Breakdown of Lorentz Invariance

Phys. Rev. 159, 1106 – Published 25 July 1967
T. G. Pavlopoulos

Abstract

The special theory of relativity results from the postulation of invariance under coordinate transformation of the hyperbolic wave equation ψ2ψ1c22ψt2=0, and it is required that all laws of physics (except perhaps general theory of relativity) be invariant under Lorentz transformations. Divergencies in present relativistic field equations may be removed by considering more general wave equations, for example, l024ψ+2ψ1c22ψt2=0. This equation introduces a universal length l01013 cm as a second invariant and destroys Lorentz invariance except as an approximate invariance. Some theoretical and experimental consequences of this four-dimensional wave equation are discussed.

DOI: http://dx.doi.org/10.1103/PhysRev.159.1106

  • Received 20 September 1965
  • Revised 9 December 1966
  • Published in the issue dated July 1967

© 1967 The American Physical Society

Authors & Affiliations

T. G. Pavlopoulos

  • U. S. Navy Electronics Laboratory, San Diego, California

References

  1. W. Pauli, Handbuch der Physik, edited by H. Geiger and K. Scheel (Julius Springer, Berlin, 1933), p. 272
  2. M. March, Z. Physik 104, 93 (1936) ibid.104, 161 (1936) ibid.105, 620 (1937) ibid.106, 49 (1937) ibid.108, 128 (1937)
  3. W. Heisenberg, Ann. Physik 32, 20 (1938)
  4. L. de Broglie, Die Elementarteilchen (H. Goverts Verlag, Hamburg, 1943)
  5. W. Heisenberg, Z. Naturforsch. 5a, 251 (1950)
  6. W. Heisenberg et al., Z. Naturforsch. 10a, 425 (1955) ibid.12a 177 (1957) ibid.14a, 441 (1959) ibid.16a, 727 (1961)
  7. D. I. Blochincev, Fortschr. Physik 6, 246 (1958)
  8. A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950)
  9. R. D. Mindlin and H. F. Tiersten, Arch. Ratl. Mech. Anal. 11, 415 (1962)
  10. F. Bopp, Ann. Physik 38, 345 (1940)
  11. Omitted endnote
  12. P. Duhem, Ecole Norm. 10, 187 (1900)
  13. E. Cosserat and F. Cosserat, Théorie Deformables (Hermann & Cie., Paris, 1909)
  14. J. L. Ericksen and C. Truesdell, Arch. Ratl. Mech. Anal. 1, 296 (1958)
  15. R. A. Toupin, Arch. Ratl. Mech. Anal. 11, 385 (1962) ibid.17, 85 (1964)
  16. R. D. Mindlin, Arch. Ratl. Mech. Anal. 16, 51 (1964)
  17. C. Truesdell and W. Noll, Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1965), p. 389
  18. P. Finsler, Über Kurven und Flächen in Algemenien Raümen (Birkhäuser, Basel, Switzerland, 1951) Dissertation, University of Göttingen, 1918
  19. H. Rund, The Differential Geometry of Finsler Spaces (Springer-Verlag, Berlin, 1959)

Authorization Required


×

Download & Share


PDF Export Citing Articles (45)
×

Images

1 of 0
    ×

    Log In

    Cancel
    ×

    Search


    Article Lookup
    Paste a citation or DOI

    Enter a citation
    ×