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Induction of correct centrifugal force in a rotating mass shell 

H Pfister and K H Braun 
Institut fur Theoretische Physik, Universitat Tubingen, D-7400 Tubingen, Federal Republic 
of Germany 

Received 11 February 1985 

Abstract. Mach’s idea of relativity of rotation is confirmed for a shell-type model of the 
universe by showing that flat geometry in rotating coordinates, realising correct Coriolis 
and centrifugal forces, can be continuously connected through a rotating mass shell with 
not exactly spherical shape and latitude-dependent mass density to an asymptotically 
Minkowskian outside metric. The corresponding solutions of Einstein’s field equations 
are given to second order in the angular velocity w but it is plausible that the problem has 
a solution to any order of w. 

1. Introduction 

It is a very old idea [l-31 that rotation should have only relative meaning in physics, 
and that it should be impossible to decide, in principle, whether an observer rotates 
relative to the fixed stars or all the stars and galaxies in the universe rotate relative to 
him. As is well known, this idea was of essential importance for Einstein in building 
up general relativity, and Einstein was also the first to consider a thin mass shell as 
a substitute for all the stars in order to probe this idea by concrete calculation. In a 
virtually unknown and hardly accessible publication [4], he found by ingenious 
Gedanken experiments, within the framework of a preliminary scalar gravitation theory, 
that indeed an accelerated mass shell exerts inertial forces on test particles near the 
centre of the shell. His result for the ‘centrifugal force’ differs from the result in final 
general relativity only by a factor y. 

Within general relativity, Thirring demonstrated in his classic paper [5] that an 
infinitely thin, rotating mass shell (mass M, radius R, angular velocity U )  exerts a 
Coriolis-type force Kc = -(8Mm/3R)(w x U )  on test particles (mass m, velocity U )  
near the centre of the shell, if the approximations M /  R << 1 and oR << 1 are made, and 
units with G =  c =  1 are used. Thirring obtained an additional force K z =  
-(4Mm/15R)[o X ( W  x r ) + 2 ( w  r ) ~ ]  in order o2 which he interpreted as centrifugal 
force, although it also has an axial component and cannot be made zero in the same 
rotating frame in which the Coriolis force vanishes. In 1923, Lanczos [6] noticed that 
Thirring’s paper suffered from an inconsistency, because his solutions violated the 
local energy-momentum conservation law T p L V i p  = 0 in order U’, since he had neglected 
any stresses in the rotating mass shell. However the correction of this error, which 
was not done fully until 1955 [7], did not produce a correct centrifugal force inside 
the rotating shell, even if one allowed for a latitude-dependent mass density on the 

0264-9381/85/060909 + 10$02.25 0 1985 The Institute of Physics 909 



910 H Pjister and K H Braun 

shell. Therefore, it became more and more probable and convincing that the original 
ideas and hopes of Mach and Einstein are not fully realisable in general relativity [8], 
even more so when it was argued [9] that a gravitationally induced centrifugal force 
should not be of order Mu2,  as it is in Thirring’s work, but of order M 2 w 2 .  

In this paper, we prove, however, that for given parameters M, R and o, there 
exists exactly one quasi-spherical rotating mass shell which induces flat geometry in 
its whole interior and therefore correct Coriolis and centrifugal forces and no additional 
spurious forces. In this way, Mach’s ideas on the relativity of rotation (not the whole 
so-called Mach principle, as stated by Einstein [lo]!) are materialised in general 
relativity as completely as one could ever hope within the model of a shell-type sky. 
Our work can be seen in continuation of the classical paper of Brill and Cohen [ l l ] ,  
which admittedly is the most important positive contribution to Mach’s question 
hitherto. Whereas this paper was able to confirm Mach’s idea in the case of a mass 
shell only to order w (for the Coriolis force), we have succeeded in exteriding the 
positive results of Brill and Cohen to order o2 (for the centrifugal force), the essential 
point for this success being that we allow for a deviation from the spherical form of 
the shell and for a latitude-dependent mass density. Like Brill and Cohen, we perform 
all calculations exactly in M so that there is no debate as to whether the centrifugal 
force is of order M u 2  or M2w2.  Furthermore, from our procedure it can be seen that 
it is plausible that the problem has a unique solution in any order of o. 

The only other systems, for which an induction of correct Coriolis and centrifugal 
forces could be established up to now, are rotating cylindrical mass shells. The 
cylindrical symmetry of these models forbids, however-in contrast to our model-any 
analogy or extension to some realistic model of the universe. Nevertheless, we will 
return to cylindrical mass shells, and their relation to our model, in 0 4. 

2. Field equations, and solutions in zeroth and first order in o 

The mathematical problem, which we have to solve, can be stated very simply as 
follows. Take the general stationary, axisymmetric and asymptotically Minkowskian 
vacuum metric outside some axially symmetric, finite region of space. Take flat 
geometry inside this region using coordinates which are rotating relative to the 
asymptotic coordinates. Is it then possible to connect both solutions of Einstein’s 
vacuum field equations at the boundary (which should be spherical in the limit w + 0) 
in such a way, that the metric is continuous, and the discontinuities of its orthogonal 
derivatives produce a 6-type energy-momentum tensor P,, which represents a rigidly 
rotating mass shell? 

For the main part of our calculations, we use isotropic coordinates t = xo, r = x’, 
8 =x2,  4 =x3 .  If in stationary, axisymmetric systems Tpy has a block form with 
To, = To, = T31 = T32 = 0, as is true for rigidly rotating mass shells, g,, has, according 
to the Kundt-Trumper theorem [12], the same block form with g,, = gpv( r, e ) .  Further- 
more g,, can be diagonalised in the (1,2) space. For our centrifugal problem, the 
following form of the metric turns out to be optimally adapted (and superior to similar 
forms, used in the literature [13]) 

d s 2 = g  I1” dx, dxY=-eZU dt2+e-2U[e2K(dr2+r2d82)+ W2(d+-wAdt)2]. (2.1) 

Then, the flat metric inside the shell is simply given by U, K,  A = constant, W = eKr sin 8, 
and the geodesic equations, formed with these metric functions, coincide with the 
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Newtonian equations of motion under Coriolis and centrifugal force (with angular 
velocity wA). The Minkowski metric in the asymptotic region is realised by U = K = 
A = 0 ,  W = r sin 6. If the metric (2.1) is 'produced' by a matter model with constant 
angular velocity w, the metric is invariant under the transformation (w, t )  + (-w, - t ) ,  
so that all metric functions (which are independent of t )  are even in w, for example 

With the useful abbreviations PV = 8rr  exp[2(K - U)]T '" ,  D =d2/dr2+ r-l a lar  + 
rW2 a2/d6, ,  and W, = d Wldr, W2 = d Wide etc, the field equations for our metric read 

t', = W-'( r-' W, + r-2 W22) - uI2+ r-2 u ~ ~ +  w-'(K, W, - r - 2 ~ 2  w,) 

u = ! J + w 2 i J +  . . . .  

+io2 W2 e-4u(A,2- r-2A22), (2.2) 

t2, = W-' W,, + U,, - r F 2  U,'- W-'( K ,  W, - r-'K2 W,) 

-:w2 W2 e-4U(A12- f2A2') ,  
t '  - - - W-' W12+ r-l W-' W, - 2 U, U,+ W-'( K ,  W2+ K2 W,) 

+io2 W2 e-4UA1A2, 

too+wAto3=-2DU+DK + W-'DW+ U12+r-2U22-2W-1(U1 W1+r-'U2W2) 
+1 4w 2 W2 e-4U(A12+ F2A2'), 

t33-wAt03= D K  + U 1 2 + r - 2 U 2 2 - ~ ~ 2 W 2 e - 4 U ( A 1 2 + r r - 2 A ~ ) ,  

t o3=  - f ~ w ~ e - ~ ~ [ D A + 3  W-'(A, W,+r-2A,W2)-4( U,Al+r-2U2A,)]. (2.7) 

t',+ t 2 2 =  W-'DW, (2.8) 

By linear combination, two simpler equations can be formed 

~ ( t ' l + t 2 2 + t 3 3 - t o o - 2 w A t 0 3 ) =  D U +  W-'(U, WI+r-'UzW2) 

-;w2 W2 e'-4U(A,2+ r-2A22). 

Our general procedure for solving these equations as power series in w goes now 
as follows. We first solve (2.8) for W in the vacuum region outside the mass shell 
with correct asymptotic behaviour, insert this into (2.9), and solve for U. Here, the 
last term of (2.9) is zero or known from the lower-order solutions. With W and U 
known, we solve equations (2.3) and (2.4) for K ,  and (2.7) for A. With these solutions, 
the remaining equations (2.2), (2.5) and (2.6) are automatically fulfilled in the vacuum 
regions. 

In zeroth order wo, the metric is static and spherically symmetric, since we demanded 
a spherical mass shell in the limit w + 0; therefore, the solutions of equations (2.2)-(2.9) 
are simply the Schwarzschild metric (with a = M/2):  

0 0  
W= eKr sin 6 

log[( r - a ) / (  r + a 11 for r >  R 
for r = s  R 

b== { 
log[(R - a ) / ( R + a ) I  

0 log[(r2 - a')/ r2] for r >  R 
K =  {log[(R2-a2)/R2] for r s R'  

(2.10) 

The discontinuities in the derivatives of these functions at r = R produce through 



912 H e s t e r  and K H Braun 

(2.2)-(2.6) a &type energy-momentum tensor Pu = rp,G(r - R )  with 

0 0  
rII = r ' *  = 0, (2.11) 

i.e. no radial stresses, as is to be expected for a spherical shell; 

0 0  
~ ~ ~ = r ~ ~ = 2 a ~ / R ( R ~ - a ~ ) ;  i o o = - 4 a / R ( R + a ) .  (2.12) 

The singularities of the surface stresses for R = cy are also to be expected, because 
R = cy = M / 2  just marks the Schwarzschild radius. For R < cy the shell matter can no 
more withstand the stresses, and, in violation of our stationarity condition, suffers a 
gravitational collapse. 

has to be solved outside the mass shell. Inserting 
b and &' from (2.10) and noticing that in order w' the shell is still spherical, and 

therefore A independent of 8, this equation reads 

In order wl, equation (2.7) for 

0 

i,,+2r-1(r2-cy2)-1(2r2-41.cy + a 2 ) i ,  = 0 ,  

and has the solution 

0 A r 3 / ( r + a ) 6  for r >  R 
A =  { AR3/(R+ L Y ) ~  for r s  R (2.13) 

0 
with some integration constant A. The discontinuity in AI produces by (2.7) the result 

;o 3 - 2 ~ ~ ( ~ 2 - c y 2 ) - 1  - 3  sin2 e. (2.14) 

The integration constant A is fixed by demanding that the energy-momentum tensor 
TPu, given by (2.12) and (2.14), really represents a rigidly rotating body, i.e. that the 
timelike eigenvector of TCLyuU = - -pup has the form u p  = (U", 0, 0, mu") with constant 
w, p being the invariant mass density 

(2.15) A = 4 a ( 2 R  - - (Y) (R+ L Y ) ~ R - ~ ( ~ R  --a)- ' ,  

Herewith, the dragging coefficient inside the shell takes the form 

i ( r s  R)=4cy(2R-a)(R+cy)- '(3R-a)- ' .  (2.16) 

In the limit R >> cy, (2.16) coincides with Thirring's result. In the other extreme case 

R -+ cy, one gets A( r s R )  = 1, and therefore total dragging of the inertial frames, resp. 
total screening of the asymptotic Minkowski metric by a compact rotating shell. This 
result can be interpreted as full realisation (to order w !) of Mach's idea concerning 
the relativity of rotation. The results (2.1 1)-(2.16) have, in a different notation, already 
been derived by Brill and Cohen [ 111. 

0 

3. Solutions of the field equations in order w z  

Whereas the framework of Brill and Cohen is not naturally generalisable to higher 
orders of w, where the mass shell is expected to deviate from a sphere, our procedure, 
following equations (2.2)-(2.9), works without much change in all orders of U, and 
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also for not exactly spherical mass shells; only the algebra gets more complicated. In 
the following, we give some of the details in order w2,  which is of main interest in 
connection with the centrifugal force. 

In order w2,  the solutions (2 .10)  and ( 2 . 1 3 )  operate as source terms in the field 
equations ( 2 . 2 ) - ( 2 . 9 ) .  It is therefore clear that U, K ,  Wlsin 6, and A, expanded in 
Legendre polynomials P!(cos e), contain only Po and P2, similar to Hartle's work [ 1 4 ]  
on slowly rotating stars. (The uneven Legendre polynomials are missing due to the 

equatorial symmetry of the problem.) The metric function W outside the mass shell 
is found as a solution of equation ( 2 . 8 ) ,  for which Wlsin 8 does not contain higher 
'angular momenta' than 1 = 2 :  

2 2 2  2 

2 

W= par-' sin e + p2r-3 sin 3 e. ( 3 . 1 )  

We insert this and the zero-order results (2 .10)  and (2 .13)  into ( 2 . 9 ) .  Since b has to 
have the form 

2 
U =  g( r )  + h( r)P2(cos e), 

( 2 . 9 )  splits into two differential equations: 

g,, + 2 r ( r 2  - a2) - ' g ,  = 4 a p o r (  r2 - a2)-3  

( 3 . 2 )  

+ $ ~ p , r - ~ ( 2 r ~  - a 2 ) (  r2 - a2)-3  + 3h2r2(  r + a)-', ( 3 . 3 )  

h , , + 2 r ( r 2 - a 2 ) - ' h , - 6 r - 2 h  = ~ c ~ p ~ r - ~ ( 2 r ~ - a ~ ) ( r ~ - a ~ ) - - ~ - 3 / \ ~ r ~ ( r + a ) - ~ .  ( 3 . 4 )  

The asymptotically decreasing homogeneous solution gh( r )  = log[( r - a ) / (  r + a ) ]  is the 
Schwarzschild solution from ( 2 .  lo), the homogeneous solution h, is found either by 
imaginative analogy to this solution, or systematically by intermediate expansion in a : 

hh( r )  = ( r 2 + $ a 2 +  Iog[(r - a ) / ( r +  a ) 1 + 2 a r - ' ( r 2 +  a 2 ) .  ( 3 . 5 )  

Inhomogeneous solutions of ( 3 . 3 )  and ( 3 . 4 )  are again found either by analogy to the 
inhomogeneities or in a systematic but laborious way by the method of variation of 
constants. The complete, asymptotically decreasing solution U is given by 

g ( r )  = p o a y 1 r ( r 2 -  a 2 ) - ' + ~ ~ 2 a - 3 r - 1 ( 3 r 2 - 2 ~ 2 ) ( r 2 - a 2 ) - '  

> 

-&A 2a-3( r + ~ ) - ~ [ 3  r( r2 + 3 r a  + a 2)2  + 13 r3 a'] + yogh( r ) ,  ( 3 . 6 )  

( 3 . 7 )  

with integration constants yo, y2. In order that the total mass M of the shell is not 

changed in order w 2 ,  6 has to fall off faster than r-' for r -+ CO, which requires 

h ( r )  = $,a-' r - l (  r2 - a 2 ) - 1  +&A 'a- 'r3(  r + a)-6  + y2hh( r ) ,  

( 3 . 8 )  yo = ;pea -2  + 1 2 ~ 2  a -4 - - 1 & ~ 2 a - 4 .  

2 
In order to find the solution K ,  we first consider equation ( 2 . 4 ) .  After inserting 

W, U, and A2 = 0, and taking into account the 'angular momentum cutoff' in the form 
2 2  0 

k= k ( r ) + l ( r )  sin2 e, ( 3 . 9 )  
( 2 . 4 )  breaks up  into two equations 

k ,  = - 2 r ( r 2 -  ( 3 . 1 0 )  
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( r 2 -  a2)Z, +2r-’(r2+ a2)l  = 2 4 ~ ~ r - ~ ( 2 r ~ -  a 2 ) ( r 2 -  c y 2 ) - ’  - 12ah(r).  

They have the solutions 

k(  r )  = Po( r2 - a2)-’ + 3 P 2 F 2 (  r2 - a2)-’, 

Z(r) = -2P2r-2(4r2- 3a2) (  r 2 -  a2)-’+bA2r4( r +  a ) -6 ( r  - a) -2  

(3.11) 

(3.12) 

- 4ay2{2a(r4+ a4)(r2  - ( u ~ ) - ~ +  r-’(r2+ a’) log[( r - a ) / ( r  + a ) ] >  

+ a 2 r 2 ( r 2 -  (3.13) 

with an integration constant S2. In order that this function K also fulfils equations 
(2.2) and (2.3) (which are equivalent, since (2.8) is already solved) in order 02 ,  the 
following relations between the integration constants have to be fulfilled 

y2 = -fa -2 yo, 82= - ~ P O - ~ ~ L I - ~ + & A ~ C I - ~ .  (3.14) 

After having integrated all essential field equations in order o2 outside the mass 
shell, we have to perform the continuous connection of U, K,  and W t o  the inside 

constants U,, &, resp. to W= [( R 2  - a 2 ) /  R 2 ] k r  sin 8. This is, however, possible only 
if we allow for a deviation of the mass shell from the spherical shape. Due to the fact 
that in order w 2  no higher ‘angular momenta’ than Z=2 occur, we can make the 
following ansatz for the shell geometry 

(3.15) 

where f is some constant, resp. some function of the physical parameters R and a of 
our system. The continuity conditions for the two ‘angular momentum’ parts of W at 
r = rs now read 

2 

2 2  2 

2 2  2 

rs = R (  1 + 02f sin2 e ) ,  

2 

p, = ( R2 - a 2) i& - i f f  ’J; 
P2 = iR2a2f: 

The corresponding continuity conditions for & are 
2 
U,= g ( R )  + h(R),  

[2aR/(R2-  c~~)]f- :h(R)=O. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
2 2 

The 8 independent term of K is automatically continuous at r = rs if W is continuous, 
because for r -+ 00 and r < R, W and K are connected via W = eKr sin 8, and, further- 
more, K is calculated from the differential equations (2.3) and (2.4) which are of first 
order in K (the solution (3.12) contains no new integration constant!). The continuity 
condition for the ‘quadrupole term’ of K reads 

I (  R )  +[(R2+ a’)/( R2- a2)]f=f:  

2 

(3.20) 

After insertion of Po and P2 from (3.16) and (3.17), equations (3.19) and (3.20) are 
inhomogeneous linear equations for the ‘constants’ & and J ;  which have unique 
solutions (and would be in conflict with each other for f= 0, i.e. for a spherical mass 
shell!). The ‘constants’ Po, P2 and U, are finally given by equations (3.16)-(3.18). All 
these expressions depend, however, in a quite complicated way on the physical 
parameters R and a = M/2,  and we give only the explicit result for J ;  which is of 

2 

2 
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primary interest from the physical point of view. With the abbreviation x = R / a ,  the 
‘ellipticity parameter’ of our rotating mass shell is given by 

f 1 6 ( ~ +  1 ) 4 ( 2 ~  - 1 ) 2  _-  
3x4(3x - 1)2  R2 - - 

32x2 
2x + (x2 + 1 )  log[( x - l ) / (x  + l ) ]  

( 2 x ( x i i  1 )  + ( X 4 + $ X 2 +  1) log[(x - l ) / (x  + l ) ]  - 
(3.21) 

The graph of - f / R 2  is shown in the physical region x 2  1 in figure 1, and will be 
discussed in 0 4. The dependence of the ‘constants’ h0/R2 and &/R2 on x is 
mathematically similar to formula (3.21). Both expressions go to zero (from negative 
values) for x + CO, and diverge linearly to +CO for x -+ 1.  

2 

6 
5.5 
5 

I 

05 1 ’  1 5  2 4 10 20 40 100 

X 

Figure 1. The function -f/R2 from equation (3.21), describing the ’ellipticity’ of the 
rotating mass shell, as a function of x = R / a  = 2R/  M,  in the physical region x 3 1 .  

4. Discussion of results 

We should like to start with a discussion of the ‘ellipticity parameter’f in its dependence 
on x = R / a ,  for which at least three properties are remarkable. 

(a) f is negative for all x >  1 ,  so that the rotating shell with flat inside geometry 
has (suprisingly?) to have prolate shape. The invariant equatorial circumference is 
smaller than a polar circumference by an amount -w2.rrR-’( R + a)’$ We think 
however that a deeper discussion or ‘understanding’ of this property is not necessary 
because for realistic models of the universe with extended matter and non-Minkowskian 
‘asymptotics’ the problem does not pose itself in this form. For the same reason, we 
do not want to go into a discussion of the maximum of -f/ R2 near x = 1.5. 

(b) f/ R 2  reaches the non-zero value -2 for x + CD in accordance with the fact that 
Thirring and others could not get the correct centrifugal force with spherical mass shells. 

(c) For x +  1, i.e. compact, nearly collapsing shells, f goes to zero. This can be 
compared with a paper by de la Cruz and Israel [15], who investigated (to order 02), 
whether rotating mass shells can be the source of Kerr’s metric. They obtained the 
result that sphericity and rigid rotation of the shell, and flat inside geometry can only 
be reached in the limit R +  a. In this limit, our constants have the values ,Bo=64a4, 
p 2  = yo = 7 2  = 0, 8 2  = -128a4, and the resulting metric coincides with Kerr’s metric to 
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order w2,  as Robinson’s theorem 1161 demands. (The transformation to Boyer- 
Lindquist coordinates is given by rBL= r- l ( r+ a)’-$a2r-’ with a = -$Aa-’w.) For 
R >  a, our outside metric differs however from Kerr’s metric, which should be of no 
surprise, since the Kerr metric does not seem to be a natural vacuum solution outside 
of rigidly rotating, non-collapsed bodies. 

We now come to the energy-momentum tensor Tw,  within the shell, i.e. the 

correction terms of order w 2  to the results (2.12). All components T’”, can be calculated 
as discontinuities in the orthogonal derivatives of the metric functions with respect to 
the shell, according to equations (2.2)-(2.6). For the details of these calculations 
(which we do not give here), we found it advantageous to turn over to a radial coordinate 
f =  r ( l  -w2f(r)  sin2 0)  (cfequation(3.15)),withf(R)=J;andlim,,,J(r)=O,inwhich 
the shell looks spherical also in order w 2 ,  and the ‘radial’ stress components ?‘? and 
F i e  vanish. Strictly speaking, only in this coordinate the zeroth-order metric is a good 
approximation to the second-order metric in whole spacetime, also at f =  R [14]. 

Instead of giving the components T’”,, we prefer to consider the non-trivial eigenvalues 
A ,  of the equation Tp”,u,” = h,ur:  hl  = - p  (invariant mass density); h Z = p s ;  h3 =p+. 
Since in order w 2  only ‘angular momenta’ 1 = 0 and 1 = 2 contribute, we can write (for 
i = 1,2 ,3)  

2 

2 

2 

2 0  

Ai=Ai(Si+Qisin2 O)6(r-R-w2Rf sin20) (4.1) 

0 0  
with 
(2.12)). For the ‘quadrupole terms’ we obtain 

= -;= - a R 3 / 2 r ( R  + a)’; h2 = h3 = a 2 R 3 / 4 v ( R  + a)’(R - a )  (cf equation 

Q1/ R 2 =  2f/ R2+%(1 + x - ‘ ) ~ ( ~ - x - ’ ) ( x  - 1 ) 2 ( 3 ~  - 1)-2, 

Q2/R2= ( 3 ~  - l ) ( x +  l)-’f/ R2, 

Q3/R2= ( 5 ~ +  l ) ( x +  l)-’f/R2-9x(1 + x - ’ ) ~ ( ~ - x - ’ ) ( x  - 1 ) 2 ( 3 ~ -  1)-*. 

(4.2) 

(4.3) 

(4.4) 

All these terms are again negative for all x >  1. Ql /R2 and Q2/R2 look very similar 
to f /  R 2  in figure 1. The formal singularity of Q3/ R2 for x + 00 comes about only by 
factoring out the term h3 in (4.1), and expresses the simple physical fact that the 
azimuthal stress, compensating the centrifugal force, is of order M, whereas the static 
azimuthal stress A, is ‘only’ of order M 2 .  The ‘monopole terms’ S, are not easily 
expressible by f /  R2. Furthermore, all S, are singular at R = a, as have been the 
‘constants’ U, and &. This shows that, at least for some properties of our rotating 
mass shell, the expansion in powers of w breaks down for R + a, which calls for exact 
solutions of Einstein’s equations, in order to understand all the physical phenomena 
occurring in the collapse of rotating bodies. 

We should like to add a remark concerning more realistic, non-shell-type models 
of rotating ‘skies’, which might produce correct Coriolis and centrifugal forces. In 
extension of earlier work by Cohen and Brill [17] and Lausberg [18] to higher orders 
of w along the lines of our procedure, it might be possible to confirm Mach’s ideas 
also in a somewhat more realistic cosmological model. It should however be kept in 
mind that there are limits to such a ‘realism’. By definition there is only one universe, 
and the question of Mach does not mean that this universe will rotate, but he poses 

0 

0 

2 2 
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‘only’ the question of principle of whether a hypothetical rotating universe would 
induce centrifugal forces. 

As announced in the introduction, we will now come to some remarks concerning 
rotating hollow cylinders, a topic, to which some contributions have been published 
recently which might be of interest in connection with out results. Since the metric 
inside a rotating hollow cylinder is automatically flat [19], and since this metric is in 
general in rotation relative to the asymptotic inertial frames, there is automatically an 
induction of correct Coriolis and centrifugal forces inside a rotating cylinder. One 
great advantage of cylindrical mass shells is that Einstein’s equations can be solved 
exactly [20,21], so that all details of the problem and its physical implications can be 
studied even for relativistic velocities. In the case of simple equations of state, Einstein’s 
equations can be solved exactly even for rotating cylinders of finite thickness [22]. It 
should however be seen that this advantage in mathematical simplicity has to be paid 
for by a great deficiency in physical reality of all cylindrical models. Furthermore, the 
following differences between cylindrical models and spatially finite models are worth 
mentioning. 

(a) Since the metric outside a rotating cylinder is static [23], there exists no 
Lense-Thirring effect for such models, i.e. no dragging of the axes of gyroscopes 
outside the cylinder relative to the infinitely far ‘fixed stars’. 

(b) Since stationary and cylindrically symmetric metrics depend only on one sig- 
nificant coordinate, and, since the flatness inside the cylinder represents no additional 
restriction, the energy-momentum tensor of a cylindrical mass shell has more ‘degrees 
of freedom’ than the energy-momentum tensor of a spatially finite mass shell with flat 
interior. For instance, besides the invariant mass density p the stress p z  in axial direction 
can also be freely given for a cylindrical mass shell, and only the azimuthal stress p+ 
is then determined as a function of p, pz,  w and R [21]. 

(c) The unrealistic, infinite z extension of cylindrical models has the unpleasant 
mathematical consequence that a metric which is Minkowskian (in rotating coordinates) 
inside the cylinder, and is everywhere continuous, cannot have an explicitly Minkow- 
skian limit far away from the axis, a fact which is connected with the well known 
result that the Newtonian potential for an infinite cylinder diverges logarithmically far 
away from the axis. 

Summing up, we should like to argue that the interpretation of results with cylin- 
drical models as confirmation of Mach’s ideas concerning the relativity of rotation in 
general relativity is much less convincing than it is for the results of Brill and Cohen 
[ll] and for our results. 

Finally, as an extension of our positive results for circular acceleration, we should 
like to advance the hypothesis that in general relativity some type of global equivalence 
between acceleration fields and gravitational fields is valid, in the following sense. If 
some large but finite laboratory is in arbitrarily accelerated motion relative to the fixed 
stars, then all motions of free particles and all physical laws, measured from laboratory 
axes, are modified by inertial forces. It is argued that exactly the same modified 
motions and laws can be induced (at least for some time) at all places of a laboratory 
at rest relative to the fixed stars, by suitable and suitably moving masses outside the 
laboratory. Mathematically, this implies the hypothesis that there exist continuous 
(but not analytic) solutions of Einstein’s field equations (with matter) with the following 
boundary conditions: flatness in an arbitrary finite region of spacetime, and asymptotic 
flatness, but with nearly arbitrary acceleration between the asymptotic and the ‘interior’ 
inertial frames. 
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