
presented in this article can be downloaded from our Web page3 as well as these codes are
available upon request. They are also included in the supplement appended to the electronic
version of the paper.

Corresponding to the planar case, coordinates and velocities do appear in the recurrence
relations but in a form of purely auxiliary quantities. Further studies can therefore focus on
the elimination of the need of coordinates. This is particularly interesting in the case of mean
longitude where the third direction is preferred. Such derivations might significantly reduce
the computing demands as well.
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