Published Online: June 2016
Accepted: May 2016
View Affiliations
Journal of Mathematical Physics 57, 062901 (2016); doi: http://dx.doi.org/10.1063/1.4952643
For the general central force equations of motion in n > 1 dimensions, a complete set of 2n first integrals is derived in an explicit algorithmic way without the use of dynamical symmetries or Noether’s theorem. The derivation uses the polar formulation of the equations of motion and yields energy, angular momentum, a generalized Laplace-Runge-Lenz vector, and a temporal quantity involving the time variable explicitly. A variant of the general Laplace-Runge-Lenz vector, which generalizes Hamilton’s eccentricity vector, is also obtained. The physical meaning of the general Laplace-Runge-Lenz vector, its variant, and the temporal quantity is discussed for general central forces. Their properties are compared for precessing bounded trajectories versus non-precessing bounded trajectories, as well as unbounded trajectories, by considering an inverse-square force (Kepler problem) and a cubically perturbed inverse-square force (Newtonian revolving orbit problem).
  1. 1. D. M. Fradkin, Prog. Theor. Phys. 37, 798–812 (1967). https://doi.org/10.1143/PTP.37.798, Crossref
  2. 2. A. Peres, J. Phys. A: Math. Gen. 12, 1711–1713 (1979). https://doi.org/10.1088/0305-4470/12/10/017, Crossref
  3. 3. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2000).
  4. 4. G. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences Vol. 154 (Springer, New York, 2002).
  5. 5. P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986). Crossref
  6. 6. H. Rodgers, J. Math. Phys. 14, 1125–1129 (1973). https://doi.org/10.1063/1.1666448, Scitation
  7. 7. J. M. Lévy-Leblond, Am. J. Phys. 39, 502–506 (1971). https://doi.org/10.1119/1.1986202, Crossref
  8. 8. G. E. Prince and C. J. Eliezer, J. Phys. A: Math. Gen. 14, 587–596 (1981). https://doi.org/10.1088/0305-4470/14/3/009, Crossref
  9. 9. S. E. Godfrey and G. E. Prince, J. Phys. A: Math. Gen. 24, 5465–5475 (1991). https://doi.org/10.1088/0305-4470/24/23/013, Crossref
  10. 10. M. C. Nucci, J. Math. Phys. 37, 1772–1775 (1996). https://doi.org/10.1063/1.531496, Scitation
  11. 11. F. John, Partial Differential Equations, Applied Mathematical Sciences Vol. 1 (Springer, New York, 1982). Crossref
  12. 12. H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University Press, 1989).
  13. 13. B. Cordani, The Kepler Problem (Birkhaeuser, 2003). Crossref
  14. Published by AIP Publishing.