
Foundations of  Physics, Vol. 19, No. 6, 1989 

The Meaning of Time in the Theory of Relativity and 
"Einstein's Later View of the Twin Paradox" 

Waldyr A. Rodrigues, Jr. <1'2) and Marcio A. F. Rosa ~2) 

Received August 24, 1987; revised June 9, 1988 

The purpose of  the present paper is to reply to a misleading paper by M. Sachs 
entitled "Einstein~ later view of the Twin Paradox" (TP) (Found. Phys. 15, 977 
(1985)). There, by selecting some passages from Einstein's papers, he tried to 
convince the reader that Einstein changed his mind regarding the asymmetric 
aging of the twins on different motions. Also Sachs insinuates that he presented 
several years ago "convincing mathematical arguments" proving that the theory of  
relativity does not predict asymmetrical aging in the TP. Here we give a definitive 
treatment to the clocks problem showing that Sachs' "convincing mathematical 
arguments" are non sequitur. Also, by properly quoting Einstein, we show that his 
later view of  the TP coincides with the one derived from the rigorous theory of  
time developed in this paper. 

1. I N T R O D U C T I O N  

Mendel Sachs paper (1) with the title "Einstein's later view of the twin 
paradox" is misleading in (at least) two aspects: 

(i) It uses certain quotations from Einstein's papers ~2"3~ to suggest to 
the reader that Einstein abandoned his earlier view that if two 
identical standard clocks meet in a point xl in space-time and are 
synchronized and then follows different world-lines that meet 
again in a second point x_~ VaXl, then they will not in general 
show identical times at x2. 
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(ii) It gives to reader the impression that the arguments presented in 
an old Sachs paper {4) are correct within general relativity and 
that in Ref. 5 he contested the "majority view" in a legitimate 
manner. 

In what follows, we show that both (i) and (ii) are non sequitur. To 
this end, we introduce in Secs. 2 and 3 several concepts necessary in order 
to understand the meaning of time in the theory of relativity. 

In Sec. 2 we present the fundaments of the theory and the standard 
clock postulate (SCP). 

We introduce in Sec. 3 the notion of reference frames in a Lorentzian 
manifold and the notion of the coordinate system naturally adapted to a 
given reference frame. We classify the reference frames according to their 
synchronizability. This classification is extremely important, for it shows in 
which conditions the time-like coordinate x ° has the meaning of time as 
measured by standard clocks at rest in a given reference frame. 

In Sec. 4 we present a rigourous mathematical treatment of the clocks 
problem (no paradox, of course), which is independent of the introduction 
of charts in the space-time manifold. All observers in all reference frames 
must then agree with the result. 

In Sec. 5, we discuss the old Sachs paper {4~ and show explicitly that 
Sachs calculation are not in accord with the theory of relativity. 

In Sec. 6, we present a small selection of passages from Einstein's 
"Autobiographical Notes ''{1) which endorse the theory of time presented in 
this paper and show very clearly that the Sachs paper ¢1) is ill conceived. 
The Appendix contains the derivation of the fundamental anti-Minkowski 
inequality used in Sec. 4 as well as several important results related to the 
linear algebra of Minkowski space, which should be very well known. 

2. THE SPACE-TIME OF THE THEORY OF RELATIVITY AND 
THE C H R O N O M E T R I C  HYPOTHESIS  

The most important feature of the theory of relativity is the hypothesis 
that the collection of all possible happenings, i.e., all possible events con- 
stituting space-time, i.e., V4=(M,  g, D) is a connected 4-dimensional 
oriented and time oriented Lorentzian manifold (M, g) together with the 
Levi-Civita connection D of g on M. {6'7) The events in U c  M in a par- 
ticular chart of a given atlas have coordinates (x °, x 1, x 2, x3), x ° is called 
time-like coordinate, and the x i, i = 1, 2, 3 are called space-like coordinates. 
These labels do not necessarily have a metrical meaning. 
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The metric of the manifold (in a coordinate basis) is 

g = gu~. dx ~' ® dx ~ 

guv= g u, ~xi = g~ 
(1) 

g(~?/Ox ~, ~?/Ox ~) being calculated, of course, for each x ~ M  in Mx, the 
tangent space to M at x. [The properties of the vectors at Mx (Minkowski 
space) are studied in the Appendix.] Now, tangent space magnitudes 
defined by the metric are related to magnitudes on the manifold by the 
following definition. 

Let I ~ ~ be an interval on the real line and F: I ~ M a map. We sup- 
pose that F is a C °, piecewise C ~ curve in M. We denote the inclusion 
function I ~ N by u, and the distinguished vector field on I by d/du. For 
each u e I, F ,  u denotes the tangent vectors at F ,  e M; thus 

F , u =  F ,  -~u (u)eMr~ 

Finally, the path length between points x 1 = F(a), x 2 ~--F(b), a, be I, 
xl,  x 2 e M  along the curve [curves are classified as timelike, lightlike 
and spacelike when (for all ueI )  g(F,u, F , u ) > 0 ,  g(F,u, F , u ) = 0 ,  
g(F,u, F ,u)  < 0, respectively]. F: I ~  M, and such that g(F,u, F ,u)  has 
the same sign at all points along Fu, is the quantity 

b 
fldu [tg(r,u, r ,u)l]  1/2 (2) 

Observe now that taking the point F(a) as a reference point, we can 
use Eq. (2) to define the function 

s:F(I)-- ,R by s(u)= [ Ig (F ,u ' ,F ,u ' ) l ]mdu  ' (3) 

With Eq. (3) we can calculate the derivative ds/du. We have 

-~u = [ I g ( F , u , r , u ) l ]  1/2= g"~ du -&u J (4) 

From Eq. (4), old text books on differential geometry and general 
relativity infer the equation. 

(ds') 2 = g~v d x .  dx ~ (5) 
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which is supposed to represent the square of the length of the 
"infinitesimal" arc determined by the coordinate displacement 

d x  # 
x~(a) -~ x~(a) + ~ (a)~ 

where e is an "infinitesimal" and a e L 
The abusive and noncareful use of Eq. (5) has produced many 

incorrect interpretations in the theory of relativity, as we wilt see in what 
follows. 

Now, given a time-like curve 7: R ~ I--. M, any event e e 7(1) separates 
all other events in two disjoint classes, the past and the future (see 
Appendix). The theory models an observer as 

Definition 1. An observer in V4 is a future-pointing time-like curve 
7: R ~ I - ~ M  by 13 u-~e~7(I )cM,  and such that g(7 . ,  7 , )  = 1. 

We now introduce 

Postulate I. (standard clock postulate) (SCP). Let 7 be an observer, 
then there exist standard clocks that "can be carried by 7" and such that 
they register (in 7) proper-time, i.e., the inclusion parameter u of the defini- 
tion of observer. {8) 

It seems that atomic-clocks are standard clocks, OI but see also. <~°; 

Definition 2. A reference frame Q in V 4 is a time-like vector field 
such that each of its integral lines is an observer. 

This definition is due to R. Sachs and H. Wu. (6~ B. O'Neill Ill) calls 
observer fields the reference frames fields. 

Given U c M  where Q is defined, there are an infinity of charts 
(coordinate systems) <x u >: U ~ ~4 of the maximal oriented atlas of M. We 
have the following definition. 

Definition 3. A chart in U c M is said to be a naturally adapted 
coordinate system to a reference frame Q (nacs/Q) if in the natural 
coordinate base of T~U(x~ U) associated with the chart the space-like 
components of Q are null. 

3. T H E  M E A N I N G  O F  THE TIME-LIKE COORDINATE x ° 

Old treatments of the clocks problem involve at least two reference 
frames Q and Q', each one containing a standard clock at rest. A (nacs/Q), 
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(x~) ,  and a (nacs/Q'), ( x  '~) are also used. For U c M  where both Q and 
Q' are defined we have the coordinate transformation ( x  ~) --+ (x'U). In 
particular, we have x '° = f ° ( x  °, x 1, x 2, x3), relating the time-like coordinate 
of an event e e U c M in Q' with the time-like and space-like coordinates 
of the same e e U c M in Q. 

N o w - - a n d  this point is crucial--we must find an answer to the 
following question: Given an arbitrary reference frame Q, when does there 
exist a (nacs/Q) such that (for U c M  where Q is defined) x ° has the 
meaning of proper time as determined by standard clocks at rest in Q and 
synchronized by Einstein's method? [Einstein's synchronization method is 
given by Definition 6. ] 

Let b e e = g ( Q ,  ) . W e h a v e  

Definition 

(i) 
(ii) 

(iii) 

(iv) 

It is clear 
only locally. 

3 (Ref. 6). 

Q is locally synchronizable if and only if de/x e = 0. 

Q is locally proper-time synchronizable if and only if de = 0. 

Q is synchronizable if there are mappings f :  M ~  R and x°: 
M --* N, such that f > 0 and e = f dx  °. 

Q is proper-time synchronizable if and only if e = dx °. 

that ( i i ) ~  (i) and ( i v ) ~  (ii) and the reciprocals are valid 

Definition 4. When Q is synchronizable (proper-time synchron- 
izable) whatever function x ° as in Definition 3 is called a time function 
(proper-time function). 

When there exists a time function, it obviously is not unique. If there 
exists a proper-time function, we have du=~/*(dx°),  V),~Q, and ~,: N =  
I ~  M, u being the inclusion function of the curve 7. 

When Q is synchronizable, all hypersurfaces of the time function x ° 
are orthogonal to Q, being then orthogonal to all observers in Q. These 
hypersurfaces are space-like. In this case, we say that the observers in Q 
can separate M in time x space. When M is contractible (i.e., r q (M)=0) ,  
we have, using the reciprocal of Poincar6's lemma. (12~ 

Proposition 1. If V4= (M, g ,D)  is contractible and d e = 0 ,  
e = g(Q, ), g(Q, Q) = +1, then observes in Q can separated M in time x 
space. 

When Proposition 1 holds true, there exists x° :M-- - ,N ,  such that 
e = d x  °, and it is possible to give to the time-like coordinate x ° the 
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meaning of proper-time as measured by standard clocks at rest in Q and 
synchronized a l'Einstein. This statement will be proved later. 

Let c~ be a 1-form field (c~= g(Q, )) such that e-CO, de ~0 ,  Vx~ 
U c  M. We then have the following questions: when does it exist a function 
f :  U--* R such that df  ¢ 0 Vx ~ U and such that the hypersurfaces of the 
type 

N =  {x ~ Ul f ( x )  = constant, df(x)  ~ O} 

are integral manifolds of e? 
It can be shown (~2) that a necessary and sufficient condition for the 

existence of this f is the Frobenius condition 

d~ A ~ = 0 (6) 

In this case ~ = g df, where g: U ~ R is a nonvanishing in U. We then have: 

Proposition 2. Let (M, g, D) be a Lorentzian manifold. If there exists 
in U c M  a reference frame Q such that de A 7 = 0 ,  ~ = g ( Q ,  ), then Q 
can separate locally M in time x space. 

Proposition 2 justifies then Definition 3(i). 
We now introduce the concept of synchronization of clocks necessary 

in order to physically justify the definitions of this section. We need to 
introduce: 

Postulate II. (Light Axiom). Let (2, m;.) be a photon, i.e., m;.=O 
and 2: ~ _ I ~ M  a null curve. Then, in any Lorentzian manifold V n -  
(M, g, D), the world line of any photon 2 is a null geodesic. 

We have the following: 

Proposition 3. Let y: ~ = I ~  M be an observer in (M, g, D). Sup- 
pose that Ue ~ I is given. Then there exists an open interval E c / ,  u e 6 E and 
an open neighborhood V of e = 7Ue such that Ve 'e  V - y E ;  there exist u e, 
and Ue2 and a light signal 2 from e' to e2 = 7Ue2, and a light signal 2' from 
e l  = ~)/'/el to e; b/el , Ue2 , /~, }t  are unique. 

The proof  can be found in Ref. 6. 
Let Z be a reference frame in V4 = (M, g, D), g, its flux and y: ~ 

I ~ M an integral curve of Z. 

Definition 5. An infinitesimally nearby observer is a vector field 
W: I ~ T M  which is Lie-parallel with respect to Z and such that for u ~ I 
there is a neighborhood e on u, a neighborhood/z of 7 u, and a vector field 
V on p such that 5e z V = 0 a n d  W = V o y o n e .  
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The reason for calling W an infinitesimally nearby observer is the 
following: Let <x~>:u-- ,N 4 and W[~=aU(0uoT]~). We may write U =  
{( x°, xl, x 2, x 3) I Ix ul < e V#} and assume that 7u = (u, o, o, o), since in U we 
can always choose Z I v = O/~x°. (~3~ There is a congruence of integral curves 
of Z determined by 

(u, t) ~ (u + a°x °, alx °, a2x °, a3x ° ) 

and x ° =  0 gives 71~, and x ° times an appropriate constant gives another 
curve of the congruence in U where the parametrization given by <x ~> 
holds. Now, when Wit and Z o7 are linearly independent, different curves 
have distinct images. This family uniquely determines WI ~ as its transversal 
vector field, i.e., 

(Wf)(u)=[(~--~g) {f(u+a°x°,alx°,a2x°,a3x°))]xo=o 

for each f :  U--*R and use .  Conversely, once W]~ is given, the family is 
determined up to first order in x °, in the sense of a Taylor expansion in x °. 

Now, let Q be a reference frame in (M, g, D), and let 7 and 7' be two 
"infinitesimal nearby" observers of Q. Suppose that 7' contains e' of 
Proposition 3. (Fig. 1.) 

According to Postulate I, the observers in 7 and 7' can order all the 
events in their respective world lines. We write el < e < e2 to indicate that 
according to 7 the event e is later than e~ and e 2 is later than e. 

The problem of the synchronization of clocks is as follows: which 
event e in the world-line 7 is simultaneous to the event e' in 7'? 

~ U c  

Fig. 1. Nearby integral curves of Q. 
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The answer to this question depends on a definition. Intuitively we 
consider that the event e' simultaneous to e must not be causally related to 
e, i.e., there must be no causal curve [a causal curve is a mapping ~,: I -~ M 
( Ic IR)  such that g (7 , , 7 . )>~0  V x = T u ~ 7 ( I ) ]  connecting e' to e. Now, 
Proposition 3 and the definition of a nearby observer imply that there is no 
causal curve connecting e' to e if e~ < e < e 2 .  Let ( x " ) :  M ~  U ~  N4 be a 
local chart of the maximal oriented atlas of M naturally adapted to Q, and 
let 

e 1 = (x2,, 0, 0, 0); 

e = (xL 0, 0, 0); 

o 
e 2 = (Xez , O, O, O) 

e' = (x2,, Ax  1, Ax  2, J X  3 ) 
(7) 

be the space-time coordinates of the respective events. We have 

Definition 6. The event e in ,/simultaneous to the event e' in 7' is the 
one such that its time-like coordinate is given by 

o o l o o o o 

Xe ~" Xe I -~ ~[ ( X e " -  Xel) ~- (Xe2 -- ?~e') ] (8) 

Physically, the synchronization procedure given by Eq. (8) [Einstein's 
method] means that the observer at 7 proceeds as follows: ( i)At el he 
sends a light signal )~' to e' in ~', (ii) the signal is immediatly reflected back 
through the path 2 and arrives at 7 at the event e2. 

Calling Ax~ = x2, - x2,, Ax~ = x~2-- x~,, and taking into account that 
the lengths of the arcs ele '  in 2' and e'e 2 in ). can be represented by the 
vectors W~, = ( - A x e ,  Ax  l, Ax  z, Ax  3) and Wx, : (Axe, Ax  1, Ax  2, Ax  3) and 
since g(W~, W;~)= g(W;:,  I4/;.,)=0, we get 

X2 : X o, _1_ goi zjX i ~ Xoe, (9) 
goo 

This equation permits the synchronization of two infinitesimal nearby 
clocks in 7 and 7' at rest in the reference frame Q and in the local chart 
(x~) :  M ~  U-~ R 4. 

We also observe that an unique synchronization of all clocks at rest in 
Q in the region U c M  is possible only if there exists a (nacs/Q) such that 
in this coordinate system g ;o=0 ,  Vxe U. When Q is proper-time syn- 
chronizable, i.e., c~=dx °, ~ = g ( Q ,  ) and x ° : M ~ R  then there exists a 
local chart where Q = ~/t?x ° and g oo = 1 Vx E M. As all level surfaces of the 
function x ° are orthogonal to Q (and  then orthogonal to all observers 
in Q), the spatial coordinates x' are such that g(c?/(?x °, ~?/~xi) = g , j=0  
V x ~ M .  
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Given an arbitrary reference frame Z in U c M, in general there does 
not exist a (nacs/Z) such that goo = 1 and gio = 0 Vx • U. This is the reason 
why we classified Z according to Definition 3. Now, suppose that Z is an 
arbitrary reference frame in U_c_ M and ( x  ~) a (nacs/Z). Let Q be another 
frame defined also in U__ M which is proper-time synchronizable, and let 
( 2 " )  be a (nacs/Q). The coordinate transformation ( x  ~) -+ (2~ ~)  must 
then satisfy 

aye ° a~ ° 
g~V(x) ~ ° ° ( : ~ )  = 1 

~x ~ ~?x ~ 

g*'V(x) g*°(2) = 0  (10) 
0x ~ ~?x ~ 

gUY(x) Ox*' ax ~ go(2) 

where g~V(x) gv=(X) = 6~ Vx • U c M. We put ~ = g"Ve~ ® ev. 
Equations (10) have the form of the relativistic Hamil ton-Jacobi  

equation for a free-particle. It can be very hard to find solutions to these 
equations, and the interested reader can consult Ref. 14. 

To finish, we must comment  on a basic point. (lsj The reference frames 
Q introduced earlier are mathematical  instruments. This means that a given 
frame does not need to have a material support  in all points of the world 
manifold. An example will illustrate this point. Let V4 = (M, g, D) be a flat 
Lorentzian manifold, namely Minkowski space-time. Let i = O / &  be an 
inertial frame [inertial frames, which exist only in a flat manifold, are such 
that Di = 0. Then dc~/x c~ = 0, ~ = g(i, )] defined of course for all x • M. 
Let now (t, r, ~b, z) be the cylindrical coordinates naturally adapted to i. 
Then g is 

g = dt ® dt - dr ® dr - r2 d(J ® d(a - dz ® dz (11) 

Let 

2 2 1/2 (~ Q = ( l _ c o 2 r 2 )  1/2 + c o ( l - c o  r ) -  (12) 

be a reference frame defined in U =  ( - o r  < t <  oo; 0 < r <  1/co; 0~<q~<2=, 
- o o  < z <  oo) ( U c M ) .  

Then 

= g(Q, ) =  (1 - -  ¢.02r2) -1/2 dt -cor2(1  -co2r2) &b (13) 

825/19/6-6 
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and 
-2cor 2 

d~ /x e -  ( l _c02r2)l/2 dt A dr/x dO=~ O (14) 

The rotation vector (71 associated to Q is g 2 = ~ ( , ( d e / x ~ ) ,  )=  
co(1- (,02r 2) 1/2 g/Oz. This means that Q is rotating with constant angular 
velocity ~ relative to the z axis of i. Now Q can be materialized in U c M 
by a solid rotating disc, but it is obvious that in U, i cannot have material 
support. 

The reference frame Q defined by Eq. (12) is also an example where 
there does not exist a (nacs/Q) such that the time-like coordinate of the 
system can have the meaning of proper-time registered by standard clocks 
at rest in Q, for all x e U. 

4. SOLUTION OF THE CLOCK PROBLEM 

We are now prepared to discuss the "clocks problem," unfortunately 
known as the clock paradox. As the problem first arose in the special 
theory of relativity we will first discuss the clock problem in the case where 
D is a flat connection. In this case, the manifold M is an affine vector 
manifold, known as Minkowski space-time (see Appendix). Due to this 
fact, it is possible to present a coordinate-free treatment of the clock 
problem. 

Let there F1, /~2, and P2 be three timelike and straight lines in M, as 
in Fig. 2. F1 and F2 has x/ as a common point and FI ,  P2 has x s as a 
common point and F2 and F2 has Xm as a common point. F1 represents the 
path of a standard clock called @ and F2 =/~2 +/~2 represents the path of 
a standard clock called @. Now, according to Eq. (2), the proper time 
registered by clock @ between the events xj and x f  is given by T O = 
IIxf-xill, i.e., the norm of the vector x f - x i  ~ M. The proper time registered 
by clock O is given by T® = [IXm--Xill + [[Xf--Xm[I. NOW, according to the 
fundamental anti-Minkowski  inequality, valid for time-like vectors in the 
same class (Appendix, Prop. 9), we have 

Jlxi- xiJJ >>-Ilxm-xill + IIx:- Xmll (15) 

and thus T_ ~> T~.  
1Q) . . , ~  

This result is an intrinsic consequence of the mathematical model of 
the theory of relativity. All observers in all reference frames in M (inertial 
or not) must agree with the validity of the result T_/> T_ .  

We observe that path FI is a geodesic path between x f and xi, as can 
be trivially proved. We also can prove the following theorem, which is valid 
in a general Lorentzian manifold (i.e., D does not need to be flat). 
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×f  

V2 

VI 

×m 

V2 

× i  

Fig. 2. Paths of two clocks (!) and (2) that are 
synchronized at x 1 and meet again at xf in M. 

Theorem. Among all timelike curves in V4=(M,  g,D) passing 
through the points xi = F(a), xF= F(b) the integral in Eq. (2) is a maximum 
when F is a timelike geodesic. 

If the reader fails to construct the proof of is theorem he can consult 
Ref. 16. 

To end this section, we mention that, in the case of the special theory 
of relativity, we can give a proof of the nonexistence of a Lorentz-invariant 
clock, i.e., a clock such that it, when in motion relative to an inertial frame 
S, does not lag behind relative to a series of clocks synchronized /t 
l'Einstein in S. Indeed, in Ref. 17 it is proved that the existence of one such 
clock implies the breakdown of Lorentz invariance. 

5. T H E  "SQUARE R O O T "  OF  g 

In this section we give the promised proof that the "solution of the 
clock paradox" offered in the Sachs paper t4) is not in accord with the 
theory of relativity. 
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To start, let V4 = (M, g, D) as in Sec. 2 be a model of the space-time 
manifold. In a coordinate basis, g = gu~ dxU® dx ~ [Eq. (2)]. We now ask 
if g can be "factored" as the tensor product of two 1-forms co 1 and m2, i.e., 
if we can write 

g = ( D I @  (D 2 (16) 

The answer to this question is "yes," and we can exhibit easily two 
solutions where col and c% are Clifford-valued 1-forms: 

(i) col = ~o2 = 7~(x)dx ~, and the 7u(x) satisfy 

7"(x) 7v(x) + 7~(x) y,(x)  = 2g~v(x) (17) 

7~ are then the generators of the local Clifford algebra R1.3 of 
space-time.(18'19) 

(ii) co 1 = (52, where 0) 1 = q~(x )dx  ~ and co z = q~(x )dx  ~, and where q, 
are the generators of the quaternion field, ~ is the quaternion 
conjugate field, and we have 

q~(x) g&(x) + q~(x) ~ ( x )  = 2g~(x)  (18) 

Choosing the solution given by Eq. (9), we ask now what conditions 
the q~ fields must satisfy in order for &o = 0. This is the condition for no 
"clock paradox" if "time" were to be associated with the quaternion-valued 
function of Eq. (21). The solution is that q~ must obey the Cauchy-  
Riemann-like identity 

aq~ a q ~ = o  (19) 
Ox a ~x ~' 

So, if Eq. (19) is satisfied, we can write 

co = ds (20) 

where s: M ~ H is a quaternion-valued function defined in the space-time 
manifold. We have 

s=fo (21) 

independent of the path. 
We can now understand what happened in Mendel Sachs 

papers. 14'2°,21) Using the Neanderthal notation of Eq. (5), viz., (ds)2= 
g ~  dx ~ dx ~, he concluded that it is possible to write ds= ds. This is 
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obviously impossible, since s: M ~ H  is a quaternion-valued function, 
whereas Eq. (5) defines only the real-valued function s: F(I) -~ R given by 
Eq. (3). It is impossible to extend s as defined in Eq. (3) to a function 
defined on all of the space-time manifold. 

6. EINSTEIN'S TRUE VIEW CONCERNING THE CLOCK'S 
PROBLEM 

In this section we present a small selection of passages (A, B, C) from 
Einstein's "Autobiographical Notes" together with some comments that 
show very clearly that Sachs' paper C~) is ill conceived. Indeed Einstein said: 

(A) "A clock at rest relative to the system of inertia defines a local 
time. The local times of all space points taken together are the 
time, which belongs to the selected system of inertia, if a means 
is given to set these clocks relative to each other." 

(B) "The presupposition of the existence (in principle) of (ideal, viz., 
perfect) measuring rods and clocks is not independent of each 
other; since a light signal, which is reflected back and forth 
between the ends of a rigid rod, constitutes an ideal clock, 
provided that the postulate of the constancy of the light-velocity 
in vacuum does not lead to contradictions. 

This paradox may then be formulated as follows. According to the 
rules of connection, used in classical physics, of the spatial coordinates and 
of the time of events in the transition from one inertial system to another, 
the two assumptions of 

(1) the constancy of the light velocity, 

(2) the independence of the laws (thus specially also of the law of the 
constancy of the light velocity) of the choice of the inertial system 
(principle of special relativity) 

are mutually incompatible (despite the fact that both taken separately are 
based on experience). 

The insight which is fundamental for the special theory of relativity is 
this: The assumptions (1) and (2) are compatible if relations of a new type 
("Lorentz-transformation") are postulated for the conversion of coor- 
dinates and the times of events. With the given physical interpretation of 
coordinates and time, this is by no means merely a conventional step, but 
implies certain hypotheses concerning the actual behavior of moving 
measuring-rods and clocks, which can be experimentally validated or 
disproved." (Our italics.) 
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Our comments concerning passages A and B here are as follows: In an 
inertial system il standard clocks at rest read directly the time-like coor- 
dinate x °, (see SecJ3) if the clocks are synchronized fi l'Einstein in order to 
obtain a one-way velocity of light which is isotropic. ~13) The Lorentz-trans- 
formations between two inertial frames are not physical cause-effect 
relations but implies certain hypothesis concerning the actual behavior of 
moving measuring-rods and clocks, which can be experimentally validated 
or disproved. 

The hypothesis concerning the behavior of clocks is the one intro- 
duced in Sec. 2, viz., that there exist standard (or ideal) clocks which 
measure proper-time, i.e., the integral given by Eq. (2) when F is time-like. 
(Postulate I.) 

If real clocks do not satisfy the standard clock postulate then the 
Lorentz-transformations could not give the relation between the times x ° in 
il and x °' in i2 (il, i =  1, 2 being inertial frames) where x ° and x °' are 
measured by standard clocks at rest, respectively in il and i2 and 
synchronized fi l'Einstein. 

(C) "One is struck [-by the fact] that the theory (except for the four- 
dimensional space) introduces two kinds of physical things, i.e., 
(1)measuring rods and clocks, (2)all other things, e.g., the 
electro-magnetic field, the material point, etc. This, in a certain 
sense is inconsistent; strictly speaking measuring rods and clocks 
would have to be represented as solutions of the basic equations 
(objects consisting of moving atomic configurations), not, as it 
were, as theoretically self-sufficient entities. However, the proce- 
dure justifies itself because it was clear from the very beginning 
that the postulates of the theory are not strong enough to 
deduce from them sufficiently complete equations for physical 
events sufficiently free from arbitrariness, in order to base upon 
such a foundation a theory of measuring rods and clocks. If one 
did not wish to forego a physical interpretation of the coor- 
dinates in general (something which, in itself, could be possible), 
it was better to permit such inconsistency--with the obligation, 
however, of eliminating it at a later stage of the theory." 
(Italics ours.) 

In passage C Einstein remind us that it cannot be an accident that 
standard clocks register the time defined by Eq. (3). This basic fact must be 
explained as an adjustment to the field in which the clocks are embedded 
as test bodies. This needs, of course, a detailed theory of matter, which 
unfortunately does not yet exist. In C Einstein also remind us that in an 
arbitrary reference frame Q in a Lorentzian manifold the coordinate labels 
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(X °, X 1, X 2, X 3) of a particular chart valid for U c M  of the (nacs/Q) (as 
defined in Sec. 3) does not have a metrical meaning in general. This means 
in particular that in general x ° is not the time registered by standard clocks 
at rest in Q. Indeed, this is the case since the standard clocks register the 
time given by Eq. (3)! Passage C is in complete agreement with the theory 
of time developed in this paper. 

7. C O N C L U S I O N S  

In this paper we presented a rigorous theory of the meaning of time 
in the theory of relativity. The material is not completely original, since it 
can be found scattered in the literature, r68'15) However, we think that our 
work can be of utility for all readers that have yet some doubt concerning 
the twin paradox. The paper also demonstrates that Sachs' treatment of the 
twin paradox ~1'2°'21) is non sequitur and that Einstein never wrote a single 
line which endorses Sachs' misleading point of view. 

A P P E N D I X  

The objective of this appendix is to prove the anti-Minkowski triangle 
inequality, used in Sec. 4. We take the opportunity to present some results 
related to the linear algebra of Minkowski space, which should be very well 
known. The tangent space to any point of the space time manifold is the 
Minkowski space, and its precise definition is: 

Definit ion 1. Minkowski space M is a 4-dimensional vector space 
over the real field with a Lorentzian inner product, that is, we can associate 
the metric tensor to the matrix diag(1, - 1 ,  - 1 ,  - 1 )  in one orthonormal  
basis. 

Definit ion 2. Let be v e M, then we say that v is spacelike if v 2 < 0 or 
v = 0, that v is lightlike if v 2 = 0 and v ¢ 0, and that v is timelike if v 2 > 0. 

Defini t ion 3. Let S c M be a subspace. We say that S is spacelike if 
all its vectors are spaeelike, that S is lightlike if it contains a lightlike vector 
but no timelike vector, and that S is timelike if it contains a timelike vector. 

We note that the definitions establish that a subspace S c M  is 
spacelike or lightlike or timelike. We are going to prove some propositions 
that will permit us to understand the linear algebra of M. 
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Proposition 1. A subspace S is timelike if and only if its orthogonal 
complement S ± is spacelike. 

P r o o f  Let S c M be a timelike subspace, then there exists a timelike 
vector v o e S ,  and we define e o =  IlVoll l Vo(llVolt =(!v~l)  m)  and add to it 
other three vectors e~ ( i=  1, 2, 3) in such a way to construct an orthonor- 
mal basis {e~} ( # = 0 ,  1, 2, 3) with e , . e ~ = ~ / ~ ,  q,~ =diag(1,  - 1 ,  - 1 ,  - 1 ) .  
Then S ± ~ span ie l ,  e2, e3] (the space generated by el, e2, e3) and S ±, is 
spacelike (we define u .  v - g(u, v)). 

Conversely (we note that ( S ± ) ± = S ) ,  if S is space-like, we have 
M = S @ S  ± (direct sum), and, for any time-like vector v E M ,  we have 
v = v' + v " with v' ~ S and v" e S ±. Then we have v" . v' = v . v - v " . v " < O 

and therefore v" is time-like and S ± is time-like. 

Proposition 2. Let S c M  be a light-like subspace. Then its 
orthogonal complement S l is lightlike and Sc~ s a c  {0}. 

P r o o f  If S is lightlike, S ± cannot be timelike or spacelike by Prop. 1, 
then S ± is light-like. There is a light vector n a S, but there is not any 
time-like vector belonging to S. Then Va~J~, V s e S ,  ( s + a n ) ( s + a n ) =  

s . s + 2 a s . n ~ O ,  V a ~ ;  therefore s - n - - 0  Vs~S  and n ~ S  ± . ' .  
S ± ~ S ~ { O } .  

Proposition 3. Two light-like vectors n l, n 2 ~ M  are or thonormal  if 
and only if they are proportional.  

P r o o f  Let v ~ M be a time-like vector. By Prop. 2, we have v- nl ~ 0, 
v . n 2 ¢ O ;  then there exists e ~ R ,  e ¢ 0 ,  such that v-(n1 + e n 2 ) = 0 ,  and, by 
Prop. 1, n 1 + en 2 is space-like. But (nl + ~n2) 2 =  2 ~ n l . n 2 ,  thus, if nl,/12 are 
orthogonal, n l . n 2  = 0. Therefore, nl + ~//2 = 0 and nl, n 2 are proportional.  
Conversely, if//~ and n2 are proportional,  we have //1 = 3 n 2  and nl .n2 = 
/~(n2) 2 = O. 

Proposition 4. There are only two orthogonal space-like vectors that 
also are orthogonal to a light-like vector. 

P r o o f  Let n ~ M  be light-like and s 1, s 2 ~ M  space-like such that 
2 e 2=  - 1  in such a way that s 1 . s2=0 .  We define a basis {e,} with - e o =  

s l = ( 0 ,  s~ ,0 ,0)  and s 2 = ( 0 , 0 ,  saZ, 0) in this basis. If s l . n = s 2 . n = O ,  we 
have that n = (n °, 0, 0, n 3) with (n°)2 = (n3) 250 .  Another space-like vector 
orthogonal to sl and s2 must have the form s 3 = ( s ~ , O , O , s ~ ) ,  with 

(S1 ~2. then s3. n = n3s~ ¢ O. (s3~) 2 > ,  3, , 
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Proposition 5. The  unique way to construct  an o r t h o n o r m a l  basis for 
M is with one time-like vector  and  three spacelike vectors. 

P r o o f  If  we have a light-like vector  in our  basis, we have no timelike 
vector  by Prop.  1. Then  we must  have only light-like and space-like vectors 
in our  basis. By Prop.  3, o r thogona t  light vectors are propor t iona l ,  and  we 
must  have only one light-like vector  in our  basis; the other  three must  be 
space-like, which is an absurd  by Prop.  4. 

Therefore,  we only have timelike and space-like vectors in the basis in 
the p ropor t ion  1:3 in order  for the s ignature to be - 2 .  

N o w  we are going to show that  we can divide the set z ~ M of all 
t ime-like vectors  into two disjoint subsets z + and  r , which we identify, by 
convent ion  which future and past. 

Proposition 6. The relat ion u Tv, defined by u ~ v  if and only if 
u - v  > 0, is an equivalence relat ion for time-like vectors,  and this relation 
divides ~ into two disjoint equivalence classes z + and v - .  

P r o o f  First we take e o, e~ = 1 as the future time-like direction. We 
add to it three space-like vectors ei, e 2 = - 1  in such a way as to const ruct  
an o r t h o n o r m a l  basis {e,}. If  u, v e ~ ,  we have u =  (u °, u ~, u 2, u 3) and v =  
(v °, v 1, v 2, v 3) in this basis with (u°)~ > ~ ] i  (u~) 2, (v°)2 > Y~ (v~)2; therefore 
u.  v = u°v ° -  ~ s  uid. Then  we observe that,  if u °, v ° have the same signal, 
u - v  > 0 ;  if not,  u .  v < 0, since, by Schwarz inequali ty in N3, we have 

(ui) 2 (vi) 2 > ~ u i v  i" lu°l Iv° l>~uiv  ~ 
i i 

Therefore  1" is obviously an equivalence relat ion that  divides z into two 
equivalence classes: z +, such that,  if u ' s  z +, u . e  o > 0, and r - ,  such that  
u e r -  ~ u- eo < 0. We call z + the future c o m p o n e n t  of  z and  z -  the past  
componen t ,  and  we note  that  this definition depends of  the choice of  a 
future time-like direction. 

Proposit ion 7. z + (and r - )  are convex sets, tha t  is, given u, v E z +, 
a ~  (0, oo), b e  [-0, ~ ) ,  then w = a u + b v E v  +. 

P r o o f  u, v e v  + ~ u . e o > 0 ,  V - e o > 0 ,  where eo as fixed future 
t imelike direction, therefore, w.  eo = au .  eo + by .  eo > 0 and w e z +. 

At this poin t  we are prepared  to derive the an t i -Minkowski  inequality. 
First we are going to show the ant i -Schwarz inequality. 

Proposition 8. Let u, v e M be time-like vectors. Then we have for 
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them the anti-Schwarz inequality, that is, lu. vl >/ilu[i Ijvl[ and the equality 
only occurs if u, v are proportional. 

Proof We choose an orthonormal basis {%} with eo = IlulI-~ u, such 
that u = (u °, 0, 0, 0) in this basis and v = (v °, v ~, v 2, v 3) with (v°) 2 > Z i  (vi) 2- 
Then we have 

\ i/2 
lib/It =[U°l,  I[t~ll = (V°)2--~/ (ui) 2) ~[/)°t,  

tu -v i  = Iu°l Iv°l >/tlull tlvtl 

If the equality is satisfied we have Ilvll = Iv°l, and therefore 

v =  (v°, O, O, O) 

being proportional to u. 

Proposition 9. Let u, v e t  +, then we have for u, v the anti- 
Minkowski inequality, that is, 

[ lu+ vtt >/I[utt + ttvtt 

Proof We note that, by Prop. 6, u .v>O,  and, using Prop. 8, we 
have 

IIU"I-VJl 2=  tlUtJ2 + ItVI[2+2U'V>/ tlUtt2-t - I[Vl}2-t-2 llutl ]lv}l 

= (llull + [Ivll) 2 ~  I lu+  rip >/Ilult + Ilvll 

To complete this appendix we are going to study the possibility of any 
Schwarz-like or Minkowski-like inequality for spacelike vectors u, v ~ M. 

Proposition 10. Let u, v~M be spacelike vectors such that span 
[u,v] is spacelike, then the usual Schwarz inequality lu.vt~<Jlull  IIvN 
obtains, and so does the usual Minkowski inequality Jlu + vii--< [lult + I[vll. If 
the equalites are satisfied, then u and v are proportional. 

Proof If the span [u, v] is spacelike, then it has an orthonormal 
basis {el, e2} with 2 2= e l = e 2  - 1  such t h a t u = ( u  1,0) a n d v = ( v  I,v 2) inthis  
basis. Then 

Ilul{ = lull, Ilvll = ((1) l )2"q-( /d2)2)1/2~ {/')11, lU "/)] = lUll IVll ~< Ilull Jlvll 

If the equality holds, then v l =  O, and u, v are proportional. 
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We therefore have 

Ilu + vii 2 -_- - ( u  + v) 2 : - u  2 - v 2 - 2 u -  

= Ilull2 + ] lv f l2-2u .v~  Jlu/]2 + Ilvjt2+2 Itull Ilvll 

= (11<t + Ilvll) 2 " I l u +  v)l ~< )tu[) + IIw[I 

The equality holds only if - u. v = j u- v t = tlutl llvll; then u, v are propor- 
tional. 

Proposition 11. Let u, v e M be spacelike vectors such that the span 
[u, v] is timelike, then the anti-Schwarz inequality lu. vf ~> IIu[l Ilvtl holds; if 
the equality holds, then u, v are proportional. If u.  v ~ 0, that is, u, v have 
different "time directions," and more, if u + v is spacelike; we then have the 
anti-Minkowski inequality, Ilu+vlt > Ilul] + IJvll, and the equality only 
holds if u, v are proportional. 

Proof If span [u, vJ is timelike, we choose an orthonormal basis 
2 {eo, e~} for it with e o = e ~ = l  and such that, in this basis, u = ( 0 ,  u 1) 

and v=(v  °,v 1) with ]v°l<lvl]. Then we have ))u))=]u~l, Ilvll- 
[(v~) 2 -  (v°)2] 1/2 <~ Ivll, and lu. vl = lull I/)l[ ~ I[11[] Ilv[I. If the equality 
holds, v°=  0 and u, v are proportional. 

If u-v ~< 0, we have Iu-vl = - u . v ;  if also u + v is spacetike, we have 

Ilu + vii 2 : - ( u  + v) z : - u  2 -  v z -  2 u .  v = Ilull z + [l<l 2-4- 2 ]u" v] 

> 1lull2 + Ilvtl2 + 2 Ilull II~ll = (llull + Ilvll) 2 

Therefore, 

Ilu + vii > [lull + tlvtl 

The equality only holds if - u . v = l u . v ] = H u [ ]  []v]t; then u, v are 
proportional. 
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