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INTRODUCTION

It was P.A..M. Dirac who emphasized most
strongly the significance of the Poiseon bracket8 in
classical analytical dynamics [see, e.g., P.A.M. Dirac,
Quantum 31schant'cs (Clarendon Press, Oxford, 1947),
3rd ed. , Sec. 21, p. 84 and earlier editions]. He not
only did this but he also gave what turns out to be
a complete axiomatic characterization of the Poisson
brackets [see Dirac, Eqs. (2)—(6); see also our Sec. 4
(a—f)]. It appears all the more astonishing that the
first discussion of these axioms (by a physicist at
least) seems to be one by W. Pauli [Nuovo Cimento
10, 648—667 (1958), Sec. 2]. He shows that, locally at
least, Diracs axioms lead to a phase space with co-
ordinates and canonically conjugate momenta (see
theorem 4 in Sec. 4 below).

Once this is established, the "correct procedure"
consists of course in a complete elimination of any
kind of coordinates. The principle results of general
analytical dynamics have to be derived by the ex-
clusive use of Poisson brackets. This is what I propose
to do in this note A.s it .turns out the physicists have
"always" implicitly used the modern definition of
vector fields (see Sec. 1 below) as (special) operators
on a suitable function space.

Our enterprise is of course only an exercise of
doubtful physical significance. It shares, however,
the meager physical content with analytical dy-
namics in general. '

If the present note should serve any purpose it
has to be rather broad and has to include much
material which can be found in books. This is bad
enough. What makes the situation worse is the fact
that the writer, being pressed by other obligations,
was unable to look up the relevant literature. Every-
thing he says may have been published already in
much better form.

The work may, however, serve as a suggestion to
all those who are under the obligation to teach
analytical dynamics regularly and feel rather tired
of the many p's and q's which they have to write on
the blackboard.

It is a pleasure to me to dedicate this modest note
& It is nevertheless true that historically this purely formal

structure played a weQ known and crucial part in the develop-
ment of quantum mechanics. This should serve as a warning
to all those who declare any kind of purely formal develop-
ment a priori as "unphysical. "Things are not that simple!
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to the great American teacher of theoretical physics,
S. Robert Oppenheimer.

1. DIFFERENTIABLE MANIFOLDS, MAPPINGS,
ONE PARAMETER GROUPS, VECTORS AND

VECTOR FIELDS~

(A) In order to avoid arguments of differentia-
bility we restrict the discussion to differentiable
manifolds. A differentiable manifold is a pair (V,G)
of a connected HausdorÃ space with points p,q,
which has a countable basis of open sets and a family
6 of continuous real-valued functions f,g, over V.
6 should satisfy the following conditions:

(a) If a function h coincides in a suitable neighbor-
hood Ar(p) of every point p g V with an element of
8, then h is itself an element of G.

(b) If F is a C" function over B' and if f&, fs,
fs g 6 then also F(fi, fs, , fs) C 8.

(c) In every point p Q V exists a neighborhood
g(p) and n elements f', f', ~, f"g 6 such that x"
= f"(tt) is a homomorphic mapping of X(p) on an
open set in 8".Every element of 6 restricted to X(p)
agrees wit}i F(f' f', f") for a suitable cllolce of
the 0"function P over 8".

Bemttrks: (1) The number n (which is independent
of p) is the dimension of (V, 6). (2) According to (b)
it is no restriction to assume that f'(p) = 0. For
suitable n ) 0 the sets

[gi i f (g)i & n, tc = 1,2, ~ ~,n]
from a basis of "cubic" neighborhoods of p. (3) x',
x', , x" are local coordhnates in the point p. (4) 8
forms a ring with respect to ordinary addition and
multiplication of functions. 6 contains the constants
Ic] as a subring. (5) The support of a function f,
supp f, is the smallest closed set in V outside of which

f vanishes.
The following lemma is a useful tool for later work.

Iemma 1.I et x', x', , x" be local coordinates in
the point p. Every function f(q) = f(x) allows for
ix'i & n the expansion

2For this and the next section see e.g. K. Nomizu, Lie
Groups and Differential Geometry (Mathematical Society of
Japan, Tokyo 1956), Chapter I.



with C" functions A&&. f,a(x) stands for Bf(x)j&x" .

Proof: Clearly

j(z) = f(p) + dt g, x"j'„(tx)dt

= f(p) + Z.*"~.(*),
where Aa(x) = Oj'f, ~(tx) dt is a C" function. Repeating
the argument for 2& leads to the result (1).

(B) A mapping C of V into V' induces a mapping
of the functions 8' over V' into functions over V by
the following convention:

f(p) = f'(p') for p' = C'(p) .

We write f = f' ~ C. The mapping 4 is differentiable,
if f' o 4 g 8 whenever f' g O'. Clearly we have (f'
+ g') o C = f' o C+ g' o C and(f'g') o C = (f'o C)
(g' o 4). The constants are mapped into the same
constants. We restrict ourselves to differentiable
IQapplngs.

A (differentiable) traneformation C is a one-to-one
(differentiable) mapping of V onto V of which the
inverse is also differentiable.

A differentiable one-parameter group is a family
of transformations C,, t g 8 which satis6es

(la) V && g ~ V is a differentiable mapping,

(1b) C,+, ——C,C, .

According to (a) f, = f o C,, f g 8, is C" in t If we.
write for the derivative f, = df, /dt at t = 0, f, =
L(f) then L(f) has the following properties:

(2 a) L,(f) g S for f g a,
(2 b) L(f + g) = L(f) + L(g)

(2 c) L(f.g) = f L(g) + L(f) g,
(2 d) L(c) = 0.

The operator L which maps 8 into 8 is the infini-
tesimal generator of C&.

(C) An operator L which satis6es [B, (2 a)—(2 d)] is

by de6nition a contravariant vector field. All contra-
variant vector fields form a linear space P over the

ring G. Scalar multiplication is de6ned by (gL)(f)
= g L(f)

Every one parameter group C, de6nes a contra-
variant vector field, its infinitesimal generator. The
converse is however not true (see Appendix). A
group C, however is uniquely defined by its in6ni-
tesimal generator.

We say that L vanishes in p, if L(f) (p) = 0 for all
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f g G. The support of L, supp L is the smallest closed
set outside of which I vanishes.

Lemma 8. If f(q) = g(q) for q Q N(p) then L(f)(p)
= L(g)(p). Therefore, in view of (2 b), supp L(f)
Q supp f Q supp L.

Proof. Due to (2 b) it is sufficient to show that
f(q) = 0 for q Q N(p) has the consequence that
L(f) (p) = 0. If f vanishes in N(p) then N'(p) Q
N(p) and g g 8 exist such that (1) g(q) = 1 for
q Q N'(p); (2) f g = 0. Now (2 c) and (2 d) imply
0 = L (fg) = L (f) g+ f L(g), but in N'(p) the
second term vanishes and the erst term on the right
hand side equals L(f).

According to lemma 2 the value of L (f) (q) in a
neighborhood N(p) depends only on the restriction
of f to this neighborhood. If a cubic neighborhood

N(p) is chosen, we can use local coordinates and the
representation (1) of f [restricted to N (p)]. At the
point p we then 6nd [using (2 b), (2 c), (2 d)]

L(f)(p) = Z~L(&")(p) f~(0) = Z~a'f~(0) '

at a general point q g N(p)

L(f)(q) = Z a'(~)f (*) qEN(p). (12)
This leads us back to the familiar de6nition of a
contravariant vector 6eld. The functions a" are C"
functions according to (2 a).

For L(f) (p) we also write I„(f).This we do for the
following reason: L, is a functional over 8 with values
in R All functionals [L„] form an n-dimensional
vector space T„. T, is, by de6nition, the tangent

space of V at the point p. L,„is completely character-
ized by the properties

(3 ) L,(f + g) = L.(f) + L,(g),

(3 b) L.(fg) = f(p)L.(g) + L.(f)g(p)

(3 c) L„(e) = O.

A vector field L attributes to every point p an ele-
ment of T„ in. a differentiable manner.

(D) Let C be a mapping of V into V' and let p'
= C(p). We now form

L.(f"C ) = L' (f') . (1.3)

A trivial verification shows that L,", satis6es (3 a)-
(3 c) and therefore is an element of the tangent space
T,",of V' at p'. The mapping L„~L„",is linear This.
linear transformation is denoted by C'(p) and is the
differential of I at the point p:

L' = C'(p)L. .
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(E) From two vector fields Li and L2 we can con-
struct a third vector Geld by

[L,L.](f) = L (L.(f)) —L.(L (f)) (15)
The verification that [I|,L2](f) satisfies (2 a)—(2 d)
is again trivial as is the veriGcation of the Jacob
identity. '

[Li,[L2,LS]] + [L2,[L~,L3]] + [L3,[L~,L2]] = 0 . (1.6)

The space 8 of all contravariant vector fields there-
fore forms a Lie ring.
2. COVARIANT VECTOR FIELDS AND TENSOR FIELDS

A linear form &o over 9 with values in 8 is by defini-
tion a covariant vector geld. ~(L) satisfies

(4 a) (u(L) g 6,
(4 b) ~(Li + L2) = ~(L|) + ~(L2),

(4 c) ~(gL) = g~(L) .
The definition of the support of cv is left to the reader,
as is the formula

supp or(L) Q supp or P supp L.

What we are going to prove, however is

Lemma 8. The value &u(L) (p) depends only on L,.
This dependence is linear.

Proof. It is suKcient to show that co(L) (p) = 0 if
L„=0. Since co(L) (p) depends only on the local
behavior of L, we assume that I has its support in a
cubic neighborhood of p to local coordinates x. Ac-
cording to (1.2)

and, due to I, = 0, a"(0) = 0. In addition supp a'
C fx~ ~x"~ ( n}.Now lemma 1 tells us that

a'(x) = +&A', (x) x'

with supp A i Q supp a'.

L(f)(V) = Z *' Z A'(x)f, f (*)
and Gnally

L(f)(V) = Z x'(V)L (f) «L = Z x'(V)L

where

x'(p) = 0 and Li(f)(q) = +~A"i(x)f',~(x) .

where co,(L„) is a linear form over the tangent space
T,.co, i.s therefore an element of the dual space T„*.A
covariant vector Geld attributes to every point p an
element co„ from 7„*.

The covariant vector Gelds form again a linear
space K over 8. The definition of the linear operations
is evident.

For fixed f, L(f) is itself a linear functional over 8
with values in 8 and thus defines a covariant vector
field df by

df(L) = L(f). (2 2)

Not every covariant vector field is a differential df of
a function. Those which are, are called exact. The
following rules are consequences of (2 a)—(2 d):

L(f) = ~(df) (2 3)

satisfies (2 a)—(2 d). On the other hand we find that
every contravariant vector Geld L determines
uniquely a linear form X by linear extension of (2.3).
This is the case because locally dx', dx', . ,dx" form
a basis of K restricted to a neighborhood of p. In
future we will use L and X interchangeably.

A skew-symmetric contravariant tensor Geld Af, of
rank k is a skew-symmetric multilinear form over K
with values A&(ar&, &u2, ,a») g 8. We are specially
interested in bilinear forms i1(~&,A&2). Restricted to
exact differentials, they define a mapping of 8 X &

into 8:

with the properties

(6a) If,g} = Ig,f} C—&,

(6 b) If g + g } = (f e } + If g }

(6 c) If,g g } = If g }g + g If g }

(6d) Ifc} =0.

(2.4)

(5a) d(f+ g) = df+4,
(5 b) d(f fI) = fdg + gdf

(5 c) Cc = 0 .

A linear form X over & with values in 6 determines
uniquely a contravariant vector Geld L by the values
it takes for exact differentials. In view of (5 a), (5 b),
(5 c)

According to (4 b), (4 c) co(L) (p) = 0.
We can therefore write

(L)b) = .(L.)

The properties (6 a)—(6 d) are characteristic for the
restriction of a skew-symmetric contravariant tensor
field to exact differentials. This tensor field is

(2 1) uniquely defined by (2.4).
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d(d(o) = 0. (2 8)

The tensor fields Q = dpi are exact, the tensor fields
for which dQ = 0 are closed. Every exact Geld is
closed but the converse is again in general only
locally true, e.g. , in a cubic neighborhood. If the
second Betti number of V vanishes then every closed
tensor field of rank 2 is also exact.

3. MANIFOLDS WITH SYMPLECTIC STRUCTURE

A contravariant skew-symmetric tensor field

A(coi, ~,) induces a symplectic structure into every
cotangent space T„*. In fact A(~&,cv&)(p) = h.,(~i„,
co2,„) generates a antisymmetric bilinear form in T„.
The form A„ is nondegenerate, if A„(~~,ca2) = 0 for all
co implies co1 ——0. The field A is nowhere degenerate, if

In local coordinates we obtain, exactly by the
steps which led us to (1.2), for [f&g} the expression

[f,g}(9) = Z ~"(*)f;(*)P(*)

with 0"functions g = —g = [x,x }.
A skew-symmetric covariant tensor field QI, of rank

k is a skew-symmetric multilinear form over 8 with
values Q~(X&,X2, ,X~) = Q~(L&,L 2~ ~,L&) Q 6. Again
we are mainly interested in skew-symmetric tensor
fields of rank 2.

Every covariant vector Geld gives rise to such a
tensor field by the equation

(d )(L L) = L( (L)) —L( (L)) — (I:L L]) .
(2.5)

The verification is again elementary. Cko is the
dhgerential of &o. The definitions of [L,,L2] and of df
(2) lead to

d(df) = 0. (2.6)
A covariant field &o for which de = 0 is closed. A.c-
cording to (2.6) every exact field is closed. It is well
known that the converse is in general not true.
Locally however, in a simply connected neighborhood

N(p) of any point p, da& = 0 implies o& = dF, where
F is a C" function in N(p).

Similarly we define the differential of a skew-
symmetric tensor field Q of rank 2 by

(dQ) (Li)L2,Ls) = Li(Q(L2,Ls)) + Ls(Q(LI,Li))

+ La(Q(Li)L2)) —Q([L»L2]~L~)

—Q([L2,L3],L,) —Q([L3)Li],L2) . (2.7)

Q is evidently skew-symmetric and satisfies dQ(c, L2,
L~) = 0. The verification that dQ is multilinear is
again purely a matter of routine. Similarly as above
we find (it is suKcient to check this for co = gdf)

where

[LI,L,](h) = Q&,,}(h) + J(f,g,h) (8.5)

~(fgh) = [f[g,h}}+[9[h,f}}+[h[f,g}} (36)

A purely mechanical verification shows, that J(f,g, h)
satis6es the conditions

(a) J(f,g, h) P 6 is completely antisymmetric in

f,g,h,
(b) ~(f~+ f2, 9,h) = ~(f~,g, h) + ~(f2,9,h),
(c) ~(f f,g, h) = f ~(f,g h) + ~(f,g,h) f,
(d) J(c,g,h) = 0.

J determines therefore uniquely an antisymmetric,
contravariant tensor Geld of rank 3 by the equation

Ag(df, dg, dh) = J(f,g, h) . (8.7)

There is an intimate connection between J(f, hg)

and dQ. According to (2.7) we have

dQ(Li, L„L~) = Lq(Q(L„L~)) —Q([Lg,L,],Ly) + cycl.

= L&([g,h}) —[L&,L,](h) + cycl.

A, is nondegenerate for all p. This is only possible,
if the dimension of V is even: n = 2f,f = 1,2,3
and if Y is orientuble (see Sec. 5). These conditions
are only necessary.

We say that (V,G) carries a symp/cetic structure, if
it carries a nowhere singular skew-symmetric con-
travariant tensor field A. of rank 2. Such a manifold
may be denoted by (V,G, A).

As in Sec. 2 we introduce the notation [f,g} =
h(df, dg. ) The. properties of this bracket symbol are
given by (6 a)—(6 d).

Since h. is nowhere singular it maps K one to one
onto 8 by the equs, tions

),„((o,) = h. ((v,cv&) . (8 1)

If we express A. (co&,~&) in terms of X„&,li„2 by

A(a)i, co2) = QP,.i,X.2), (8.2)

then Q is a covariant skew-symmetric nowhere
singular tensor field. The inversion of (1) is given by

~,P,) = Q(x„x). (8.8)

A manifold with symplectic structure can clearly
also be defined as a manifold which carries a skew-
symmetric nowhere singular covariant tensor field of
rank 2.

For Xgf we also write Lf and we have

4(9) = [f,g} . (8.4)

In words: 6 is mapped into 8. Of special interest to
us is the commutator of LI and I,
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This equals, due to (8.5) and (8.6),

dQ(I&, L„L3) = [{f,{g,h}}—{{f,g},h} + cycl.]
—8J (f,g,h),

or, finally,
dQ(Ly, L„L,) = J(—f,g, h) .

This quantity equals

~L(f g) = {L(f)g} + {f,L(g)} —L({fg}) (8.9)

We use now (9) as definition for AL for an arbitrary
vector field L. A simple veri6cation shows that DL

is an antisymmetric contravariant tensor field: it
satisfies conditions analogous to (a)—(d) above.

The covariant form of dL is related to d~l, . In
order to find this relation we specialize I first to an
expression aL& = 'A. .dh. The general expression is then
obtained by summation. Equation (8.9) leads to

A(aL)(fg) = {a{hf},g}+ {fa{hg}}—a{h,{fg}}
= {a,g}{hf}+ {fa}{h,g} —aJ(f g,h)

{fa}{g—,h} + {g,a}{fh}
—A3(df, dg, a dh) . (8.10)

On the other hand

d(adh) (Lg,L,) = Lq(a)L, (h) —Lq(h)L, (a)

Up to a sign therefore A.3 is the contravariant form
of dQ.

In order to motivate the following argument we
introduce the one-parameter group C with the
infinitesimal generator L. What we want to compute
is the change of {f,g} under 4, :

(dldt){{f' C', g ' C' } —{fg} ' 4' }l
- .

The correctness of (8.15) ean be seen as follows:
firstly (8.15) is correct for ~3 ——df3 because it agrees
then with (8.6). Secondly the expression (8.15) is
additive and antisymmetric in all arguments 123.

Thirdly, if (8.15) is correct for 12), 102, co3 it is also
correct for geo), 222, co3. Therefore (8.15) is generally
correct.

4. CANONICAL MANIFOLDS

At last we come to the manifolds in which we are
actually interested. These manifolds are generaliza-
tions of the classical phase space of analytical dy-
namics.

Definition. A manifold (V,8) is canonical, if a
bracket {f,g} (Poisson bracket) with the following
properties exists:

(a) {f,g} = {g,f—} «
(b) {f+f,g} = {f,g} + {f,g};
(e) {ff,g} = f {f,g} + {f,g}f;
(d) {f,o} = 0;
(e) {f{gh}}+ {g{»f}}+ {h{fg}}= o '

(f) The tensor field defined by A(df, dg) = {f,g}
is nowhere degenerate.

Remark. A canonical manifold has, according to
(a)—(d), (f) a symplectic structure. This sympleetic
structure is restricted by the condition J(f,g,h) '= 0.
This restriction is the Jacobi identity (e). The dimen-
sion of V is even: n = 2f and V is orientable (see
Sec. 5).

Equation (8.8) immediately leads to

Theorem f. The covariant form Q(L1,L2) of A(M, ,122)

is closed:
= {f,a}{g,h} —{f,h} {g,a} (811)

dQ =0. (4.1)

AL(f g) = deal. (Lg,L ) +—A3(221,,df dg) (8.18)
Theorem 8 (Pauli). To every point p there exist

local canonical coordinates p), , pf g) ' ' ' gf sucll
AL(f g) = d&d J(Lf)L2) ——dQ(L)Lf)L, ) . (8.14)

or, alternatively,

We close this section with a general formula which
contains (8.18) and (8.14) as special cases:

A(13,,dA((o2, (o3)) + A(122)dA(123)121)) + A(122)dA(~1)cd2)) «r q E &(p).

such that
A canonical structure is therefore equivalently

&(aL3) = —d(adh)(L&, L,) + A3(df, dg, adh) (812) characterized by a covariant, skew-symmetric, no-
where-singular closed tensor field Q of rank 2.

and in general
We will not give a complete proof of the following:

A3(1))1)1))2)123) + d121(~a)2)11))3) + d122(liot3) 41)

+ dM3(X&y))X))2) 0 (8.15)

Proof. Since dQ = O, Q is locally exact:

0 = dg, (4.8)
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The classical reduction procedure' of the Pfaffian
form (4.8) leads to the normal form

Next we want to discuss one parameter groups in
a canonical manifold.

Definition l. A. one-parameter group C & is canoni-
(4.4) cal if it satiates

(4.4) leads immediately to (4.2).
We know from Sec. 8 that 8 is mapped into 8 by

4(g) = {fg} (4.5)

Theorem 8. The mapping f +L-r maps 8 (as a Lie
ring) homomorphically into a subring of P:

The Poisson bracket {f,g} induces in 8 the structure
of a Lie ring. Equation (8.5) now leads to

{f ~g c}= {fg} (4 12)

L(f) = (d/«)(f 4 ) I

Differentiation of (4.12) leads to

{L(f),g} + {f,L(g)} = L({fg})

(4.18)

Such a group therefore induces a one parametric
family of automorphisms in (V,G, A). C, is uniquely
determined by its infinitesimal generator

[Lx,L.} = Li~..) (4.6) or, according to (8.9),

AL(f g) = 0.Theorem 3 allows a slight but not unimportant
generalization. In order to prepare for this we remind This however leads due to (8 14) to
the reader, that A. (o)~,o») maps K onto 8 by

(4.14)

X„(o),) = A(o),o)g) (4 7)

Instead of (4.7) we also write (risking some con- and therefore

fusion however) der = 0.

(4.15)

L-(g) = A( dg). (4 7')

The confusion consists in the double notation for Lr
which is equal to Lz. Now (8.15) allows us to com-

pute the commutator of I„,and I„,:
[L . L .l(f) —L~~(. .)(f) =. A(o)~ dA(o)s df))

Theorem O'. The infinitesimal generators of one
parameter group of canonical transformations are
of the form L„,where cv is closed.

The function f(t) = f o C, satisfies a differential
equation

+ A(o)2, dA(df, o).&)) + h(df, dh(.o),,o)s)).
df/dt = A(o),df), . da) = 0. (4.17)

= —dkoiP „„4r)—do)s(4y, 'A, ) . (4 8)
If o) is not only closed but exact (o) = dh), then
(4.17) can also be written in the form

If we restrict o)& and o)2 to closed covariant vector
fields, then df/dt = {h,f} . (4.18)

Theorem $. The Lie ring of the closed covariant
vector fields o) is mapped by oo —+ I on a subring
of

[L„„L„.j = Li „,i; do)1 = 0) dorp = 0. (4.11)

s For example, E. Goursat, Legons sur to problbrne de Pfaff
(Herman 8r, Cie, Paris, 1928).

[L„„L„,] = Lap(~„„,) .

Equation (4.9) calls for a better notation. We intro-
duce as bracket between covariant vector fields o)i,

and o)& by

{o),,o)2} = dh. (o)&)o)2) . (4.10)

This new bracket does in general not satisfy a Jacobi
identity. It does so however for closed vector 6elds.
The closed vector fields therefore form again a Lie
ring and we have

A.n equation of the form (4.18) is globally IIanulton-
ian. An equation of the form (4.17) is locally IIanul-
tonian if co is not exact.

Not any Hamiltonian equation leads to a one-
parameter group of canonical transformations.
Alternatively formulated: not every L„with d&o = 0
is an infinitesimal generator of a one-parameter

group of canonical transformations. In the Appendix
we give a simple example of this sort and a com-

pletely trivial example of a locally Hamiltonian

group of canonical transformations.
Here is a simple sufficien criterium in order that

I& is an infinitesimal generator of a group of canonical
transformations

Criterium. I& generates a group of canonical
transformations by (4.18), if for any E, {p{h(p) ~ E}
is compact.

The proof, which depends on the fact, that h itself
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is an integral of (4.17) can easily be adapted from
Nomizu, Ref. 2.

Finally we discuss canonical mappinga. Let
(V,G, A) and (V',8', A') be two canonical manifolds.

Definition 8. A mapping C from V into V' is
canonical, if it satisfies

[f"C',g'. C] = [f',g'] ~ C' (4 19)

(4.19) can also be written as

A(~(f" C') d(g' ' C'))(p) = A'(&f' dg')(p') (4 2o)

Now we know from Sec. 1(D) that C induces a
linear mapping of the tangent space T„of V into the
tangent space T,"of V' [Eq. (1.4)]:

) „' = C'(p)), . (4.21)
C"(p) therefore maps the dual space T„"*into T„* by

Pf P = Det 3I Pf t'. (5 2)

For a proof see, e.g. , E. Artin, Geometric Algebra
(Interscience Publishers, Inc. , New York, 1957), p.
141.

Let (V,B,A) be a manifold with symplectic
structure, N(p) be a cubic neighborhood to the local
coordinates x'. By

n"(q) = [*;*"]= n"'(q—) (5.3)

we define a nonsingular C" skew symmetric matrix
rI in N(p). The PfafFian of g is denoted by y:

The Pfagan Pf f is uniquely determined by the
normalization Pf e = 1, where

1 anG all other e" = 0 for k ~ /. If in
addition $ = 3I)'Mr, where SI is a 2f X 2f matrix,
then

and specifically

(4.22) ~(q) = Pf n.

y(q) in N(p) is also (;".The same is true for

(5.4)

df. = df'C"(p) .
Equation (4.20) therefore can be rewritten as

A(&f' C"(S),~g"C"(p)) = A'(df", dg' )

and this generalizes (dropping p and p') to

(4.23) ~(q) = v(q)lie(q)l . (o.5)

~'(q) = (J/IJI)~(q) . (5.6)

According to (2) a change of local coordinates will

(4 24) multiply y(q) by the Jacobian J and er(q) by

A(te'C', rt'C') = A'(te', rt') . (4.25)

We claim now that the kernel of the mapping 4'
contains only te' = 0. In fact if te'C' = 0 then (4.25)
vanishes for all p'. Since A' is nonsingular, this is only
possible if co' = 0. From this it follows that the map-
ping (4.21) is onto T„". C'(p) has therefore always
maximal rank, namely rank O' = Dim V'.

a(q) depends therefore only on the orientation of the
local coordinate system.

Definition 8. A local coordinate system has the
orientation n(q) .

The existence of a continuous a(p), which satisfies
ee' = 1 and transforms according to (5.6) is equiva-
lent to the orientability of V.4

ry symplectic manifold (and there-
fore every canomcal manifold) is orientable.

From now on we restrict the discussion to canoni-
cal manifolds. Let C be a canonical mapping of V
into V. Let p' = C(p). As we know from theorem 6
C' is nowhere singular. 4 has therefore locally an
inverse. Let N'(p') be a cubic neighborhood of p' in
which C ' exists and let N(p) = C '(N'(p')). Finally
let y* = f' be local coordinates in N'(p'). Then x'
= f'o C are local coordinates in N(p). However
[y*,y'] (q') = [x',x"}(q). The local coordinate systems
x and y have therefore the same orientation and we
have

Let us now discuss a canonical mapping of V onto
itself. If such a mapping has in inverse it follows
from theorem. 6 that this inverse is differentiable
and therefore a cononical transformation.

Theorem 7. A one-to-one canonical mapping of
(V,G, A) onto itself is a canonical transformation.

5. ORIENTATION OF A CANONICAL (OR SYMPLECTIC)
MANIFOLD. INTEGRATION. LIOUVILLE'S THEOREM

We need the following well-known result:
Lemmtt $. Let P" = —P'; i,k = 1, 2, , 2f be

f(2f —1) variables and g be the matrix
~

~g'"~ ~. The
determinant Det P of P is then the square of a
polynomial Pf g in the variable P'.

Det $ = [Pf P]'.

Theorem 0. A canonical mapping of V into V never
changes the orientation.

G. de. Rham, Varietee digerentiablee (Hermann 4 Cie,
Paris, 1955), Sec. 5.

Theorem 8. If C is a canonical mapping of (V,R, A)
We have therefore

into (V',8', A') then rank C' = dim V'. An open set Th, „8E e
in V is mapped onto an open set in V'.
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In order to prepare the way to the Liouville the-
orem we have to introduce an invariant integration.
This is easily done for functions with support in a
cubic neighborhood N(p) Le. t supp f Q N(p) and
let again x' be the corresponding local coordinates.
I.et finally g be the inverse of the matrix g

~ ~
fx', x'I ((. According to the properties of the Pfaffian

mentioned in lemma 4 one easily convinces oneself
that where

q = P(to —t;0, —E) = y(t;qo, po)

p = —2p'(t. —t;0, —E) = P(t;q. ,p.)

Take h, = i~ p' —4q' with the corresponding canoni-
cal equations q = [h, qI = —', p, p = Ih, pI = 12q'.
The solutions are given in terms of Weierstrass' P
function:

I(f) = f(x) ~
Pfj(x)

~

dx'. . .dx" (5.7) 2 3E= gpo —4gp) to= ds

eo (4s'+ E)'

I(g) = I(g c) . (5.8)

Proof. It is sufficient to prove (5.8) for functions g
for which supp g Q N'(p') where p' = C(p). Let
y' = f' be local coordinates in N (p'), then x' = f' o C

are local coordinates in N(p) = 4 '(N'(p')). We have
furthermore P(x) = (g o I) "(x) and finally I y', y'I (q')
= Ix', x'I (q). Thus (5.8) reduces to an identity.
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APPENDIX (EXAMPLES)

A. Hamilton Equation Without One-Parameter
Group

l' = fl' = I(p, q) I

Canonical structure:

If gI = —————.Bf Bg Bf Bg

Bp Bg Bg Bp

is independent of the special choice of local co-
ordinates. The generalization of (7) to more general
functions (as far as it is feasible) follows the standard
procedure, using a suitable decomposition of 1 (Ref.
4, Sec. 5). Thus an invariant integral can be defined,
e.g., for all functions with compact support. I iou-
ville's theorem is now almost trivial.

T/Not'stol 10 (IAonvills) . Let 4 be a eailoilical
transformation and g integrable. Then

p(u;g2, g3) is defined by

ds

P(&) (4s —gls —gg)

and becomes singular for u = 0. The formulas for q

and p are therefore only meaningful for t & t, and
can not de6ne a one-parameter group of canonical
transformation. The physical reason for this is clear:
the repulsive potential —4q' is so strong that a
particle vanishes at plus infinity within a finite time
which becomes the shorter, the farther to the right
the particle already was at the beginning.

B. Compact Canonical ManifoM

V = S' X S' (product of two circles)

8:f(p+ 1,q) = f(p, q+ 1) = f(p, q)

C" in p and q.

A: IfgI = —————~f ~g ~f ~g

Bp Bg Bg Bp

It is not clear to me whether compact canonical
manifolds play any role in mechanics. Treated in

statistical mechanics they would lead to negative
absolute temperatures.

C. Locally but not Globally Hamiltonian Group

Take example 2:

—= n ——P —= A(a),df)df Bf Bf
dt Bg 8p

generates the group

(f c )(p, q) = f(p —Pt, q + ~t)

which belongs to ~ = ndp + Pdq. a& is however not
exact on V since ap + Pq Q 8. Similar eases clearly
occur in mechanics.


