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Abstract. In 1883, S. Lie found the general form of all second-order ordinary differential equations transformable to the linear
equation by a change of variables and proved that their solution reduces to integration of a linear third-order ordinary differential
equation. He showed that the linearizable equations are at most cubic in the first-order derivative and described a general procedure
for constructing linearizing transformations by using an over-determined system of four equations. We present here a simple
geometric proof of the theorem, known as Lie’s linearization test, stating that the compatibility of Lie’s four auxiliary equations
furnishes a necessary and sufficient condition for linearization.

Key words: Christoffel’s symbols, geodesic flow, Lie’s linearization test, Riemann’s tensor

1. Introduction

S. Lie, in his general theory of integration of ordinary differential equations admitting a group of
transformations, proved inter alia ([1], Section 1) that if a non-linear equation of second order y′′ =
f (x, y, y′) is transformable to a linear equation by a change of variables x, y, its integration requires
only quadratures and solution of a linear third-order ordinary differential equation.

As a first step, Lie showed that the linearizable second-order equations are at most cubic in the first
derivative, i.e. belong to the family of equations of the form

y′′ + F3(x, y)y′ 3 + F2(x, y)y′ 2 + F1(x, y)y′ + F(x, y) = 0. (1)

Furthermore, he found that the following over-determined system of four equations is compatible for
linearizable equations (see [1], Section 1, Equations (3) and (4)):
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and used this system as a basis for the theoretical construction of linearizing transformations. Note that
the compatibility conditions of the system (2) are provided by the following equations:

3(F3)xx − 2(F2)xy + (F1)yy = 3(F1 F3)x − 3(FF3)y − (
F2

2

)
x
− 3F3 Fy + F2(F1)y,

3Fyy − 2(F1)xy + (F2)xx = 3(FF3)x − 3(FF2)y + (
F2

1

)
y
+ 3F(F3)x − F1(F2)x ,

where the subscripts x and y denote differentiations with respect to x and y, respectively.
Finally, he proved that Equation (1) is linearizable if and only if the over-determined system (2)

is compatible (the statement is formulated in [1], Note 1, see p. 423 in Vol. 5 of his Gessammelte
Abhandlundgen). Lie’s linearization test is indeed simple and convenient in practice. Consider the
following examples (see also [2], Section 12.3).

Example 1. The equation

y′′ + F(x, y) = 0

has the form (1) with F3 = F2 = F1 = 0. The linearization test yields Fyy = 0. Hence, the equation
y′′ = F(x, y) cannot be linearized unless it is already linear.

Example 2. The equations

y′′ − 1

x
(y′ + y′3) = 0

and

y′′ + 1

x
(y′ + y′3) = 0

also have the form (1). Their coefficients are F3 = F1 = −1/x, F2 = F = 0 and F3 = F1 = 1/x, F2 =
F = 0, respectively. The linearization test shows that the first equation is linearizable, whereas the
second one is not.

2. Outline of Lie’s Approach

Recall that any linear equation of the second order

y′′ + a(x)y′ + b(x)y = 0

can be reduced, by a change of variables, to the simplest form

d2u

dt2
= 0. (3)

Therefore, all linearizable equations y′′ = f (x, y, y′) are obtained from Equation (3) by an arbitrary
change of variables

t = φ(x, y), u = ψ(x, y). (4)
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In the new variables x and y = y(x) defined by (4), Equation (3) takes the form

y′′ + Ay′ 3 + (B + 2w) y′ 2 + (P + 2z) y′ + Q = 0, (5)

where (see, e.g. [2], Section 12.3)

A = φyψyy − ψyφyy

φxψy − φyψx
, B = φxψyy − ψxφyy

φxψy − φyψx
, w = φyψxy − ψyφxy

φxψy − φyψx
,

P = φyψxx − ψyφxx

φxψy − φyψx
, Q = φxψxx − ψxφxx

φxψy − φyψx
, z = φxψxy − ψxφxy

φxψy − φyψx
· (6)

Equation (5) takes the form (1) after writing

A = F3(x, y), B + 2w = F2(x, y), P + 2z = F1(x, y), Q = F(x, y). (7)

Thus, any linearizable equation has the form (1) with the coefficients F3(x, y), F2(x, y), F1(x, y),
F1(x, y) defined by (7) and (6).

Consider now an arbitrary equation of the form (1). According to the above calculations, it is lin-
earizable if and only if Equations (7) hold, i.e. if the system

φyψyy − ψyφyy = F3(x, y) (φxψy − φyψx ),

φxψyy − ψxφyy + 2(φyψxy − ψyφxy) = F2(x, y) (φxψy − φyψx ),

φyψxx − ψyφxx + 2(φxψxy − ψxφxy) = F1(x, y) (φxψy − φyψx ),

φxψxx − ψxφxx = F(x, y) (φxψy − φyψx ), (8)

with given coefficients F3(x, y), . . . , F(x, y) and two unknown functions, φ and ψ, is compatible.
To summarize: equation (1) is linearizable if and only if its coefficients F3(x, y), F2(x, y), F1(x, y)

and F(x, y) are such that the over-determined system (8) is compatible. Provided that the system (8) is
compatible, its integration furnishes a transformation (4) of the corresponding equation (1) to the linear
equation (3).

Thus, one has to find primarily compatibility conditions for the over-determined system of non-linear
equations (8). Lie’s crucial observation is that the combinations

A, B + 2w, P + 2z, Q

of the quantities (6) are differential invariants of the general projective transformation

φ = L2 ψ + M2 φ + N2

L ψ + M φ + N
, ψ = L1 ψ + M1 φ + N1

L ψ + M φ + N
(9)

of φ and ψ, where L , M, . . . , M2, N2 are arbitrary constants. Using this observation, he found four
relations connecting the six quantities (6) and their first-order derivatives with respect to x and y.

Then, eliminating A, B, P, Q by means of Equations (7), he arrived at Equations (2), thus proving that
compatibility of Equations (2) is necessary for Equation (1) to be linearizable.
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To prove that compatibility of Equations (2) is sufficient for linearization, Lie used the following
reasoning. The projective invariance hints that Equations (2) can be linearized by introducing the
homogeneous projective coordinates

w = w̃

v
, z = z̃

v
·

Furthermore, Lie noticed that the resulting linear system belongs to a special type of linear systems that
can be reduced, by his general theory, to a linear third-order ordinary differential equation, provided
that the coefficients F3, F2, F1, F of Equation (1) satisfy the compatibility conditions of the system (2).
Thus, the quantities w and z can be found by solving a linear third-order ordinary differential equation.

Lie’s further observation is that Equations (2) hold when one replaces B, w, Q, z by

B1 = φxψyy − ψxφyy

φxψy − φyψx
− 2

φy

φ
, w1 = φyψxy − ψyφxy

φxψy − φyψx
+ φy

φ
,

Q1 = φxψxx − ψxφxx

φxψy − φyψx
+ 2

φx

φ
, z1 = φxψxy − ψxφxy

φxψy − φyψx
− φx

φ

as well as by

B2 = φxψyy − ψxφyy

φxψy − φyψx
− 2

ψy

ψ
, w2 = φyψxy − ψyφxy

φxψy − φyψx
+ ψy

ψ
,

Q2 = φxψxx − ψxφxx

φxψy − φyψx
+ 2

ψx

ψ
, z2 = φxψxy − ψxφxy

φxψy − φyψx
− ψx

ψ
·

Therefore, one can find the quantities w1 and z1, as well as w2 and z2, by solving the previous linear
third-order ordinary differential equation. In consequence, one obtains

φx

φ
= z − z1,

φy

φ
= w1 − w,

ψx

φ
= z − z2,

ψy

φ
= w2 − w.

The quadrature provides the solution of the non-linear system (8), and hence completes the determination
of a linearizing transformation (4).

3. Alternative Proof of the Linearization Test

We now formulate Lie’s linearization test as follows and provide its alternative proof.

Theorem. A necessary and sufficient condition that the equation

y′′ + F3(x, y)y′ 3 + F2(x, y)y′ 2 + F1(x, y)y′ + F(x, y) = 0 (10)

be linearizable is that its coefficients F3, F2, F1, F satisfy the equations

3(F3)xx − 2(F2)xy + (F1)yy = 3(F1 F3)x − 3(FF3)y − (
F2

2

)
x − 3F3 Fy + F2(F1)y,

3Fyy − 2(F1)xy + (F2)xx = 3(FF3)x − 3(FF2)y + (
F2

1

)
y + 3F(F3)x − F1(F2)x . (11)
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Proof. Equations (11) provide necessary conditions for linearizable equations. Indeed, the changes of
variables (4) are equivalence transformations of the set of all equations of the form (11). In other words,
Equation (10) is merely permuted among themselves by any change of variables (4). Furthermore,
it is proved in [3] that the infinite group of equivalence transformations (4) has an invariant system
comprising precisely by the equations (11). Note that Equations (11) are satisfied for the linear equation
y′′ = 0. It follows from the invariance that Equations (11) hold for all Equations (10) obtained from
y′′ = 0 by the changes of variables (4).

Let us prove that Equations (11) provide sufficient conditions for Equation (10) to be linearizable.
We consider plane curves given in a parametric form:

x = x(t), y = y(t), (12)

set y(t) = u(x(t)), u′ = du/dx and represent Equation (10) in the form

u′′ + F3u′ 3 + F2u′ 2 + F1u′ + F = 0. (13)

Then, denoting

ẋ = dx

dt
, ẏ = dy

dt
,

we have:

ẏ = u′ ẋ, ÿ = u′′ ẋ2 + u′ ẍ, ẋ3u′′ = ẋ ÿ − ẏ ẍ,

and

ẋ3
[
u′′ + F3(x, y)u′ 3 + F2(x, y)u′ 2 + F1(x, y)u′ + F(x, y)

]

= ẋ
[
ÿ + α ẏ2 + γ ẋ ẏ + Fẋ2

] − ẏ
[
ẍ − (a ẏ2 + β ẋ ẏ + δ ẋ2)

]
, (14)

where

α + β = F2, γ + δ = F1. (15)

Hence, one can consider the projection of Equation (13) onto the (x, y) plane to obtain the geodesic
flow:

ẍ i + �i
kl ẋ

k ẋ l = 0, i = 1, 2, (16)

where x1 = x, x2 = y, and the Christoffel symbols have the form

�1
11 = −δ, �1

12 = �1
21 = −1

2
β, �1

22 = −F3,

�2
11 = F, �2

12 = �2
21 = 1

2
γ, �2

22 = α. (17)

To prove the theorem, it suffices to show that the curves (12) can be straightened out. In other words,
we have to show that if Equations (11) are satisfied, we can annul the Cristoffel symbols (12) by a
proper change of variables x and y. It is possible if the Riemann tensor

Rl
i jk = ∂�l

ik

∂x j
− ∂�l

i j

∂xk
+ �m

ik�
l
m j − �m

i j �
l
mk
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associated with (17) vanishes. Computation shows that it has the components

R1
112 = −1

2
βx + δy + FF3 − 1

4
βγ,

R1
212 = 1

2
βy − (F3)x − 1

4
β2 + F3 δ + 1

2
F3 γ − 1

2
α β,

R2
112 = 1

2
γx − Fy + 1

4
γ 2 − αF + 1

2
γ δ − 1

2
βF,

R2
212 = −1

2
γy + αx − FF3 + 1

4
β γ. (18)

Thus, the equations

Rl
i jk = 0 (19)

provide 4 first-order partial differential equations for eight quantities F3, F2, F1, F, α, β, γ and δ.

Besides, these quantities are related by two conditions (15). Substituting α = F2 − β, δ =
F1 − γ in (18), solving Equations (19) with respect to the derivatives of β and γ, and denoting
β/2 = w and γ /2 = z one arrives at Lie’s equations (2) compatibility of which is guaranteed by
Equations (11).
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