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I. INTRODUCTION

As digital systems continue to grow, verification of
these systems is becoming an increasingly important
and difficult problem. To ensure a quick time-to-market,
the verification problem must be addressed early in the
design cycle. This requires the ability to verify system-
level descriptions of hardware and embedded software
systems, such as, C or Verilog, by proving assertions and
proving functional equivalence. This can be done at the
word-level by abstracting the word-level descriptions and
proving equivalence or at the bit-level by converting the
system-level descriptions into their equivalent boolean
circuit representation and checking satisfiability.

When verifying system-level descriptions of arith-
metic functions at the bit-level, a verification engineer
must choose how to represent the arithmetic operations
in these functions. For example, if the arithmetic function
being tested uses addition, the verification engineer will
have to decide what type of adder he/she will use
to represent the addition operation. Due to the fact
that systems are becoming increasingly larger and more
complex, verification needs to be as fast as possible.
The encoding of a simple element like an adder may
have a large effect on the runtime of the verification
engine. With the recent advances in SAT solving, using
SAT to verify the correctness of arithmetic assertions or
functions at the bit-level may be a viable option.

The goal of this project is to analyze and evaluate the
performance of current state-of-the-art SAT solvers on
arithmetic functions. More specifically, given assertions
or functionality based on arithmetic operations, our goal
is to determine which arithmetic encodings are “easier”
to solve using a variety of SAT solvers.

II. LITERATURE SURVEY

Bit-vectors (“words”) are a critical abstraction for
reasoning about arithmetic expressions. Intuitively, a bit-
vector is a fixed-length string of individual bits. Oper-
ations on bit-vectors can be described in terms of their
effect on each bit, or as transformations on the bit-vectors
as a whole. Bit-vectors combined with arithmetic theory
and boolean logic can be used to express properties or
functions of a system. While deciding the equality of

functions or validating properties of arithmetic expres-
sions is NP-hard, efficient heuristics exist which allow
most practical problems to be solved efficiently.

There are several approaches to word-level verifica-
tion. Multiplicative Binary Moment Diagrams (*BMDs)
[1] are a data structure that represent arithmetic ex-
pressions and handle arithmetic operations in word-level
verification. It uses a decomposition of a linear function
based on its “moments”. The edge weights are combined
multiplicatively. Like BDDs, *BMDs are canonical by
construction. Unlike BDDs, however, *BMDs can repre-
sent most integer arithmetic operations with a size linear
in the number of variables. In [2], Bryant et. al. propose
a hierarchical methodology (using *BMDs) to perform
word-level verification of arithmetic circuits focusing on
circuits that are inefficient to represent at the bit-level,
such as: multiplier, divider, and square root circuits.
At the lowest level, the building blocks of the circuit
are represented at the bit- and word-levels, while at
higher levels, the circuits are represented as compositions
of word-level descriptions. At the lowest level, it is
necessary to verify the bit-level descriptions against the
word-level specifications, however, at higher levels, it is
only necessary to verify the composition of the word-
level building blocks with the system specification. This
hierarchical methodology makes it possible to efficiently
represent and verify circuits at the word-level.

The Stanford Validity checker (SVC) [3] is a complete
and automatic verification tool for deciding equality of a
bit-vector arithmetic theory. It canonizes the arithmetic
expressions at the word-level, and uses a solver to
transform the atomic equations to a specific form, based
on properties of the arithmetic theory. CVC Lite [4]
(the successor to SVC and CVC) supports linear real
arithmetic. It checks the validity of three-valued Kleene
logic formulas by reducing the formulas into two-valued
logic.

The approach in [5] combines structural word-level
automatic test pattern generation (ATPG) and modular
arithmetic constraint-solving techniques to solve the
constraints imposed by assertion properties. First, the
assertion property is inverted to produce a counter-
example-generation problem, and the word-level ATPG
is applied to solve the problem. A branch-and-bound
algorithm is employed to justify the value requirements
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on the control logic. After the constraints on the control
logic are satisfied, an arithmetic constraint solver based
on the modular number system is applied to solve the
constraints on the data-path portion. Heuristics are used
to convert the non-linear arithmetic constraints to linear
constraints which are then solved by linear constraint
solver.

In [6] Stoffel and Kunz describe a reverse-engineering
techinque to verifying integer multipliers by extracting
the adder networks present inside the multipliers. This
methodology allows for the verification of multipliers
with other multipliers with dissimilar internal structure.

Burch showed in [7] that it is possible use BDDs
to verify multipliers while avoiding the exponential
blowup. This is possible by the use of fan-out splitting.
Essentially, fan-out splitting introduces new variables
inside the multiplier whenever there is fan-out from one
of the primary inputs. This technique requires that the
specification of multiplication is changed according to
the fan-out splitting. While fan-out splitting introduces
extra variables, it allows the growth of the BDD to be
cubic, which is much better than exponential.

This work attempts to analyze the various encodings
of arithmetic circuits on bit- and word-level SAT solvers.

III. ARITHMETIC CIRCUITS

For brevity, we will provide short descriptions of
each adder and multiplier that we have implemented.
Please refer to [1] and [2] for more details about the
implementations of the adder and multiplier circuits. The
other operations such as subtract, the boolean operators,
and the comparison operators were all implemented in
the usual way.

A. Adders

We have implemented five different types of adder
circuits:

• ripple-carry adder (RC1): two-level carry logic,
• ripple-carry adder (RC2): multi-level carry logic,
• carry-lookahead adder (CLA): every four bits are

grouped together. The carry bits inside each group
are computed in parallel, while the carry bits be-
tween groups ripple through.

• parallel-prefix adder (PPA): uses a binary-tree like
structure to compute the carry bits in time logarith-
mic to the size of the input word.

• carry-save adder (CSA): reduces the problem of
adding three numbers to the problem of adding two
numbers. This adder is used in many high speed
multiplication algorithms.

The number of XOR gates varies between the ripple-
carry implementations and the CLA and PPA imple-
mentations. However, this isn’t a deciding factor for
the runtime. The depths and numbers of AND and OR
gates are different for these circuits, as well. A two-level
ripple-carry adder has 5n AND and OR gates, and the

depth of the circuit is O(n). A multi-level ripple-carry
adder has two fewer AND and OR gates for each pair of
bits, i.e. 3n AND and OR gates. The depth of the circuit
is still O(n). An carry-lookahead adder has twenty more
AND and OR gates for each four pairs of bits, i.e. 8n
AND and OR gates. The depth of the circuit is O(n),
more precisely O(n/4). Parallel-prefix adder compute the
carry bits in O(lgn) depths, so the depth of the circuit is
O(lgn), while the number of gates in this circuit is a lot
more than the others, but the circuit is still Θ(n) size.

B. Multipliers

We have implemented three different combinational
multiplication circuits:

• multiply by a constant: uses the grade-school
method, however, each circuit is tailored specifically
to the value of the constant, eliminating unnecessary
logic

• grade-school multiplier: partial products are com-
puted by iteratively shifting and adding

• Wallace-tree multiplier: partial products are added
in parallel by using a carry-save adder tree. This
reduces the problem into a series of carry-save
additions and a final regular addition.

Grade-school multipliers operate in Θ(n) time and
have Θ(n2) size. Wallace-tree multipliers also have
Θ(n2) size, but they operate in Θ(lgn) time.

In addition to the multiplier circuits, it was necessary
to account for the multiplication of negative numbers.
This required additional logic. We implemented two
different methods to handle this. One way is to double
the size of both operands, then direct multiplication will
provide the correct result. This is inefficient; by doubling
the precision ahead of time, all additions must be double-
precision and at least twice as many partial products are
needed than for the efficient algorithms used in practice.
The other method is commonly used. First, check to see
if the multiplier is negative. If so, negate (i.e., take the
two’s complement of) both operands before multiplying.
This is necessary because grade-school multiplication re-
quires that the multiplier is positive. Since both operands
are negated, the result will still have the correct sign and
magnitude.

C. Sorting Networks

We have implemented sorting networks [8],[9], and
[10] to handle the integer linear contraints. To be precise,
an integer linear contraint is an inequality on a linear
combination of interger variables: C0x0 + C1x1 + ... +
Cn−1xn−1 ≥Cn.

Empirically it has been noted that SAT-solvers tend to
perform poorly in the presence of parity. Because all but
one variable must be set before anything can propagate,
parity constraints generate few implications during unit
propagation. Since full-adders (RC1, RC2, PPA, CLA,
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CSA) contain XOR gates (a parity constraint), we might
expect bad results from using them extensively.

To alleviate the problems inherent to full-adders, we
represent numbers in unary instead of in binary in the
following way. We first make all the coeffcients non-
negative in preprocessing. Then we flatten out every m-
bit integer variable xi into a sequence of m−1 boolean
variables < bi,0, ...,bi,m−2 >, and every coeffient Ci into
a sequenceon of boolean variables <Ci,0, ...,Ci,ki−1 > on
the base B =< 20,21, ...,2m−2 >. Then we group all the
boolean variables into different groups according to the
base and the coeffients. After that, we sort the boolean
variables in every group by sorting network, which only
contains AND and OR gates. The constraint is presented
by a certain combinations of AND and OR operations
on some of the outputs of the sorting networks.

By using sorting network, it is possible to handle
the integer linear constraints without using XOR gates.
The main part of circuits for integer linear contraints
is sorting network. For a linear contraint with n m-
bit integers and maximally k-bit coefficents, there are
at most m + k− 2 groups, each of which contains at
most (n×m) boolean inputs. The depth of a sorting
network for O(n×m) inputs is Θ(lg2(n×m)). While
we have sorting networks implemented, due to lack
of time and appropriate benchmarks, we were unable
to obtain meaningful results as to the performance of
sorting networks. However, as stated in [10], sorting
networks should alleviate the parity constraints, hence
improving runtime.

IV. SOLVERS

Three bit-level SAT solvers were used to analyze
the performace of the arithmetic encodings: Chaff [11],
MiniSAT [8], and SatELite [9]. In addition, ABC [12]
was used to convert from ISCAS bench format to CNF
format. Unfortunately, we were unable to test any word-
level solvers due to lack of time and non-functional
software. However, we were able to run experiments on
C-SAT, a circuit-SAT solver [13],[14].

V. EXPERIMENTS AND RESULTS

A. Experiment 1: Satisfying Assignments for Addition

For this experiment, a large number of circuits of the
following form a +size b = constant(where size is 4, 8,
16, or 32) were generated using different combinations
of adder implementations. Next, the SAT solvers were
invoked on the test circuits and the satisfying assign-
ments to a and b were extracted. For this experiment,
only MiniSAT and Zchaff were used. (ABC uses Min-
iSAT and SatELite destroys the topology of the circuit.)
The satisfying assignments generated by MiniSAT were
a,b > 0, whereas Zchaff chooses either a or b positive,
and the other negative. This behavior is consistent across
adder implementations. Upon further exploration, we
observed that the decision order in Zchaff is related to

the value of the constant, in addition, for circuits with the
same constant and different operator size, the decision
order is similar. We have not been unable to come up
with a theoretical reason for this behavior, however, we
feel that this is an effect of a design decision made in
the implementation of the SAT solvers.

B. Experiment 2: Multiplication

For this experiment, we generated numerous circuits
of the following form: a ∗32 b = p, where a and b are
32-bit variables, and p is a prime. We tested on a set
of different primes distributed in the range [2,231]. In
most cases, the runtimes of ABC and Minisat are more
than two times longer than Zchaff, and there are slight
differences in the runtimes between the two different
multiplier circuits. We also tested on numerous circuits
of the following form: a ∗32 b = n, where n is the
product of two primes. The results of this experiment
have similar characteristics as the previous multiplier
experiment. One last observation, is that when we run
this experiment with the grade-school multiplication
algorithm and zchaff, the satisfying assigments are either
a = 1,b = p or a = p,b = 1. This is interesting because
its the opposite of what was happening for addition.

C. Experiment 3: Miscellaneous Benchmarks

For this experiment, we ran all of the SAT solvers on
a set of benchmark circuits. We ran each SAT solver on
each benchmark once for each adder and multiplier type.
Depending on the benchmark, some combinations of
arithmetic encodings and SAT solvers are clearly better
than others, however, there does not seem to be a general
trend describing the runtime performance specific to
an encoding, except that the number of XOR gates is
positively correlated with the runtime. Figure 1 shows
the lack of a trend among the various adder implemen-
tations using the grade-school multiplication algorithm.
SatELite and Zchaff produce similarly trendless results,
and for the sake of brevity, the figures will be left out.

D. Experiment 4: Additions in different orders

For this experiment, we generated a number of circuits
of the following form ((x1 +size x2) +size x3) +size x4 6=
(x1 +size x2)+size (x3 +size +x4) (where size is 4, 8, 16, ...,
2048), using different adder implementations. Then we
invoked both MiniSat and SatELite on the test circuits
to check their satisfiability (Obviously, the answer is
unsatisfiable). Table I gives the runtimes of MiniSat on
different circuits.

In most cases, especially in the cases of large word-
size, RC2 takes the shortest runtime, and the PPA takes
the longest runtime (See 2. We noticed that the runtimes
has the same trend as the circuits size, which increase
in the order of RC2, RC1, CLA and PPA. Consequently,
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Fig. 1. MiniSAT runtimes on a number of benchmarks with varying
adder implementations.

Runtimes(s)
Size

RC1 RC2 CLA PPC
4 0.005999 0.005999 0.007998 0.006998
8 0.054991 0.039993 0.086986 0.037994
16 0.119981 0.166974 0.247962 0.19597
32 0.833873 0.437933 0.619905 1.61375
64 2.19467 5.82411 12.3091 8.79766
128 11.8212 9.66253 32.1501 35.4066
256 72.456 78.671 67.3398 112.714
512 220.752 152.303 326.283 355.373

1024 754.105 609.23 960.821 3132.21
2048 4032.33 1844.11 4053.98 6071.45

TABLE I
RUNTIMES OF MINISAT FOR EXPERIMENT 4

the number of variables and SAT-clauses for the different
adder circuits increase in the same order, this could be
one of the reasons for the runtime differences. Besides,
the depths and maximal cuts of the circuits also vary
depending on the adder circuits, but it seems that these
factors do not effect the runtimes as much as the circuit
sizes.

We also performed similar experiments on multplica-
tion. We generated a number of circuits of the following
form (x1 ∗size x2) ∗size x3 6= x1 ∗size (x2 ∗size x3), using dif-
ferent adder implementations. The runtimes are quite big
even for the small sizes (it takes more than 5000 seconds
when the word size is 8). The circuit sizes on these two
multipliation circuits are close. Also, the results we got
for the sizes 4, 5, 6, 7, 8 show that the runtimes for
grade-school and wallce-tree multiplier are close too.

E. Experiment 5: Karatsuba Multiplication

For this experiment, the Karatsuba multiplication al-
gorithm was verified against both the grade-school and
Wallace Tree multiplication implementations. More pre-
cisely, we checked the validity of x ∗ y = (b2 + b)(x1 ∗
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Fig. 2. MiniSAT runtimes for associativity test for various adder
implementations.
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Fig. 3. Runtime for Karatsuba experiment with w=4

y1)− b((x1− x0) ∗ (y1− y0)) + (b + 1)(x0 ∗ y0) where
x and y are 2w bits each, b = 2w, x = b ∗ x1 + x0 and
y = b2∗y1 +y0. We tested this for w = 4. We had planned
on testing this with 4 ≥ w ≤ 8, however, with w = 5
the benchmarks timed out after one hour. As previously
mentioned, the only trend we could find was a correlation
between the number of XOR gates and the total runtime.
See Figure 3. One thing to note about Figure 3 is for
RC2, the runtime is somewhat higher than it is for RC1.
We think this is because the multi-level carry logic of
RC2 adds extra levels of depth to the circuit which
degrades SAT solver performance.

F. Experiment 6: Benchmark Scaling

For this experiment, we chose to scale the word
sizes of two benchmarks from 32 to 24 and 16 and
subsequently analyze the runtimes. This experiment pro-
duced unexpected (and, so far, unexplainable results).
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One would expect the runtimes of the circuits with
varying sizes to increase as the word-size increases,
however, this was not the case. Tables II and III show
the runtimes for the various adder implementations for
different word sizes. As you can see, the runtime for
the benchmark with 24-bit words takes longer to solve
than the benchmark with 32-bit words for RC2 and
MiniSAT, however, for SatELite, the runtime for RC2
with 24-bit word size is lower than the runtime for 16-
bit word sizes. Another unexpected result is the runtimes
for the PPA implementations are faster for 32-bit word
sizes than they are for 16-bit word sizes. MiniSAT and
SatELite exhibit this behavior. Unfortunately, we have
no explanation for these behaviors.

Adder Type 16-bit 24-bit 32-bit
RC1 47 105 93
RC2 55 431 109
CLA 81 98 122
PPA 146 N/A 76

TABLE II
TABLE II: MINISAT RUNTIMES FOR VARIOUS ADDER

IMPLEMENTATIONS AND WORD SIZES.

Adder Type 16-bit 24-bit 32-bit
RC1 58 108 98
RC2 88 77 121
CLA 75 132 109
PPA 127 N/A 35

TABLE III
TABLE III: SATELITE RUNTIMES FOR VARIOUS ADDER

IMPLEMENTATIONS AND WORD SIZES.

VI. CONCLUSIONS

As the results indicate, there is no clear answer as
to which is the best arithmetic encoding to use. While
it is well known that parity is a major bottleneck in
SAT solver performance, there are other contributing
factors such as circuit depth and overall circuit size.
The runtimes for the various adders throughout the
experiments seemed to be uncorrelated from one bench-
mark to another, which leads us to believe that the
runtimes are benchmark dependent, and for the most
part, independent of the adder implementation that is
used. As for multiplier implementations, the Wallace
Tree and Grade-school multiplication algorithms were
comparible in runtime performance. The differences in
runtime were not large enough or consistent enough to
make a generalization as to which multiplier encoding
is better.

One last observation is that, depending on the bench-
mark and adder implementation, SatELite’s effectiveness
varies. By this, we mean, for one adder, SatELite might
outperform MiniSAT however, for the same benchmark

and a different adder, MiniSAT will outperform SatELite.
Unfortunately, there is no trend with this behavior.
For instance, SatELite might outperform MiniSAT on
benchmark X with adder A, however, on benchmark Y,
MiniSAT might outperform SatELite with adder A.

As you may have noticed, we have not presented any
results of the performance of C-SAT [13],[14]. This is
due to the fact that C-SAT was extremely slow compared
to bit-level SAT solvers. In fact, for all benchmarks
except for the smallest one, C-SATs runtime was at
least 1-2 orders of magnitude larger than the runtime
for MiniSAT and SatELite.

VII. FUTURE WORK

One possible avenue for future work would be to
test more circuit encodings on SAT solver performance,
however, we feel that this may be a fruitless path
judging from the results obtained heresofar. Another
area for future work is to analyze the effect of various
preprocessing techinques on different circuit encodings.
Lastly, the various arithmetic encodings need to be tested
on more word-level solvers.
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[8] N. Eén and N. Sörensson, “An Extensible SAT-solver,” Lecture
Notes in Computer Science, vol. 2919, January 2004.

[9] N. Eén and A. Biere, “Effective preprocessing in sat through
variable and clause elimination,” SAT, 2005.
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