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It is shown in this paper that the differential equations of 
macroscopic thermodynamics can be generalized in such a way 
that they apply as well to small (i.e., nonmacroscopic) systems. 
Conventional thermodynamic relations then follow from the 
present treatment as a limiting case (large system). As with 
macroscopic thermodynamics, there are two main classes of ap­
plications: (1) as an aid in analyzing, classifying, and correlating 
equilibrium experimental data on "small systems" such as (non­
interacting) colloid particles, liquid droplets, crystallites, macro­
molecules, polymers, polyelectrolytes, nucleic acids, proteins, etc.; 
and (2) to verify, stimulate, and provide a framework for statis­
tical mechanical analysis of models of finite (i.e., "small") sys­
tems. A well-known experimental and theoretical example (in 
which there are sizable effects of chain length) is the helix-coil 
transition in synthetic polypeptides and polynucleotides. Unlike 
macroscopic thermodynamics, thermodynamic functions are 
different for different environments (open, closed, isothermal, 
siobaric, etc.). Although it is possible to derive a single set of 

I. INTRODUCTION 

ORDINARY thermodynamics applies only to macro­
scopic (strictly, infinite) systems. Our object is 

to try to extend thermodynamics, insofar as possible, 
to include "small" (i.e., nonmacroscopic) systems. 
The equations we obtain here are more general than 
those of ordinary thermodynamics: They apply to 
macroscopic systems as a limiting case. 

It turns out (as is clear from Sec. II) that many 
special cases need to be considered, and that numerous 
examples are helpful. In this paper we discuss 
certain selected cases and results obtained thus far. 
A more suitable medium for a detailed and systematic 
account of the subject would appear to be a short 
monograph, and this is in preparation.! 

As in ordinary thermodynamics, there are two 
kinds of application of this work: (a) to experimental 
systems such as colloidal particles, aggregates, poly­
mers, macromolecules, etc. (not large enough to be 
considered macroscopic); and (b) to statistical me­
chanical models of "finite" (small) systems. We include 
a few simple examples of type (b) in Sec. II. 

The most important practical aim of macroscopic 
thermodynamics is to derive equations which provide 
interconnections between various thermodynamic func­
tions. The same is true of "small system thermo­
dynamics." This is essentially the only topic (together 
with examples) considered in this paper. Perhaps the 

* Supported in part by grants from the Heart Institute of the 
Public Health Service, the National Science Foundation, and the 
Alfred P. Sloan Foundation. 

t A very brief summary of this work was presented at an Ameri­
can Chemical Society meeting, Washington, D. C., March 23, 

thermodynamic equations applicable to all environments, it 
proves useful to give a separate analysis for each environment. 
Several cases are discussed, and a few simple statistical mechani­
cal models are used for purposes of illustration. The partition 
function for a "completely open" small system can be used with­
out any special technique such as is required when this partition 
function is applied to a macroscopic system. Solvent effects are 
discussed and details are given in one case. The present method 
provides an invariant treatment of the spherical interface of a 
drop or bubble, independent of any choice of dividing surface. 
Usually, only mean values of fluctuating extensive variables 
appear in thermodynamic equations. This is justified in macro­
scopic thermodynamics because fluctuations are generally unim­
portant. The situation is different for small systems and we de­
rive, in one case, a hierarchy of thermodynamic equations involv­
ing higher moments of the probability distribution of fluctuating 
extensive properties. 

most obvious "interconnections" of interest here are 
those showing how the size of the small system affects 
various intensive properties of the system. There is no 
such effect in a macroscopic system. 

There are some important respects in which experi­
mental small thermodynamic systems differ opera­
tionally from macroscopic systems. (a) In general, 
measurements are not made on a single small system 
but on a large number of small systems. An example 
is a very dilute solution of a macromolecule: the 
"small system" is one macromolecule; the solution 
contains many macromolecules; but the solution must 
be very dilute so that the systems do not interact 
with each other. (b) A macroscopic system immersed 
in a reservoir may exchange heat, molecules, etc., with 
the reservoir, but the intermolecular interaction be­
tween the system and the reservoir at the surface of 
contact is of negligible order. This is, in general, no 
longer the case for a small system immersed in a 
solvent (the reservoir). The discussion we give in 
Sec. II does not include solvent effects explicitly, 
and applies essentially to small systems (e.g., a macro­
molecule, colloidal particle, or aggregate) in the gas 
phase or in an inert solvent. But in Sec. III we illu­
strate the fact that the equations of Sec. II are formally 
valid even when solvent effects are present. All that is 
required is a reinterpretation of the meaning of various 
symbols. (c) Certain properties which can be varied 
experimentally at will for a macroscopic system cannot 
be so varied with a small system. An example is the 
volume of a colloidal particle. Another is the length of, 
or force f on, an elastic macromolecule in solution. The 
only operationally possible case is that off = constant = O. 

(W There are, of course, no such restrictions when in-. A. Ben-
vestigating the theoretical properties of a statistical 

1962. 
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mechanical model of a small system. We ignore this 
question in Sec. II but return to it in Sec. III. 

Consider a macroscopic system of N molecules, 
volume V, immersed in a heat bath at T. Consider the 
same system at V and T, but in contact with a reser­
voir of molecules, with the value of the chemical 
potential J.l chosen so that if has the same value as N 
above. Then all thermodynamic functions, and all 
equations connecting the functions, are the same in the 
two cases. This is an illustration of the well-known 
fact that properties and equations in macroscopic 
thermodynamics are independent of "em'ironment" 
(i.e., isothermal, isobaric, open, isolated, etc.). 
We see .below that this is not the case with small 
systems: it is useful to give a separate discussion 
(Sec. II) for each "environment," and the thermo­
dynamic functions are different in each case. Of 
course, these differences are not of "macroscopic 
order"; they exist only for small systems and dis­
appear if the size of the system is increased indefinitely. 
Section IIG shows that it is possible to derive a single 
set of thermodynamic equations applicable to all 
environments; but for most purposes this does not 
appear to be the most convenient approach. 

Ordinary thermodynamic equations connect mean 
values of fluctuating extensive quantities (E, N, V, 
etc., as the case may be). Only mean values are of 
interest because fluctuations about the mean values 
are ordinarily completely negligible in magnitude, 
relative to the mean values themselves. With small 
systems, fluctuations are larger and hence higher 
moments of the probability distributions become of 
interest, as well as do the mean values. In Sec. V we 
show that mean-value thermodynamic equations are 
the first members of a hierarchy of equations involving 
moments of different order. The treatment given in 
Sec. V will be thermodynamic, but the motivation and 
starting point comes from statistical mechanics. That is, 
the connection between probability distribution mo­
ments and thermodynamics must be provided by 
statistical mechanical ensemble theory. 

In this paper we consider systems which are 
small enough that macroscopic thermodynamics is no 
longer adequate but large enough that nonfluctuating 
extensive properties may be regarded as continuously 
(not discretely) variable to whatever order of accuracy 
is required. For example, if we consider binding on a 
macromolecule with B binding sites, the usual experi­
mental accuracy would require, for the above purpose, 
something like B'?,10-20. Intensive variables and 
(mean values of) fluctuating extensive variables are 
continuously variable in any case. For the most part, 
in this paper, we have in mind the first departures 
from macroscopic behavior. 

In the longer account of this problem to be published 
elsewhere,! the treatment given here will be expanded 
considerably and the following additional topics dis­
cussed, among others: calorimetry; small systems in 

the gas phase; rotation and translation; multicomponent 
small systems; chemical and phase equilibria; semi­
open small systems (e.g., binding on a macromolecule); 
electric and magnetic fields; polydisperse systems; 
discrete va.riables (very small systems) ; and irreversible 
thermodynamics of small systems. 

II. PARTICULAR CHOICES OF THERMODYNAMIC 
ENVIRONMENT 

A. Small System with J.l, V, T 

Here we consider a one-component system of volume 
V in contact with a heat and molecule reservoir at T 
and J.l. An example would be a spherical protein molecule 
with B binding sites (B is the analog of V), immersed 
in a solvent at T containing molecules at J.l which can 
be bound on the sites (the bound molecules, char­
acterized by J.l, B, T, are the "system" in this case). 
Let p be the (mean) pressure conjugate to V (i.e., 
pdV is a conventional work term). The system is small, 
so we cannot simply assume that usual thermo­
dynamic equations, for example 

dE= TdS-pdV+J.ldN, 
are valid. 

In order to begin with a firm macroscopic thermo­
dynamic foundation, we consider an ensemble of m. 
equivalent, distinguishable, independent systems, each 
with fixed center of mass, and all characterized by J.l, 
V, T. We let m.->oo and hence the ensemble itself is a 
macroscopic thermodynamic system, however small a 
single system is. We use distinguishable systems with 
fixed center of mass to eliminate the translational 
degrees of freedom of the whole system.2 Thus we will 
be left with the "internal" thermodynamic properties of 
a single system. Rotation of the whole system will 
often be of negligible importance, but it is not ex­
cluded.1 We do not include rotation in any of the 
simple statistical models used in the present paper. 

For an ensemble with constant m., we have from 
macroscopic thermodynamics that 

dEt = TdS t - pm.dV + J.J.dN t, 

where t = total refers to properties of the whole en­
semble. But St is clearly a function not only of E t , V, 
and Nt, but also of m. (or E t is a function of St, V, Nt 
and m.). Thus the complete expression is 

dE t = TdSt-pm.dV+J.ldNt+Xdm., (1) 
where 

X == (aEt!am.)s"V.N, or - X/T== (aSt/am.)E"V.N ,. 

Now suppose we hold J.l, V, T constant and double the 
value of m.. Then E t , St, and Nt will also double in 
value. That is, for this macroscopic system (the 
whole ensemble), E t is a linear homogeneous function 

2 This step provides maximum simplicity but is more restrictive 
than necessary.' See Sec. III for an. example O! th.e necessary 
procedure in handling small systems, With translatIOn, III a solvent. 
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3184 TERRELL L. HILL 

of St, Nt, and m., if p., V, and T are held constant. The 
volume V has the status here of a parameter necessary 
to characterize completely (with p. and T) a small 
system. Hence, from Eq. (1), 

(2) 

Before proceeding, it may be helpful to make some 
further comments about Eq. (1). Our point of view so 
far is that the first four terms in Eq. (1) are typical 
terms in macroscopic thermodynamics and that the 
last term Xdm. associated with the addition of further 
systems to the ensemble, is a new kind of term required 
for completeness and whose inclusion represents the 
essential step in our argument. But there is an alter­
native point of view. This is that 

(V constant) 

is a typical macroscopic equation for a two-component 
system with numbers of molecules Nt and m.. The new 
feature is, then, that the second kind of molecule can 
vary in size, the size parameter being V. We want to 
allow in the thermodynamics for variations in this 
parameter, so we add a term in dV( -pm.=aEt/aV) 
to again obtain Eq. (1). 

Let us illustrate this with a particular model. Suppose 
that the small system consists of molecules from a 
reservoir at fJ. and T adsorbed on B sites on the surface 
of a distinguishable, independent, spherical colloidal 
particle with fixed center of mass. The colloidal particle 
is assumed for simplicity to be unperturbed by ad­
sorbed molecules-it merely furnishes an adsorbing 
surface. We shall therefore subtract out the thermo­
dynamic properties of the colloidal particles them­
selves. The size of the colloidal particle can be varied, 
and hence B can be varied. For a fixed value of B we 
then have 

dE= TdS+~Nt+fJ.'dm., 

dEo= TdSo+fJ.o'dm., 

Et=E-Eo, St=S-So, X=fJ.'-p.o', 

where the first equation refers to a macroscopic system 
of m. colloidal particles and Nt adsorbed molecules the 
second equation refers to m. colloidal particles without 
any adsorbed molecules, and the third equation is 
obtained by subtraction and refers to Nt molecules 
adsorbed on m. spherical surfaces, each with B sites. 
If we now allow variations in B, we must add to the 
respective equations the terms xdB (where x=aE/aB), 
xrfiB (where xo=aEo/aB) and - pm.dB, where p is 
defined by -pm.=x-xo. Thus we again obtain Eq. 
(1), with B in place of V. 

The treatment in Secs. IIG and III should also be 
consulted in this connection. 

We return now to the main argument and define 
E, ii, and S by 

(3) 

Let us digress from pure thermodynamics to make some 
comments of a statistical mechanical nature on the 
significance of E, ii, and S. These remarks are not 
essential to the thermodynamic discussion. The 
quantities E and iI are average values per system of 
the ensemble j since all systems of the ensemble are 
equivalent, E and R are also time averages for a single 
system (E and N fluctuate in an environment char­
acterized by fJ., V, T). They are thus appropriately 
considered thermodynamic properties of a single small 
system. We do not put a bar over S because it is not 
an average value in the same sense. That is, S does not 
fluctuate in value but is a property of the complete 
probability distribution (pi below) in E and N for a 
single system3j thus S has the same value for each 
system in the ensemble. To verify that S, defined by 
St/m., has the usual meaning of an entropy in sta­
tistical mechanics, consider the following simple 
argument: Let Piik ... be the probability of a quantum 
state ijk··· of the ensemble, where i designates the state 
of the first system, j the second, etc. Since the systems 
are equivalent and independent, Piik ... = PiPiPk· .• , 
where Pi is the probability of state i for the first system, 
etc. Then 

St= -k '2: Piik'" lnpiik'" 
ijk·· . 

= - k '2: PiPi" •• (lnPi+ lnPi+· •• ) 
iik·· . 

=;rt( -k '2:p;lnPi), 
i 

(4) 

where we have used '2:iPi= 1. Thus S= - k '2:iP, lnp" 
which is the standard form.3 

We now return to the definitions in (3). Putting 
these in Eq. (2), we have 

X=E-TS-p.il. (5) 

Because of the form of this result, we define a quantity 
p by -pV=X. Thus 

(6) 

From Eq. (1) it is clear that P is a "differential" 
pressure while p is an "integral" pressure (i.e., in the 
"work" term - p V dm., the volume of the ensemble 
V t= m. V is increased by adding dm. systems to the 
ensemble, holding St, V, and Nt constant). 

We substitute Eqs. (3) and (5) into Eq. (1) and 
find, after cancellation and division by m., 

dE= TdS-pdV+~iI. (7) 

Note that P and p are different in Eqs. (6) and (7). 

3 See T. L. Hill, Statistical Mechanics (McGraw·HiII Book 
Company, New York, 1956), pp. 75-79. 
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Hence E is not a linear homogeneous function of S, 
V, andN 

This is what we should expect for a small system: If we 
hold J.I and T constant and double the value of V, we 
will not double the values of other extensive properties; 
furthermore, intensive properties such as p, p, N IV, 
etc., will change in value (i.e., they are functions of J.I, 
T, and V). But in the macroscopic limit (V_oo) 
fi-P, E becomes a linear homogeneous function of 
S, V, and N, and all intensive properties become 
functions of J.I and T only. Thus, for small systems, we 
have to abandon the conventional implications of 
"extensive" and "intensive" properties. We still refer 
to extensive and intensive variables, however, basing 
the classification on the macroscopic limit. 

If we take the differential of both sides of Eq. (6) to 
obtain d(pV), and use Eq. (7), we find 

d(pV) = SdT+pdV+NdJ.l. (8) 

This equation is especially useful since the independent 
variables are the same as the "environmental van­
abIes." From Eq. (8) we have 

(apV /aT)v.,..= S, (apv/avh.,..=p, 

(9) 

For a macroscopic system (opV/oVh.,..=pV/V=P=p. 
We digress briefly to point out the connection here 

between thermodynamics and statistical mechanics. 
We will need this to discuss statistical mechanical 
models. The ensemble is an open macroscopic system 
(p., Vt, T; we regard V as a parameter) for which we 
can write conventional results. For example, 

where Zt is the grand partition function of the en­
semble. From Eq. (2), 

-x;n=pV;n=kT InZt. 

But because of the independence, equivalence, and 
distinguishability of the systems of the ensemble, 
Zt= Zm., where Z is the grand partition function of a 
single (small) system. Hence 

pV=kTlnZ, (10) 

where, in rather standard notation, 

Z(p., V, T) = L exp[ - Ej(N, V)/kT] exp(NJ.I/kT) 
i.N 

= L!J(E, N, V) exp( - E/kT) exp(N p./kT) 
E.N 

= LQ(N, V, T) exp(Np./kT). 
N 

Equation (10) is the required result. 

Equation (8) can also be written as 

d(pV /kT) = Ed( -l/kT) +Nd(p./kT) + (p/kT)dV. 

(11) 
This form is used in Sec. V. 

Other equations similar to Eqs. (7) and (8) are also 
useful. For example, 

d(Np.-pV)=-SdT-pdV+p.dN, (12) 

d(iJ'p.-pV+pV) = - SdT+ Vdp+p.dN, (13) 

d[(p-P) V]= SdT- Vdp+Ndp.. (14) 

Also, we have 

(p-p)dV= SdT- Vdp+NdJ.l. (15) 

In a macroscopic system the left-hand sides of Eqs. 
(14) and (15) (they become the same equation) are 
zero. Equations (14) and (15) make it especially clear 
that intensive properties do not depend only on p. 

and T. Thus, 

{o[(p-P) V]/apl,...T= - V, 

(ap/aV),...T = (p-p)/V. (16) 

A great many equations involving derivatives can be 
deduced from Eqs. (7), (8), (11)-(15), and others of 
this type. We give only a few (isothermal) illustrations 

(ap/ap.h.v=p=N IV, 

(op/oph.v = p(op./aph.v; (17) 

(ap/op.h.v= (aN/aV)T.,..=p-[o(p-p)/aP.]T.V; (18) 

(ap/avh,,..= - V-l[a(p-p)/aP.]T.V; (19) 

(Op/aV)T.p= [(p-p) /V]- (ap/aV) T.,..(ap/ap) T.V. 

(20) 

The derivatives (ap/aVh.1l and (op/aVh.p empha­
size small-system effects since they would both be zero 
for a macroscopic system. 

In Eqs. (14) and (15), and in many others, some 
terms are of "macroscopic order" while others are of 
"small order" (negligible for a macroscopic system). 
Thus it is sometimes useful to introduce "excess" 
quantities as follows (x= excess) : 

S(p., V, T)=Vs(O)(p., T) +s(x) (p., V, T), 

N(p., V, T)=Vn(O)(p., T)+n(x)(p., V, T), 

p V = p(O) V +p(x), 

pV=p(O)V+p(z). (21) 

The quantities s(O) , n(O), e(O) , and p(O) are intensive 
properties of the macroscopic system. They are the 
values that SlY, N IV, etc., would have at the same 
p. and T as the small system, if V _ 00 • 
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Various equations involving only excess quantities 
follow. For example, 

e(X) = Ts(x)-p(x)+J.m(x), 

(25), we have 

InP=B InB+~ InB-N InN-~ InN-~ In27r 

- (B-N) In(B-N) -~ In(B-N) 

- (aN2/B) + (NJ.I./kT) , (26) 
de(x) = Tds(xL (p(x)/V)dV+J.Uin(x), 

dp(x) =s(x)dT + (p(x) /V)dV +n(x)dJ.l.. (22) (a InP/aN)B,p.,T =0= -lnN*- (2N*)-I+ln (B-N*) 

We do not pursue these further here.! 

Example: Bragg-Williams Lattice Gas 

Consider the binding of molecules from a reservoir 
at J.I. and T on the surface of a spherical protein mole­
cule or colloidal particle, with B uniformly distributed 
binding sites. The bound molecules at J.I., T, and B, 
which is proportional to the area, form the system of 
interest. Because we are concerned with a spherical 
surface, there are no "edge effects"--only the effects 
of small values of B. Another very similar system is the 
adsorption of a gas on a finely divided powder. We use 
the Bragg-Williams approximation for maximum sim­
plicity. The canonical ensemble partition function is 

Q(N, B, T) = [B!jN/N!(B-N) !J exp( -alV2/B) , (23) 

where a=zw/2kT, z=nearest-neighbor number, w= 
nearest-neighbor pair interaction energy, and j=par­
tition function at a site. We take j = 1 below for sim­
plicity. The grand partition function is 

A= 2:Q(N, B, T) exp(NJ.I./kT). (24) 
N 

We have previously had occasion4 to calculate 
J.I.(p) and pep) from this A for finite values of B. These 
calculations serve as a good numerical illustration of 
some of the above thermodynamic discussion. For 
example, one can see the magnitude of (ap/av)r,p. and 
(ap/av)r,p in phase transition (see also the next 
example) and critical regions. Here our object is to 
examine an "ordinary point" (i.e., outside of phase 
transition and critical regions) analytically for first 
departures from macroscopic behavior. 

For a macroscopic system we can use Stirling's 
approximation and replace InA by In (maximum term 
in A). That is, there is essentially a {j function at the 
maximum term when B-? 00. When the system is not 
quite large enough for this procedure to be valid, we 
have to use 

InN!=N InN-N+~ InN+~ In27r, (25) 

and replace the {j function by a Gaussian distribution. 
This gives us the first-order departure from macro­
scopic behavior. 

Define P=Q exp(NJ.I./kT). Using Eqs. (23) and 

4 T. L. Hill, J. Phys. Chern. 57, 324 (1953); also reference 3, 
pp. 416--418. For a very recent statistical mechanical example, see 
}. L. Lebowitz and J. K. Percus, Phys. Rev. 124, 1673 (1961). 

+[2(B-N*) J-I+ (J.I./kT) - (2aN*/B) , (27) 

(azInP/aNz)s,p.,T = - (N*)-I+(2N*Z)-I- (B-N*)-I 
N=N* 

+[2(B-N*)2J-I- (2a/B) , (28) 

where N* is that value of N giving the maximum InP. 
Equation (27) provides us with N*(B, J.l, T). Then the 
desired Gaussian distribution is 

peN) =P(N*) exp[ -J3(N-N*)2J, 

where 
{3= -t(az lnPjaN2)N=N*. 

Equation (28) gives (3 as a function of N*, B, T, and 
hence as a function of J.I., B, T, using N*(B, J.I., T) 
from Eq. (27). It follows that 

A= £:00 P(N*) exp[ -J3(N-N*)2Jd(N-N*) 

= P(N*) 71'1/131, 

or 
InA=lnP(N*) +~ In7r- ~ InJ3(N*, B, T). (29) 

We can now use Eq. (10) and the thermodynamic 
equations of the present section to find any property 
of interest. For example, we obtain 

p B aN*2 B-2N* 
kT=lnB _ N * +B2+ 2B(B-N*) 

--In -------1 [B2+2aN*(B-N*)] 
2B B2 ' 

(30) 

P B aN*2 B-2N* 
kT=lnB _ N * +B2+ 2B(B-N*)' (31) 

R N* B2(B-2N*) 

B =]j+ 2[B2+2aN*(B-N*)J2' 
(32) 

Terms of order unity are placed first, followed by terms 
of order B-1. The work here is not sufficient to obtain 
O(B-2). 

The macroscopic properties pCO) and R(O) are given 
by 

p(O) B aN02 
kT=lnB _ No + W ' (33) 

where N°(B, J.I., T) is determined by [see Eq. (27) J 
0= -lnN°+ln(B-N°) + (J.I./kT);- (2aN°/B). (34) 
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One can then show that, contrary to the superficial 
appearance of Eq. (31), 

p/kT= (p(O) /kT) +O(B-2) , (35) 
whereas 

p/kT= (p(O) /kT) +O(B-I). (36) 

This is verified by Eq. (9b) which shows that if p/kT 
has a term in B-t, the B-1 term is missing in p/kT. 

The above remarks suggest, incidentally, that in 
cases in which V can be varied continuously, and in 
which there are no "edge effects," excess functions 
[Eqs. (21) J may be expanded as follows: 
5(/-1, V, T)=Vs(O)(J.!, T)+s(l)(J.!, T) 

+(1/V)S(2)(J.!, T)+···, 

ill = Vn(O) +n(1) + (1/V)n(2)+ •• " 

E= Ve(O) +e(l) + (1/V) e(2)+. ", 

p= p(O) + (1/V)p(1)+ (1/V2)p(2)+. ", 

p= p(O)_ (1/V2)p(2)+ •• '. (37) 

This leads to hierarchies of thermodynamic equations, 
one example of which is 

e(O) = Ts(O)-p(O)+J.!n(O) (macroscopic), 

e(1)= Ts(I)-p(1)+J.!n(l), 

e(2) = Ts(2)_p(2)+J.!n(2) 

(38) 

A sa check on self-consistency we can calculate both 
sides of Eq. (19) for this model (V=B) and obtain 
the result 

(
iJP ) aN*(B-N*) (B-2N*) 

B aB T.~ = [B2+2aN*(B- N*) J2 
O(B-I) . 

(39) 

This order of magnitude is expected from Eqs. (37). 

Example: Lattice Gas at a Phase Transition 

We examine here first-order effects of "smallness" 
at a phase transition in an open system, using a lattice 
gas as a convenient model (the Bragg-Williams ap­
proximation is not introduced in this example). 

For the macroscopic system (B--too) at T, suppose 
the densities (ill/B) of the two phases in equilibrium 
are PI and P2 (PI+P2= 1 for a lattice gas). First-order 
effects will be exhibited in this case if peN) =Q(N)AN , 

where A= exp(J.!/kT) , is taken as essentially two 8 
functions at N=PIB and P2B. That is, 

'S.=Q(PIB, B, T)"AP1B+Q(p2B, B, T)"AP2B. (40) 

The next approximation would use two Gaussian dis­
tributions. Each phase associated with a 8 function 
should be treated "macroscopically," for sel£-con-

sistency. Thus we write 

Q(PIB, B, T) = exp( - AIB/kT) , 

Q(P2B, B, T) =exp( -A2B/kT) , 

where Al = Al (Helmholtz free energy) / B. Let "AT= 
exp(J.IT/kT) (T=transition) be the value of A at which 
iII/B=1/2 [the two terms in Eq. (40) are equal in 
this case J. Then 

exp( -AI/kT)V'=exp( -A2/kT)A/2. 

Equation (40) can be rewritten as 

'S.= [exp( - AI/kT)ATJB(XPIB+XP2B) 

=t exp(pTB/kT) (XPIB+XP2B) , (41) 

where X=A/"AT, and PT is defined by: 'S.= exp(pTB/kT) 
when A=AT. Again for consistency, we regard all of the 
quantities PI, P2, AI, A2, AT, and PT as functions of T 
only (two-phase equilibrium). We can now use Eq. 
(41) to obtain thermodynamic properties. 

For example, we find 

p/kT= (pT/kT)+B-lln(xp,B+xP2B)-B-lln2, (42) 

ill / B= (PIXPIB+P2XP2B) / (Xp ,B+XP2B) =p, (43) 

X (iJP/iJX)e.T = [(p2)AY- (p)2JB, 

p/kT= (pT/kT) +p lnx. 

(44) 

(45) 

Either Eq. (42) or (45) gives, for a macroscopic system 
near J.!=/-IT, 

A>AT p(O)/kT= (PT/kT) +P2In("A/AT) 

= (PT/kT) +Plln(V"AT) A <AT, (46) 

which is what we should expect. At p=1/2(x=1), 
Eq. (44) becomes 

x(~) =(~) =(PI2+P22_~)B=O(B) (47) 
ax B.T aJ.l./kT B,T 2 4 . 

Again, as a check, we can evaluate both sides of 
Eq. (19). We find 

(ap/aBk~=[(p2)AY- (p)2J Inx=O(1). (48) 

This is a much larger effect than in Eq. (39). Also, 

(
a)J./kT) = _(ap ) (aJ.!/kT) = _lnx =(a lnX) . 

aB p.T aB T.~ ap B.T B aB p.T 

(49) 

Integration of this equation simply leads to the con­
clusion that XB is some function of p and T, in agree­
ment with Eq. (43). 

Reference 4, which employs the Bragg-Williams ap­
proximation, serves as an illustration of these equations. 

B. Small System with p, N, T 

This is a closed one-component system in contact 
with a heat bath, and at pressure p. An example would 
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be a small colloidal particle or crystallite made up of N 
molecules. We consider a simple model of an in­
compressible crystallite in Sec. II D. Another example 
is a linear macromolecule made up of N monomers, 
each of which can exist in two or more states of different 
length (e.g., the helix-coil transition in natural and 
synthetic proteins and nucleic acids). Here V = length, 
which fluctuates, and p=force on chain=O, since the 
chain has free ends in solution. As already mentioned in 
Sec. I, there is no experimental way to vary the force 
in this case. Alternatively, the different states may be 
regarded as different components, with an isomeric 
chemical equilibrium between them. If the macro­
molecule also binds l molecules or ions froIll: a reservoir, 
we would have the set of environmental variables 
p (force), N (monomers), p.' (bound ions), T. The 
effect of chain length (N) on the helix-coil transition 
has been studied experimentally and theoretically.· 
The present paper, together with reference 1, provides 
the necessary machinery for a thermodynamic analysis 
of these results. 

Solvent effects for a.p, N, T system are discussed in 
Sec. III. 

Formally this case is the same as that of Sec. II A 
because there are one extensive variable and two in­
tensive variables (see Sec. V). We need only replace p, 

by -p, N by Y, -p by p" -p by jl, and V by N. A 
few of the basic equations are 

dEt= TdSt-pdVt+p.'JldN+Xd'JL; 

X=jlN, (50a) 

(SOb) 

(51) 

(52) 

(53) 

(54) 

(55) 

Combining these 

(EJTjON)p;V = (EJp,/EJSh,N. (58) 

Equations (57) are not useful (except with theoretical 
models) if p (force) cannot be varied (e.g., p=O= 
constant). 

A few further equations, of some interest for, say, 
a colloidal particle, are 

(EJp./aph.N=V=V/N, (59) 

(av/EJNh,p= - (l/N) [a (p.-P.)/ap]T,N, (60) 

[a(E+pV)/aT]p,N= T(as/aT)p,N. (61) 

See also Sec. II D. 
Excess quantities may be defined by 

S(p, N, T) =iVs(O)(p, T)+s(x)(P, N, T), (62) 

etc. Here s(O) is the entropy per molecule and not per 
unit volume, as in Eq. (21). There is an example in 
Sec. II D. 

The connection with statistical mechanics is 

- P.N = k TinA, (63) 

where 

A(p, N, T) = LQ(E, N, V) exp( - E/kT) 
E,V 

Xexp( -PV /kT) 

= LQ(N, V, T) exp(-pV/kT). 
v 

C. Small System with N, V, T 

This is a closed system at constant volume (area, 
length, etc.), in con tact with a heat bath at T. This case 
does not seem very important experimentally because 
of the difficulty of keeping N and V both constant. 
Hence we give only the basic equations. 

The analog of Eq. (1) is 

(64) 

Et= T St-P Vt+jlN'JL, 

E=TS-pY+{lN, 

dE=TdS-pdY+p,dN, 

d(E+pY) = TdS+Ydp+p,dN, 

d(Np.) = - SdT+ Ydp+p.dN, 

d(NP.-pY) = - SdT-PdY +p.dN, 

(p.-p.)dN= SdT- Ydp+NdP., 

d[(p.-P.)N]= SdT- Ydp+Ndp.. (56) Then 

From the first of these equations we see that p, is a 
chemical potential for a single molecule ('JL constant) 
while P.N is a chemical potential for a whole system 
(N constant). See also the discussion of Eq. (1) and 
Sec. III in this connection. 

In the helix-coil type of system, one is interested in 
derivatives of the form (EJVjiJNh,p, etc., where V 
(length) is linearly related to helical content and ap­
proximately to optical rotation, etc. We find, for 
example, 

(aV jdNh,p= (iJp.jEJPh,N, 

(iJVjaT)p,N= - (iJSjaph,N. (57) ----
5 See, for example, P. Urnes and P. Doty, Advances in Protein 

Chern. 16, 1961; R. F. Steiner and R. F. Beers, Jr., Polynudeo­
tides (Elsevier Publishing Corporation, Amsterdam, 1961). 

X=E-TS. (65) 

Because of this result, we use the symbol A for X 
below. We put E- T S for X in Eq. (64) and get 

dE= TdS-pdV+p.dN, (66) 

dA=-SdT-pdV+p.dN. (67) 

Only for a macroscopic system does A=-pV+p,N. 
The analog of Eqs. (14) and (56) is 

d(p.N-pV-A) = SdT- Vdp+Ndp.. (68) 

The connection with statistical mechanics is 

-A=kTlnQ. (69) 
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D. Small System with N, T 

Here we consider a small colloidal particle (the 
system) which is incompressible. The system has N 
molecules and is in a heat bath at T. The volume V 
is not a separate variable: V is simply proportional to 
N with a constant proportionality factor. This is a 
degenerate form of cases Band C above. 

Then 
dEt= TdSt+}J.'JtdN+Xd'J[, 

E t= TSt+X'J[, 

A=pN=X=E-TS, 

dE= TdS+}J.dN, 

d(pN) = - SdT+}J.dN, 

(}J.-p)dN= SdT+Ndp, 

d[(}J.-p)N]= SdT+Nd}J.. 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

Thus, for example, 

(a}J./aT)N= - (as/aNh, 

(ap/aT)N= - SIN, (77) 

(ap/aNh= (}J.-p)/N, }J.=[a(pN)/aN]T, (78) 

- S= [a (pN) /a T]N = la[(p-p)N]/aTII" (79) 

Equation (69) relates statistical mechanics to thermo­
dynamics. 

Example: Incompressible Einstein Crystallite 

This example is a very trivial one mathematically 
but it is a first approximation to an important class of 
applications (see, for example, Sec. IV). 

Consider an "Einstein crystal" sufficiently small so 
that surface effects enter. For simplicity the crystal is 
assumed incompressible. The independent variables are 
Nand T (V is proportional to N; see above). The 
partition function Q is assumed to have the simple 
form 

Q=j(T)Nlexp[ -e(T)/kT]IN exp[ -a(T)Ni/kT]. 

(80) 

The factor j (T) is a vibrational partition function, 
E(T) is an average neighbor interaction free energy, 
and the term a(T)NJ is a surface free energy (with 
a>O; a has the order of magnitude of the surface ten­
sion multiplied by the square of the nearest-neighbor 
distance). 

We find from Eqs. (69), (72), (74), and (80) that 

p= - kT Inj+e+aN-l, (81) 

(82) 

S=N[k Inj+kT(d lnj/dT) -dE/dT]-NI(da/dT) , 

(83) 
E=N[kT'-(d lnj/dT) +E- T(de/dT)] 

+NI[a- T(da/dT)]' (84) 

Equations (77)-(79) can all be verified with these 
functions. 

Excess functions may be defined as follows: 

SeN, T) =Ns(O)(T)+s(x)(N, T), 

E=Ne(O)+e(x), 

N p= N }J.(O) +p(x), 

N }J.=N }J.(O)+}J.(x) =N }J.eo)+N(apex) IaN) T. (85) 

These functions in the present example are 

s(X) = -NI(da/dT) , eeX)= NI[a- T(da/dT)], 

}J.ex)=jaNi. (86) 

Examples of equations connecting the excess functions 
are 

We might digress at this point to summarize what 
the examples considered so far indicate concerning 
orders of magnitude of nonmacroscopic terms. First, 
consider a quantity such as E/kT or N}J./kT (i.e., an 
energy or free-energy term divided by k T). The 
macroscopic magnitude is O(N). As to "edge effects": 
in three dimensions the magnitude is O(NI); in two 
dimensions, O(N!); and in one dimension, 0(1). The 
"pure" small-number effect (no edges) is 0(1) [see 
Eq. (37), for example]. Translation and rotation give l 

o (lnN) . Second, consider a quantity such as 
a(}J./kT)/aN, with intensive properties constant. The 
macroscopic value is zero. At a first-order phase transi­
tion we have O(N-I) [see Eq. (49)]. For edge effects: 
in three dimensions, 0(N-4/3); in two dimensions, 
o (N-!) : in one dimension, o (N-2) . The pure small­
number effect is o (N-2) . 

E. Small System with N, E, V 

Cases A to D above are all examples of systems 
which are partially "open" and partially "closed." 
That is, some of the environmental variables are ex­
tensive ("closed") and some are conjugate intensive 
("open") variables. In E and F we consider the two 
extreme cases (for a one-component system): com­
pletely closed (i.e., "isolated," with environmental 
variables N, E, V); and completely open (environ­
mental variables}J., T, p) . 

The analog of Eq. (1) for an ensemble of isolated 
systems, each with N, E, V, is 

Here, St is a linear homogeneous function of 'J[ when 
E, V, and N are held constant. Therefore, 

0= T St+X'J[, X=-TS. (89) 
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Equation (88) then becomes 

dE= TdS-pdV+p.dN, (90) 

dS= (l/T)dE+ (p/T)dV - (p./T)dN. (91) 

The connection with statistical mechanics is 
S=klnQ(E, N, V). In general, ErfTS-pV+p.N. 
Also, 

d(TS-pV+p.N-E)=SdT- Vdp+Ndp., (92) 

or 

d( S-P; +p.; -~)= -Ed(~)- Vd(~)+Nd(~). 
(93) 

Legendre transformations can be used to obtain other 
sets of independent variables 

d(S-!i)=-Ed(~)+tdV-~dN (94) 
T T T T' 

and so forth. Many Maxwell relations follow from 
these equations. For example, from Eq. (91), 

(96) 

Example: I deal Lattice Gas 

Let us consider a very simple example of an isolated 
system: an ideal lattice gas with no internal degrees of 
freedom. This is the same as the model in Eq. (23), 
taking j= 1 and a=O. The energy of this system is 
constant: E=constant=O. The partition function is 

Q(N, B) =B!jN!(B-N) 1. (97) 

To find first-order "smallness" effects, we keep terms of 
order unity in lnQ 

S/k=lnQ=B InB-N InN- (B-N) In(B-N) 

-~ In[211N(B-N)/BJ. (98) 
From Eq. (91), 

_~=(aS/k) =lnB-N 2N-B 
kT aN B N +2N(B-N)' 

(99) 

P (as/k) B N 
kT= aB N =lnB _ N - 2B(B-N)' (100) 

and hence 

(101) 

Using these results we can verify for example, Eq. (96) 

and 

1\' = [a[ (S/k) - (pB/kT) + (p.N /kT) J] 
a(p./kT) p/kT 

=[a[(S/k)+(p.N/kT)J]. (102) 
a (p./kT) B 

F. Small System with p., T, p 

We consider a "completely open" one-component 
system. Examples are: a colloidal aggregate in a solvent 
at p and T; the solvent containing molecules of the 
aggregate at p.; or a liquid-like cluster of molecules in a 
gas near the critical point. 

Instead of Eq. (1), we have 

dEt= TdSt-pdVt+p.dNt+Xd:JL, (103) 

and hence, 
E t= T St-pVt+p.Nt+X:JL, 

X=E-TS+pV-p.JV, (104) 

dE=TdS-pdV+p.dfi, (105) 

d( -X) = SdT- Vdp+Ndp., (106) 

d( -X/T) = - Ed(1/T) - Vd(p/T) +Nd(p./T). (107) 

Other independent variables can be introduced by 
Legendre transformations, as usual. 

The relation to statistical mechanics is 

- X = kT InT, (108) 

T= L Q(E,N, V) exp(-E/kT) exp(-pV/kT) 
E,V.N 

X exp (Np./kT) , (109) 

= LZ(P., V, T) exp(-pV/kT), (110) 
v 

= L~(P, N, T) cxp(Np./kT). (111) 
N 

This partition function requires special care when used 
with a macroscopic system,6 basically because of the 
fact that T, p, and p. cannot all be independent. But we 
have already seen with other environments [Eqs. 
(14), (56), (68), and (92)J that T, p, and p. can be 
independent in the thermodynamics of small systems. 
We might therefore anticipate that there is no special 
difficulty in applying T to a completely open small 
system, and this proves to be the case. 

Example: Incompressible Einstein Crystallite 

This is the same model as in Sec. II D. We have 

T(p., T) = LQ(N, T) exp(Np./kT), 
N 

= L exp[ -N(p.-p.)/kTJ, 
N 

= L exp{ -N[.u(O)(T) -p.J/kT} 
N 

Xexp[ -P.(x)(N, T)/kTJ, (112) 
6 See reference 3, pp. 71-75 and Appendixes 2 to 4. 
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where j.L(0) and flex) are given by Eqs. (81), (85), and 
(86). It should be emphasized that p. is an assigned 
constant here-this is not the p. of Eq. (82). If we choose 
p.> p.(0) (T) (the macroscopic chemical potential at T), 
the first exponential dominates for large N, the sum 
diverges, and N---'>oo. Hence it is not possible to have a 
stable "open" small crystallite with p.> p.(0). We must 
therefore take J.L'5:. p.(0). We define 0 and 0: by 

aCT) =a(T)/kT>O. 

In order to obtain crystallites of reasonable size we 
have to choose 0 very small. In fact, we confine our­
selves to the case 0---'>0+. This means we are examining 
"open" crystallites which are in equilibrium with the 
bulk phase. Such crystallites are analogous to clusters 
in the saturated vapor phase in equilibrium with a 
liquid. But even with a saturated vapor the clusters 
will be sizeable only near the critical temperature 
where the surface tension is very small. The metastable 
equilibrium of a supersaturated vapor and liquid 
drop is discussed in Sec. IV. 

Equation (112) becomes 

T(p., T)= j'D(1_0N) exp(-aNI)dN 
o 

= (37r!/40:!) - (30/a3). (113) 

Then, from Eq. (107), 

- (oinT) (oinT) ( (0) 4 
N= op./kT T = To a op./kT T = 7r!o:f 

(114) 

Thus T=37rN/16. The same result for N follows from 

fOON exp( -o:Nl)dN 
o 

N=-------

f' exp( -o:Nl)dN 
o 

(115) 

According to Eq. (114), N = O(kT hr*2)!, where 'Y is the 
surface tension and r* is the nearest-neighbor distance. 
The mean crystallite size increases with decreasing 'Y, 
as expected. We also note for use below, that a calcu­
lation as in Eq. (115) gives 

(116) 

In general for this model N (and (Nl )AV) would be a 
function of p. and T, but we have taken p.---'>p.(0) (T) so N 
is a function of T only. 

The above results illustrate the fact that a complete 
set of intensive variables (in this case p. and T) can 
determine the extensive variables (e.g., N above) of a 
small system. In the case of a macroscopic system, there 
is one less intensive variable in a complete set, and 
these cannot determine extensive variables (the 
system can have any size). 

Equation (113) for T and 

_ (0 lnT) 
- E= al/kT ,,/kT 

(117) 

lead to 

E=N[kJ'2(d lnj/dT) +E- T(dE/dT)] 

+ (Nl )AV[a- T(da/dT)]' (118) 

This result also follows immediately from Eq. (84). 
For, if we denote the average energy in Eq. (84) by 
EE (the superscript E means averaging has been 
carried out over E), then 

E(p., T) =EE,N=T-1L exp (Np./k T) LN1.(N, E) 
N E 

Xexp( - E/kT) 

LEE(N, T) exp[ -N(P--p.)/kT] 
N 

L exp[ -N(jl-p.)/kT] 
N 

(119) 

Substitution of Eq. (84) for EE in Eq. (119) gives 
Eq. (118). 

Equations (84) and (118) for the energy illustrate 
the fact that thermodynamic properties of small 
systems are different in different environments. For if 
in Eq. (84) we choose the same T as here and choose N 
there equal to the N here, then the two energies 
differ because (N) f;zf (Nl )A:. 

The entropy is, from Eq. (104), 

S= (E/T) - (p.(olJii /T) +k InT 
=N[k lnj+kT(d Inj/dT) -dE/dT)]- (NI)Av(da/dT) 

+k In (37rN /16) + (N! )Av(a/T). (120) 

This result also follows from S=(akTlnTjaT)", using 
Eq. (113) for T. If we take the same T and choose N 
in Eq. (83) equal to the N here, the entropy in Eq. 
(120) is larger than that of Eq. (83). This is always 
to be expected7 when passing from a given environ­
ment to a more open environment. The effect is neg­
ligible for a macroscopic system, of course. 

Example: Ideal Lattice Gas 

This is the same model as in Sec. II E. We have 

00 B B' T=]:; ~Nl(B~N) 1 exp(mN) exp( -cJ>B), 

where m=J.L/kT and cJ>=p/kT. It is most convenient to 
sum first over N 

T=I:(1+em )B exp (-cJ>B). (121) 
B~ 

7 See reference 3, pp. 75-76 and E. A. Guggenheim, Research 
2, 450 (1949). 
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In this very special case 

'E.=exp(pB/kT) = (1+em )B=exp(p(O)B/kT) 

=exp(¢/O)B) (122) 

small on the average. As an example of this, we con­
sider the present model when ¢-¢(O)>>l so that 
B=exp[ - (¢-¢(O»]«1. Equation (125) is unchanged 
and Eq. (126) becomes 

has no "excess" factor as in Eq. (112); P is the same S/k=B-NlnN-(B-N) In(B-N). (128) 
(for any B) as the macroscopic p(O). This is because 
each site is independent (and contributes a factor Only the first few terms in T need be retained 

l+em to 'E.). Then T= l+e~+eme~. (129) 

T(m, ¢) = 1: exp[ - (¢-¢(O»B] 
B=O 

= {l-exp{ -[¢-¢(O)(m)]l }-l (123) 

converges and will lead to a finite 13 (small system) if 
¢ is chosen so that ¢>¢(O) (m). If ¢~¢(O), a small 
system cannot exist (13--,> 00 ) • 

If we sum first over B, the second sum (over N) 
converges if m is chosen less than m(O) (¢) , and Eq. (123) 
is again obtained. In this case NP./kT contains an 
excess fUGction: 11(") /kT= In( 1- e-<p). 

From Eq. (107) we find 

- (a InT) exp[ - (¢_¢(O»] (124) 
B(¢,m)=- ----a¢ m=1-exp[-(¢-¢(O»] 

and 

_ (a InT) B(¢, m)em 
_ 

N(¢, m) = - = =B[l-exp( _¢(O»)]. 
am <p l+em 

(12S) 

Hence T= 1 + B. This result for N /13 is the same as for 
a macroscopic system (any ensemble). To obtain a 
sizeable 13, we need ¢-¢(O)«1. Then 13= (¢_¢(O»-l. 
The entropy is 

S/k=¢B-mN +lnT 

= (1 +13) In (1 +.8) - N InlY - (13- ii) In(B- i""). 

(126) 

This is an exact expression (no Stirling approximation, 
etc.). It is of interest to compare this with the entropy 
from other environments. For the fl., B case: 

S/k= (pB/kT) - (fl.N /kT) =B lnB-N InN 

- (B-N) In(B-N), (127) 

also without approximation. Equation (98) gives S/k 
in the iV, B case to 0(1). As expected, S/k increases 
in the order N, B; fl., B; fl., p. 

One needs, in general, to usel difference as well as 
differential relations when applying thermodynamics 
to very small systems with environmental variables 
which include one or more extensive properties (e.g., 
in a fl., B, T lattice gas system there is a discrete differ­
ence between, say, B=9 and B= 10). One special 
feature which is associated only with a comp~ete!y 
open system is that all the variables fl., p, T, N, V, 
E, S vary smoothly, even for systems which are very 

The probabilities PNB of the various s~ates are 

POO= 1/1'= 1-B, POI =e-~/1'= B-N, 

pll=emc<p/1'=N. (130) 

We can then verify that [see Eq. (4) ] 

S/k= - (poo Inpoo+PollnpOl+Pl1lnP11) (131) 

also gives Eq. (128). 

Statistical Mechanical Summary 

We supplement the two examples above with the 
following summary. In a fl., p, T system, if the last sum 
is over, say, Vas in Eq. (110), we have 

{
[P(O)(fl., T)-P]V} (p(")(fl., T, V») 

1'= ~ exp kT exp kT . 

(132) 

The first factor dominates for large V. A stable small 
system is therefore possible (1' converges) if P is chosen 
so that P> p(O) (fl., T). Such a system is not possible if 
p<p(O)(V--'>oo). The behavior at p=p(O) depends on 
the particular case. The choice of the last variable 
over which to sum is obviously arbitrary. If the last 
sum is over N, the sufficient condition for convergence 
is II-<II-(O)(p, T). If the last sum is over E, it is T< 
T(O) (II-, p). It is easy to show that if values of 11-, p, and T 
are chosen so that p>pCO)(II-, T), then it will also be 
true that fl. <fl.(O) (p, T) and T < T(O) (fl., p). If the sur­
face fl.(0) (p, T) is drawn in a p, T, fl. coordinate system 
(II- increases in the upward direction), then l' converges 
for points under this surface and possibly on it, but 
not above it. 

G. General Treatment 

We have given a separate analysis for each environ­
ment in Secs. IIA through IIF. This is a natural and 
illuminating approach since: (a) The values of the 
thermodynamic functions are in general different for 
each environment; (b) a particular set of independent 
variables (i.e., the environmental variables) has 
unique importance operationally and theoretically; (c) 
a particular statistical mechanical partition function 
must be used (instead of having an option, as in macro­
scopic statistical mechanics) ; and (d) Secs. III through 
V require this type of treatment. 

However, it is possible to give a single, alternative, 
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general development, applicable to all environments. 
This also has obvious advantages. We merely show the 
starting point here and leave details to another pub­
lication. l 

In the basic Eqs. (1), (50a), (64), (70), and (88), 
we add systems to the ensemble, in defining X, holding 
the parameters (nonfluctuating extensive variables) 
constant. Here we add systems to the ensemble, for 
any environment, as in Eq. (103). We omit bars over 
E, V, and N in order to have a single notation for all 
cases. With or without bars we have, of course, 

E t= E'J'L, 

Thus, we write 

Nt=N'J'L, 

or 

where 

S=-8/T. 

In defining S, systems are added to the ensemble 
holding Et, Vt, and Nt constant. Hence E, V, and N are 
decreased as 'J'L increases. The ensemble is "divided 
into smaller pieces" keeping the total energy, volume, 
and number of molecules the same. On integration, 

Also, 

E t= T St- P V t+,uNt+8'J'L, 

E= TS-pV+,uN+8, 

S= (1/T)E+(p/T) V- (,u/T)lY+S. 

dE= TdS-pdV+,udN, 

d8= - SdT+ Vdp-Nd,u, 

dS= - Ed(1/T) - V d(p/T) +Nd(,u/T). 

The functions 8 and S vanish for a macroscopic system. 
If the environmental variables are, say, ,u, V, and 

T, then we would be especially interested in the 
equation 

d(8-pV) = - SdT-pdV-Nd,u. 

Clearly 8= (p-p) V. For an N, p, T system, 
8= (P.-,u)N, etc. 

III. SOLVENT EFFECTS 

If the thermodynamic equations of the preceding 
section are applied to experimental data on, say, a 
macromolecule or colloidal particle in a solvent, the 
question arises as to the exact meaning of the thermo­
dynamic functions. We examine this point here. We 
give details for only one case to illustrate the pro­
cedure. 

If the small system is immersed in a solvent, the 
system will have the pressure and temperature of the 
solvent. Therefore, p and T ordinarily will be two of 

the environmental variables. By the same token, V 
and E are not possible as environmental variables. 
As an approximation, one might, however, completely 
omit the pair p, V [see Eq. (73) for example] or even 
E, T [see Eq. (121) for example]. 

The variables of most interest in simple cases are 
then p, T, N or p, T, ,u. If, in addition, there is binding 
of another species (N', ,u') on a macromolecule the 
variables would be p, T, Nor ,u, N' or ,u'. If the macro­
molecule is made up of monomers which can exist in 
states of, say, different length we would add f or l 
(force, length) to the above list. The choice of most 
interest would bef=constant=O. 

As an example we treat a p, T, N system in a one­
component solvent. We consider a solution of 'J'L of 
these systems in a solvent characterized by p, T, N l • 

The small systems are "infinitely dilute" in the solvent, 
but 'J'L is a very large number. The systems in the 
present "ensemble" have translational motion. From 
ordinary solution thermodynamics we then have 

dET= TdST- pdV T+,uldNl+,ussd'J'L+,u'J'LdN. (133) 

In this equation, N is regarded as a parameter and ,u 
is defined by ,u'J'L = dETjaN. The subscript T (total 
now including the solvent) refers to the whole solution 
T, p, N l, 'J'L; the subscript ss means "small system." 
Now consider the same solvent (p, T, N l ) but with no 
"small systems" present ('J'L=O) : 

(s=solvent). (134) 

In Eqs. (133) and (134) we have (dilute solution) 

ET=N1El(P, T) +'J'LEO(N, p, T), 

S7'=N18 l(p, T, 'J'L/Nl)+'J'L8°(N, p, T, 'J'L/Nl), 

VT=N1Vl(P, T)+'J'LYO(N, p, T), 

(135) 

The quantities El, Sl, and Vl are properties of the pure 
solvent; EO, etc., are partial molal quantities at in­
finite dilution. Further, we have (dilute solution) 

,ul = ,u1(8) (p, T) - ('J'LkT / Nl), 

81=Sl(P, T)+('J'Lk/Nl), 

8°= SeN, p, T) -k In('J'L/Nl ), 

,u8s=Fo= NP.(N, p, T) +kT In ('J'L/N1) , (136) 

where Sand p. are defined by these equations. This is 
the essential step, which separates out the divergent 
terms in In('J'L/N1 ) from 8° and ,uss. The remaining 
quantities, S and Nfl, are functions of N, p, and T 
only (they also depend on the choice of solvent), and 
may be regarded as "intrinsic" properties of a small 
system. These are the properties of interest to us. Also, 
at this point we introduce the symbol E for EO and if 
for yo. We now subtract Eq. (134) from Eq. (133) 
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and obtain 

d(:nE) = Td[:nS-:nk In(:n/Nl ) +:nk]-Pd(:nV) 

- (:nk T/Nl) dNl+[j1N+kT In(:n/Nl ) ]d:n+,u:ndN. 

After cancellation of terms, this gives 

d(:nE) = Td(:nS) - Pd(:nV) +pNd:n+,u:ndN. (137) 

From Eqs. (133) and (134) we also have 

E T= T ST- P V T+,ulNl+,u •• :n, 

E.= T S.- P V.+,u1(8)Nl, 

and then, after subtraction and cancellation, 

E= TS-pV+PN. (138) 

This result also follows directly from Eq. (137). 
Substitution of this expression for pN in Eq. (137) 
gives 

(139) 

Thus we have arrived at equations which are formally 
identical with (SO) and (51), even though solvent is 
present. The above discussion is necessary to establish 
the significance of R, S, V, ,u, and p in the presence of 
solvent. 

We emphasize that there are two distinct thermo­
dynamic levels here: Eq. (133) refers to a macro­
scopic dilute binary solution of "small systems" 
(macromolecules, colloidal particles, etc.) in a solvent; 
Eqs. (138) and (139) refer to a single small system 
(including interaction with solvent). The latter equa­
tions themselves go over into macroscopic thermo­
dynamic equations if the small system becomes in­
definitely large. 

IV. SPHERICAL DROPS OR BUBBLES 

This is a rather special topic which has some features 
in common with both Secs. II and III. Also, this 
discussion provides a link between the general approach 
to small system thermodynamics which we have out­
lined here and earlier work, beginning with Gibbs, on 
the thermodynamics of curved interfaces.8- lo 

To be specific, we use the language of "drop in 
vapor" but the equations apply as well to "bubble in 
liquid." 

Consider a spherical drop in a spherical container of 
volume V. The center of mass of the drop is imagined 
restrained to the origin (r=O). The drop is in contact 
with a supersaturated (metastable) vapor character­
ized by T, J.l1, J.l2, .... These variables completely 
determine the nature of the drop. There is a con­
tinuous transition, at the interface, from drop to vapor. 
There is no restriction on the size of the drop; it may 

8 The Scientific Papers of J. Willard Gibbs (Dover Publications 
Inc., New York, 1961). 

9 For recent summaries, with references, see the chapters by 
S. Ono and S. Kondo and by F. P. Buff in Handbuch der Physik, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1960), Vol. 10. 

10 T. L. Hill, J. Phys. Chern. 56, 526 (1952). 

be so small that properties of bulk liquid (at T, J.ll, 

J.l2, ••. ) do not obtain even at r=O. The volume V is 
taken as macroscopic and large enough so that proper­
ties of bulk metastable vapor (at T, J.l1, J.l2, ••. ) are 
reached at least at the periphery of V; otherwise V is 
arbitrary. The pressure at the periphery is p (deter­
mined by T, J.l1, J.l2, •.• ) . 

Now consider, as in Sec. II, an ensemble of:n of these 
open systems [compare Eq. (1)]: 

dEt= TdSt-p:ndV+ L,uidNit+Wd:n, (140) 

where W= (aEt/a:n)S,,v,Nit. Integration at constant 
T; J.li, V gives 

or 

E t= T St+ LJ.lJVit+W:n, 
i 

We can define p by W==-pV. Substitution of Eq. 
(141) in Eq. (140) yields 

dE= TdS-pdV+ LJ.lidNi. (142) 

Now consider, for reference, :n systems containing 
the same vapor at T, J.li but with no drop in the center. 
(Actually, since such a system is macroscopic and 
homogeneous, it would suffice to treat only one system.) 
Then, with obvious notation, 

dEP= TdStLp:ndV+ LJ.lidNito+wod:n, 

Wo= -pV= {;}L T 50- LJ.I;Nio, (143) 

dEo= TdSL pdV + LJ.lidNP. (144) 

If we subtract Eqs. (143) and (144) from Eqs. (141) 
and (142), we obtain 

W'= W -Wo= (p-P) V= E'- T S'- LJ.lilV/, (145) 
i 

-, ,""' -, 
dE = TdS + L-,J.lidNi , (146) 

i 

in obvious notation. These primed functions are 
characteristic of the drop (with the vapor subtracted 
out) and are independent of the arbitrary choice of V. 
They are determined (experimentally or from mo­
lecular theory) by the variables T, J.li. Also, they do 
not depend on the choice of a Gibbs "dividing surface." 
If T, J.li are chosen so as to make the drop become 
vanishingly small, then all of the primed functions 
approach zero. 

The drop, with properties W', E', S', etc., may be 
regarded as a completely open, small system with 
independent environmental variables T, ,ui (the 
pressure p is not independent; in the notation of Sec. 
n F we would denote it by p(O) (T, J.li) for the macro­
scopic metastable vapor) . 
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From quite different considerations, Gibbsll intro­
duced a quantity W, the work required to form a drop 
in the vapor, which is in fact the same as W' here. 
This work property of W' is obvious from our defini­
tion: 

W' = (aEtja'JL)S,.V.Nit- (aENa'JL)s,O.V,N"O. (147) 

From Eqs. (145) and (146) we find the basic equa­
tion (with environmental independent variables) 

dW'= - S'dT- LN/d}.li' (148) 

This may be compared with the Gibbs equation 

6.d!y= - SsdT- LN;'d}.li, (149) 
i 

where et=area, 'Y=surface tension, and S', N;'= Gibbs 
surface excesses. All of these listed quantities refer to a 
particular choice of dividing surface, namely, the 
surface of tension. Equation (148) seems more funda­
mental than Eq, (149) in that the dividing surface 
concept is not involved. The relation between W' and 
1', as shown by Gibbs, is W' = het. Although the left­
hand sides of Eqs. (148) and (149) have the same 
order of magnitude, S' and S', etc., on the right, do 
not. In this respect, the relationship between these two 
equations rather resembles that between Eq. (14) and 

d[(iJ-p) V]=s(~ldT- Vd(p_p(Ol) +n(xld}.l, 

which follows from Eqs. (21) and (22), or between 
Eqs. (14) and (22c). 

We also have, for example, 

d(W'+T S') = TdS'- LN/d}.li, (150) 

d(W'+ L}.IiN/) = - S'dT+ L}.IidNI. (151) 
i i 

From Eqs. (148), (150), and (151), we can obtain 
many relations such as 

(one-component system). 
We can find some illuminating relationships if we 

imagine V filled with bulk liquid at T, }.Ii, denote the 
corresponding properties by Ei, Si, etc., then form the 
differences Ei- £0, etc., and finally compare the 
behavior of these differences with that of E', etc. This 
procedure is especially useful in isolating "edge effects" 
and defining excess quantities of the type e(xl, etc. It is 
closely related to Gibbs' introduction of surface ex­
cesses. We shall discuss this subject elsewhere.! 

V. HIGHER MOMENT THERMODYNAMIC 
EQUATIONS 

Up to this point we have been concerned only with 
mean values of fluctuating extensive variables (E, 
N, V, etc.). In macroscopic thermodynamics fluctua-

11 Reference 8, p. 254. 

tions are unimportant in general, but they become 
more significant in smaller systems. One is therefore led 
to seek, for small systems, analogs of the equations 
of Sec. II involving higher moments of the probability 
distribution, since mean values now no longer suffice 
to give a complete picture. We again give only a 
single example here. 

Consider a system with environmental variables gl, 
g2 (small g=intensive), and Ga (large G=extensive)' 
chosen so that 

[(Sjk) +yaGa]+gIGI+g2G2=0 (I) 

(the reason for the brackets will be apparent later). 
For example: 

gl= -ljkT, GI=E; g2=}.I/kT, 

G2=N; ga=-p/kT, Ga=V, (153) 
or 

gl=-ljkT, GI=Ej g2= -p/kT, 

G2=Vj ga=}.IjkT, Ga=N, (154) 
or 

ga=-ljkT, (155) 

That is, GI and G2 fluctuate, but Ga does not. Equation 
(153) corresponds to Sec. II A and Eq. (154) to Sec. 
II B. Besides Eq. (I), other important mean-value 
equations are 

d(Sjk) +gldGI+g~G2+gadGa=0, (II) 

d(gaGa) +Gldgl+G~g2- gadGa=O, (III) 

d[ (Ya- ga) Ga]+ Gldgl + G~g2+Gadg3= O. (rV) 

These correspond, for example, to Eqs. (7), (8), and 
(14), respectively. 

We have now to appeal to statistical mechanics to 
relate probability distribution moments to thermo­
dynamics. The partition function here is 

exp ( - gaG3) = :E n (GI, G2, Ga) exp (gIG1) exp (gaG2) , 
GI.G, 

(156) 

and the probability of observing a gl, g2, Ga system with 
particular values of G1, G2 is 

n (GI, G2, Ga) exp (gIGI) exp (gaG2) / exp ( - YoGa) . 

Then, as is well known, 

(an+mGljaglnag2m)G3= « G1-GI ) n+1 (G2-G2) m )AV, (157) 

or we can exchange 1 and 2 in this equation. Hence the 
central moments of the G1, G2 distribution are related 
to derivatives of G1 and G2 with respect to gl and g2. 
Therefore, if GI (gl, g2, Ga) and G2(gl, g2, Ga) are known, 
all higher central moments follow by differentiation. 
Thus, in a sense, the mean-value thermodynamic 
equations tell the whole story after all. But we still 
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look for equations explicitly involving the higher 
moments [actually, we use the equivalent derivatives 
from Eq. (157)]. There does not appear to be a unique 
set of such equations, incidentally. We derive the 
simplest set we have so far encountered. 

If Y is a function of gl, g2, and Ga, we define Y' by 

yl = gl (a Y jagl ) u2.Ga+g2(a Y jag2) Ul.Ga' (158) 

Therefore, 

d(Sjk) +G1(I)dg1+G2(1)dg2+ (- ga(1)+ga)dGa=O (IU(l» 

is the next higher analog of Eq. (UI). 
Similarly, if we start with Eqs. (1(2», (I(a», etc., we 

can derive 

and Yll by (Y')', etc. We also define 

Y(I)=gl(aYjag1)+g2(aYjag2) = Y' 

+( -ga(2)+2ga(lL2ga)dGa=0 (IUCZ» 

(159) d[(S(2L 4S(I)+6S) jk]+ G1(a)dg1+G2(a)dg2 

Y(2) = g12(a2 Y jagl2 ) +2gl g2(a2 Y jagl ag2) +g22 ( a2 Y jag22) 

=Y"-Y', (160) 

and so forth (using binomial coefficients). Thus 

y(a) = Y'I-3Y"+2Y', (161) 

yC4l= YII -6Y"'+11 Y"-6Y', (162) 

and so forth. 
We start with Eq. (1) and apply to each term the 

"prime" operation defined in Eq. (158). We use the 
fact that 

(-gaGa)' = gIG1+g2G2= -[(Sjk) +gaGa], 

and find 

+ (- ga(a)+3ga(2L6ga(l)+6ga)dGa=0. (UI(a» 

The coefficients in (IU(4» are 1, -6, +18, -24 and 
-1, +4, -12, +24, -24, respectively. 

If we differentiate Eq. (1(1) and combine it with 
Eq. (UIO), we get 

d[(S(lL S) jk]+gldG1(J) + g:!li G2(I) 

+ (ga(IL ga)dGa=O. (Il(l) 

Similarly, from (1(2» and (UJ<2», etc., 

d[ (S(2) - 2S(1)+2S) jk]+gldG1(2) + g:!li G2(2) 

+(ga(2L2ga(I)+2ga)dGa=0 (II<2» 

d[ (s(a) - 3 S(2) +6S(1) - 6 S) j k]+ gld G1 (a) + g:!liG2(a) 

+ (ga(aL 3ga(2) +6ga(1) - 6ga) dG3= O. (II<a» 

By repeating the "prime" operation we also find The coefficients in (U(4» are 1, -4, + 12, - 24, +24. 
[(S(2LS(I)jk]+gIG1(2)+g2G2(2)=0, (1(2» Finally, from (IU(1», (IU(2», etc., we have 

[(S(3)- 2S(2)+2S(1» jk]+glG1(a)+g2G2(a) =0, (I(a» d {[ - ga(I)+ga+ (SjGak) ]Gal +G1(I)dg1+G2(I)dg2 

[( S(4L 3s(a)+6S(2)- 6S(I» jk ]+glG1(4)+g2G2(4) = O. 

(1(4» 

These equations are the higher moment analogs of 
Eq. (I). The coefficients in the first terms are simply 
related to binomial coefficients. 

From Eq. (1(1) we have 

- (S'jk) = gIG1'+g2G2' = gl[a( - Sjk) jag1] 

+g2[a( - Sjk)jag2]. 
Therefore 

and 

d( - Sjk) = G/dg1+G/dg2+[a( - Sjk)jaGa]dGa• 

This is similar to Eq. (UI) above. If we use Eq. (I) 
for 5jk, we find 

iJ(-5jk) aGl aG2 a (gaGa) 
aGa gl aGa +g2 aGa +ac;-

+Gad(ga(ILga) =0, (IV(1» 

d( (-ga(2)+2ga(1L 2ga+[(S(1L 2S) jGak] I Ga) 

+ GI(Z)dgl +G2(Z)dg2+ Gad (g/2L2ga(J)+2ga) =0, (IV(Z» 

and so forth. 
On comparing the functions playing equivalent 

roles in the above hierarchy of equations we note the 
sequences 

GI, G1 (J), G1 (2), "', 

G2, G20), G2(2), •• " 

gaGa, Sjk, (S(lL 2S)jk, (S(2L 4S(1)+6S)jk, 

g3, ga(1)- ga, ga(2)- 2ga(l)+2ga, • ", 

from which the other sequences can be constructed. 
There is some simplification in these equations in the 

case of macroscopic systems. In Eqs. (I), (UI), and 
(IV) , ga is replaced by ga. In the sequences of equations 
beginning with (IU(1», (U(1» and (IV(1», we replace 

by 

5 
G~k' 

ga(I)- gJ, g3(2)- 2ga(l)+2ga, 

ga(a)_3g3(2)+6gaO)-6ga, ••• 

S(2L 45(1)+65 

Gak 
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as is apparent from the sequence (III(l)), .(III(Z)), ••.. 
Thus the leading term in each of the equations (IV), 
(IV(l)), •.• vanishes. 

Many further equations now follow from the above 
by Maxwell relations, Legendre transformations, etc. 

VI. SUMMARY 

Because of the length of this paper, it may be helpful 
to outline the contents of the various sections. Section I 
points out that ordinary thermodynamics applies only 
to macroscopic systems and that a generalization is 
required in order to extend thermodynamic equations 
to small systems. In treating small systems we have to 
expect that the macroscopic thermodynamic principle of 
equivalence of "environments" will break down. 

Section II A gives a fairly detailed treatment of an 
open one-component small system (environmental 
variables JL, V, T). The starting point is an ensemble of 
independent small systems-to which we can apply 
macroscopic thermodynamics. The number of systems 
in the ensemble is varied and the equivalence of 
ensemble and time averages is assumed. This suffices 
to obtain the desired mean value thermodynamic 
equations for a single small JL, V, T system. These 
equations go over into the usual macroscopic equations 
in the limit V-HO. Two statistical mechanical models 
are treated as examples: the Bragg-Williams lattice gas 
outside of phase transition and critical regions; and a 
general lattice gas at a phiLse transition. 

In Sees. lIB, C, and D the environments p, N, T; 
N, V, Tj and N, T are treated briefly. The case p, N, T 
is especially important since it represents a macro­
molecule or colloidal particle (N = degree of poly­
merization or aggregation) in a surrounding medium 
at p and T. It also represents an incompressible but 
extensible macromolecule in solution (e.g., the helix­
coil transition), with p=force on ends of chain=O. 
An incompressible Einstein crystallite with surface 
terms is considered as a simple example. 

Sections lIE and F treat the two extreme cases of 
completely closed (N, E, V) and completely open 
(JL, T, p) small systems. The ideal lattice gas and in­
compressible Einstein crystallite are used as examples. 
It is found for all environments that JL, T, P can all be 
independent for a small system (unlike the macroscopic 
situation). This is especially important when JL, T, 

and p are the environmental variables because the 
corresponding statistical mechanical partition function 
T(JL, T, p) is then no longer especially troublesome as it 
is for a macroscopic system. The variables JL, T, P 
suffice to determine all the (mean) extensive properties 
of the small system-again quite unlike the macro­
scopic situation. There is thus a certain loss of dis­
tinction between intensive and extensive properties 
in a small system. For a system with c components, 
there are c+2 degrees of freedom for any set of en­
vironmental variables. The c+2 variables may be 
intensive or extensive. 

Section IIG shows that, although thermodynamic 
functions have different values in different environ­
ments, it is still possible to derive, as in macroscopic 
thermodynamics, a single set of equations which apply 
to all environments. 

Interactions between a small system and a surround­
ing medium or solvent cannot be ignored as with a 
macroscopic system. This problem is analyzed in 
Sec. III for a p, T, N system, as an example. It is 
found that, by an appropriate redefinition of thermo­
dynamic functions, solvent interactions can be taken 
into account rigorously without altering the form of the 
equations for a p, T, N system where the solvent is 
absent or ignored (Sec. lIB). This is somewhat remi­
niscent, in statistical mechanics, of the formal identity 
between Mayer's imperfect gas theory (no solvent) 
and the McMillan-Mayer solution theory (solvent). 

Section IV treats a spherical drop (or bubble) from 
the present point of view. This results in thermo­
dynamic functions and equations, referring to a single 
drop, which do not involve any choice of a dividing 
surface (as in Gibbs' method). 

In Sec. V it is pointed out that higher moments of the 
probability distribution of fluctuating extensive quan­
tities are of interest, as well as mean values, in the 
case of small systems. The thermodynamics of the 
previous sections is "mean value" thermodynamics. 
We therefore develop in this section, for a system with 
two intensive and one extensive environmental variables 
as an example, a hierarchy of thermodynamic equations 
concerned with higher moments. However, since 
higher moments are all related to derivatives of mean 
values, nothing fundamentally new comes out of the 
analysis. But the explicit higher moment thermo­
dynamic equations may still prove useful. 
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