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This paper discusses a new turn in the 148-year old electrodynamic force 
law controversy bet~veen the 1822 Ampère force law of the Newtonian 
electrodynamics and Grassmann's 1845 law which has become the 
electrodynamic force law of relativistic electromagnetism. Faced with the 
infallibility of Ampère's empirical law, defenders of relativity theory now 
argue that Ampère's law is "equivalent" to the relativistic law. This paper 
demonstrates that, far from being equivalent, the laws require two different 
mechanics of solid bodies, disagree on internally generated stresses, and 
predict different force distributions. 
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1. THE FORCE LAW CONTROVERSY 

In 1822 Ampère [1] proposed the first law for the interaction force 

AFmn between two metallic current elements imdln and indn. In practical 
importance, this force law, or any substitute of it, is second only to 
Newton's universal law of gravitation. Following Newton's example, 
Ampère based his law entirely on experimental findings. Both laws are 
therefore infallible, so long as nature does not change course with time. 
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W i t h  rrn n being the distance between two metallic current elements, 
the most useful form of Ampère's formula has proved to be 

-t~tn(dm'dnlr~)(2eose-3eos« cos  ~) ,  (1) a F , , ,  = . . 2 

where e is the angle of inclination between the elements and the angles ot 
and fl are the inclinations of the elements to the distance vector. The 
negative sign in Eq. (1) stands for attraction. Ampère's law is in ever~y 
respect a Newtonian law based on simultaneous mutual attraction or 
repulsion, and it does not allow the interaction of an element with itself. 

Ampère also proved that the interaction between two current 
elements always reduces to a two-dimensional problem, as in Eq. (t), 
because the interaction force between perpendicular elements located in the 
same plane is zero. 

In 1845 Grassmann [2] suggested a non-reciprocal interaction law 
for two metallic current elements which has to be stated by two formulas for 

the unequal forces AF m and AF n on the elements. The most useful form of 
Grassmann's law are the vector equations 

A F  m = (t , t J r ~ ~ ) d m x ( d n x l  ~) ,  (2) 

2 
B F n  = (imi~[rm~)dn×(dmxl,~) ,  (3) 

where lrm and I m are unit distance vectors pointing to dm and dn, 
respectively. 

Following Ampère's lead, Grassmann assumed that Eqs. (2) and (3) 
represented instantaneous actions at a distance. Of the two electrodynamic 
force laws, only Ampère's agreed with Newton's third law. This meant, as 
will be explained later, that the Newtonian electrodynamics, which flowed 
from Coulomb's and Ampère's laws, did not apply to Grassmann's law. 

When Lorentz re-interpreted Grassmann's law in terms of field 
contact actions, the name of the law was changed to the "Biot-Savart law," 
since Biot and Savart had shown how to calculate the magnetic field strength 
at a current element due to another element. In this way the Grassmann 
force law ended up in the magnetic component of the Lorentz force. 

Beginning with Grassmann himself, numerous physicists [3] have 
argued that the two electrodynamic laws should lead to different 
experimental consequences and, therefore, experiment would prove which 
is right and which is wrong. As the Lorentz force is an essential part of the 
special theory of relativity, both the Lorentz force and Grassmann's formula 
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were, of course, covariant under Lorentz transformations. Ampère's law, 
on the other hand, was Galilean covariant, as all of Newtonian physics must 
be. 

Many experiments to test the validity of Ampère's law were 
performed over a period of almost 170 years [3], but we find that the force 
law controversy is as lively as ever [4] at the end of the twentieth century. 
It is reminiscent of the 2000-year hiatus over Aristotle's teaching that heavy 
bodies fall faster than light bodies. The simple experiment of dropping two 
unequal coins from the palm of the hand decided the issue, but scholars 
were adamant not to abandon the dogma laid down in scripture. 

It was certainly not Aristotle's fault• He stated [5]: 

"I say apparently, for the actual facts are not yet sufficiently made 
out. Should further research ever discover them, we must yield to 
their guidance rather than to that of theory; for theories must be 
abandoned, unless their teachings tally with the undisputable results 
of observation." 

On similar grounds, the defense of present-day physics dogma 
cannot be laid at the feet of Einstein who, during the last year of his life, 
wrote [6]: 

"I consider it quite possible that physics cannot be based on the field 
concept, i. e., on continuous structures. In that case nothing remains 
of my entire castle in the air, gravity theory included, and the rest 
of physics." 

2. CLAIMS OF EQUIVALENCE 

Faced with the infallibility of Ampère's empirical law, the defenders 
of our modern textbooks [4, 7-9] fell back on a mathematical argument 
which they claim shows that there is really no difference between the 
Newtonian and the relativistic electrodynamics of metals. 

In vector notation, Eq. (1) may also be expressed by two terms, as 
follows: 

• • 2 

A F m = - lrnt mt n ( d m ' d n / r ~ ~ ) (  c o s  e - 3 c o s  ct cos  I 3) 

• d n / r ~ , ~ ) c o s e ,  _ l , ,  i mi , , (d  m 2 
(4) 

The triple vector product of Eq. (2) may be resolved to give 
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• . 2 • « 2 

A F  m = ~mt,(dndm/r;~)eos a n-l,~~mt~(dra ztn/r~,~)eos ~, (5) 

where an is the inclination of dn to Im. 
Comparing Eqs. (4) and (5), it is evident that both force laws 

contain an identical Newtonian attraction-repulsion term, which is the 
second term in both equations. But the remaining two terms are very 
different, not only in magnitude but also in direction. The first term of Eq. 
(4) is also a Newtonian force. The first term of (5), however, is neither 
attraction nor repulsion. It clearly is the relativistic component of the 
Grassmann or Biot-Savart law. This is the stark difference between the 
Newtonian and relativistic force laws. 

Whittaker [10], and many others, pointed out that in a closed-path 
integration the first terms of both laws vanish because they are perfect 
differentials. This is the essence of gauge invariance. For the force õn a 
current element by a closed circuit, therefore, both laws give the same 
force. This fact has misled Jolly [7], Ternan [8], Christodoulides [9], and 
Robson and Sethian [4], when they claim the two force laws are equivalent. 

The important fact is that the loop integration reduces the retativistic 
force law to a Newtonian force law. At this point it should be recognized 
that the relativistic Grassmann-Lorentz force law of Eqs. (2) and (3) give 
rise to a relativistic mechanics (statics) which has nothing to do with the 
common high-speed phenomena of the special theory of relativity. Also, in 
this connection, it is frequently overlooked that Maxwell's equations require 
special relativity to explain Faraday's law of induction, which is another 
low-speed relativistic effect. 

Then the defenders of the relativistic force law make the point that 
metallic currents always flow in closed circuits and, therefore, practical 
applications always require the closed-loop integration. Field theory requires 
this integration for another reason. A current element responds to the total 
magnetic influence of all other current elements and cannot distinguish the 
field of one element from the field of another. 

Clearly this philosophy does not apply to Ampère's force law, which 
is not compatible with a magnetic field and does distinguish between the 
interacting elements by Newton's third law. Hence we should expect the 
laws to make differing predictions about experiments. The difference 
emerges clearly when one performs a stress analysis in metallic conductors. 
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3. NEWTONIAN AND RELATIVISTIC STRESSES 

A definition of Newtonian stress in a solid body was provided by 
Slater and Frank [11]; it reads: 

"To specify such a (stress) force, we imagine a surface element da 
to be drawn somewhere in the body, with a normal n. The material 
on either side of da exerts a force on the material on the other side; 
thus this force is a push normal to the surface if there is a pressure 
in the body, it is a tension if that is the form of stress, or it may be 
a shearing force, tangential to the surface." 

Because of the importance of this definition, it may be helpful to 
consider another wording of it [12]: 

"A stress is a force per unit area with which the part of the medium 
on one side of an imaginary surface acts on the part of the other 
side." 

An important corollary of this definition of Newtonian stress is that the 
interaction of two elements of mauer on the same side of the stress surface 
makes no contribution to the stress at this surface. 

Newtonian stress analysis appears to be no longer in the physics 
curriculum, but the subject is fully covered in engineering textbooks. The 
stress is felt by the atomic bonds which intersect the imaginary stress 
surface. The atoms themselves are not torn apart or compressed. Therefore, 
calculations of forces on atoms will not reveal stress. What has to be 
calculated is the force between atoms. This is to say, stress is the result of 
Newtonian action and reaction forces bridging the stress surface. 

When stress is internally generated by mutual interaction forces 
between atoms, rather than applied external forces on the body as a whole, 
we have to specify the interaction force by a formula which complies with 
Newton's third law. The two important electromagnetic forces which fulfill 
this condition are Coulomb and Ampère forces. 

Consider first an example which involves Coulomb's law. This 
concerns a dielectric string charged along its length with additional 
electrons. Two electrons of charge e and distance rmn repel each other with 
the force 
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= ke  It,,, AF, 2 2 (6) 

It is immediately obvious that the string will find itself in tension 
everywhere, except at the ends. 

From the Newtonian definition of stress, the tension T at some 
surface which intersects the string is 

x y 

r = ~2 E E (~/r~, 
m=ln=l  

(7) 

where the electrons on one side of the stress surface are labeled 1, 2 . . . . .  
m . . . .  , x; and on the other side they are labeled 1, 2 . . . . .  n . . . . .  y. Equation 
(7) does not give the sum of the force densities on orte side of the stress 
surface, because the force density calculations would include interactions 
between electrons on the dame side of the stress surface. Equation (7) also 
ensures that internally generated Newtonian stresses do not exert a net force 
on the string as a whole. Hence the charged string will not move in any 
direction, but lie still and stretched on the laboratory bench. 

A thin wire carrying a steady dc current will behave like the 
dielectric string, if it is subject to Ampère's force law. That is to say, all 
the current elements in the wire then repel each other. This creates Arnpère 
tension in the wire [3]. 

If the Lorentz force law is now applied to this wire, it will not 
predict tension, because the Lorentz forces must be transverse to the wire 
axis, and, in any case, the magnetic field strength at every current element 
is zero. In the wire example we have found an instance in which the two 
force laws do make opposite predictions and are not equivalent to each 
other. A more dramatic difference between the two force laws can hardly 
be expected. Experiments have been performed to check the prediction of 
Ampère tension [3], but we will not consider them here, because the 
purpose of the present paper is merely to demonstrate that the two laws are 
not equivalent. 

4. REACTION FORCES IN A RECTANGULAR CIRCUIT 

Critics of the wire example correctly argue tnat a complete circuit 
has to be considered, because forces due to the remaining parts of the 
circuit may cancel the tension. To meet this criticism, the closed rectangular 
circuit ABCD of Fig. 1 will now be analyzed. This circuit is assumed to 
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Fig. 1. Electrodynamic forces in a rectangular circuit. 
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carry a steady current i and stands in a vertical plane. X-Y is a horizontal 
surface which cuts the circuit in two parts, which are then electrically 
reconnected by thin liquid mercury films. The tension 2T-2T in this surface 
is balanced by the upward force F E on XBCY and the downward force F E 
on YDAX. F• is an experimentally determined force which has been 
measured for various rectangular circuits [3,13]. Since the circuit is known 
not to lift itself as a whole, we must have 

~'E -- 2r .  (8) 

Surprisingly, certain calculations with Grassmann's law lead to Eq. 
(8). This is one more reason why it has been argued that the two force laws 
are equivalent, and there is no controversy. In other words, the Grassmann 
law, notwithstanding its appearance in Eqs. (2) and (3), is compatible with 
Newton's third law and Newtonian mechanics, and there arises no need for 
a relativistic mechanics. 

Let / IF  R stand for the relativistic (Grassmann) interaction of two 

current elements, while &F N represents the Newtonian (Ampère) interaction 

of the same pair of elements, so that 

AF~ ~ AF N. (9) 

In relativistic electromagnetism, two current elements on the same 
straight line exert no force on each other. In all other cases the Grassmann 
force is perpendicular to the current element on which it acts. Hence no 
relativistic force exists between dm and dn of AB of Fig. 1, which could 
contribute to the tension T-T. One might expect, therefore, that the whole 
of the tension is the result of  interactions between AD and BC. Calculations 
show, however, that 

D C 

A B 

(10) 

or the calculated force is much smaller than the measured force. The 
inescapable conclusion from this is that Grassmann's law, after all, is not 
compatible with the Newtonian mechanics. As Grassmann's law leads to the 
measured force FE, it must obey a different relativistic mechanics. 

In relativistic mechanics it has to be assumed that the magnetic field 
at any current element is due to the circuit as a whole. When this is taken 
into account, the correct result 
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l E E AF, I_-F ~ ABCD XBCY 
(11) 

is obtained. It is as if a current element generates a magnetic field strength 
at another element, and then absolves itself from any responsibility with 
regard to the reaction force. In this way the current element i dn I of Fig. 
1 produces a magnetic field at idn 2, and this field then generates a lift force 
AF R on idn» which contributes to FE, without an elemental reaction force. 
This is the relativistic "self-force mechanism," because dn I and dn 2 are 
integral parts of the solid body XBCY cut from the rectangular circuit and 
electrically reconnected across the surface X-Y by two thin liquid mercury 
films. Roper [13] actually performed measurements of F E with liquid 
mercury films at X and Y. 

From this it has to be concluded that, in order to arrive at the 
correct experimental result of Eq. (8), calculations with the Grassmann 
formula must invoke the relativistic mechanics of self-forces. Hence the 
possible agreement of the two force laws on a particular prediction does not 
eliminate the need for the relativistic mechanics. 

It does not follow that when using the two mechanics in their 
appropriate spheres of validity, they will always agree on the outcome of a 
specific experiment. For example, they demand different force distributions 
in the rectangular circuit of Fig. 1. This can be shown as follows: 

Using the Newtonian electrodynamics with Ampère's force law, F E 
has to be calculated according to the Slater-Frank rule, 

F E = [  ~ ~~.~ AFIv[. (12) XADY XBCY 

While performing this summation, step by step, it will be found that most 
of F E exists in the form of two longitudinal forces which have their seats 
near X and Y. In contrast to this, the Grassmann formulas place all of the 
lift force F E in the top branch BC of the circuit. In one case the body 
XBCY is pushed upward from below, and in the other case it is pulled up 
by a force on the uppermost part of the body. There exist experiments 
which can distinguish between the two force distributions [3]. 

The step-by-step summation of Eq. (12) also reveals that the tension 
T-T in AB and CD does not disappear when a complete circuit is 
considered. Hence the earlier straight wire example was sufficient to prove 
that Ampère's law predicts tension in any straight wire section. The force 
law controversy can, therefore, be resolved by experiments which 
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demonstrate the existence of Ampère tension and the force distribution 
predicted by Ampère's law for the rectangular circuit of Fig. 1. 

The difference between Newtonian and relafivistic forces is 
discussed at length in a recent book [14]. 
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