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A charge q moving in a reference laboratory system with constant 
velocity Y in the X-axis produces in the Z-axis a longitudinal, phase- 
free, vacuum magnetic field which is identified as the radiated B (3) 
field of Evans, Vigier and others. 
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Several inferences have converged recently on the renewed conclu- 
sion that vacuum electromagnetism is three-dimensional, not trans- 
verse as in the received view. Longitudinal electromagnetic field 
components in vacuo have been inferred by Majorana [1], Dirac [2], 
Oppenheimer [3], and Wigner [4], who described them as phase-free. 
Much later, "acausal" fields of this type were given independently by 
Gianetto [5] and by Ahluwalia and Ernst [6]. The relativistic, three- 
dimensional soliton theory of Hunter and Wadlinger [7] implies the 
same conclusion, supported empirically. Other empirically supported 
theories that give longitudinal fields in vacuo include those of Recami 
et al. [8] and Rodrigues et al. [9]. Meszaros et al. [10] have produced 
a thermodynamically based theory leading to the same result, whose 
ramifications have also been developed by Lehnardt [11]. Dvoeglazov 
[12] has reviewed circa 150 papers which infer non-Maxwellian prop- 
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erties in vacuo. Dvoeglazov et al. [13] have discussed inconsistencies 
between the Joos-Weinberg and Maxwell equations. A substantial 
work by Chubykalo and Smirnov-Rueda [14,15] removes several well- 
known inconsistencies in classical electrodynamics by invoking simul- 
taneously transverse and longitudinal components in vacuo. Munera 
and Guzman [16] in three recent papers, have arrived at the exis- 
tence of longitudinal components and the magnetic scalar potential 
using a rigorous re-examination of the Lorentz condition. Finally, 
the theory of the B (3) field and of the B cyclic equations has been 
presented in several recent monographs [17] which develop the sub- 
ject systematically to show that in general, longitudinal solutions are 
linked to transverse counterparts by a new equivalence principle. In 
this Letter it is shown that the theory of Chubykalo and Smirnov- 
Rueda [14] leads directly to the B (3) field of Evans, Vigier and others 
[17]. These two lines of thought converge on the same conclusion. 

To see this, use Gaussian units and consider a charge q mov- 
ing in a reference laboratory frame with a constant velocity V along 
the positive X-axis. Let the site of the charge at instant t be rq, 
(x~, 0, 0). Maxwell's displacement current is zero in this theory ev- 
erywhere. Really, a simple charge translation in space produces al- 
terations of field components, nevertheless, they can not be treated 
in terms of Maxwell's displacement current. Strictly speaking, in this 
case Maxwell's displacement current proportional to 0E /0 t  vanishes 
from equation of Maxwell. This statement can be reasoned by two 
different ways: (i) 0E/o~ = 0, since all field components of one uni- 
formly moving charge are implicit time-dependent functions (time 
enters as a unique parameter) so that from the mathematical stand- 
point only total time derivative can be applied in this case whereas 
partial time derivative turns out to be not adequate (time and dis- 
tance are not independent variables); (ii) a non-zero value of 0E /0 t  
would imply a local variation of fields in time independently of the 
charge position and hence would imply the expansion of those local 
variations through the propagation of electromagnetic waves. This 
would contradict the fact that one uniformly moving charge does not 
radiate electromagnetic field. 

In this respect, it was shown in [15] that in a mathemati- 
cally consistent form of Maxwell-Lorentz set of equations all partial 
time derivatives must be substituted by total ones. Only in this way 
all ambiguities related to the application of Maxwell's displacement 
current can be removed. On the other hand, it would imply a cor- 
rect extension of this concept to all quasistatic phenomena. Thus, a 
mathematically rigorous interpretation of Maxwell's equation 

41r 1 0E 
curl H = -==-[ q V 6 ( r -  rq(t)) + 

in the case of a charge moving with a constant velocity leads to the 
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following conclusion: In empty space outside a charge the value of 
curl H is equal to zero. 

The law of Biot and Savart [18] gives, for this system, the 
magnetic field strength 

H !V = ×E ,  (1) 
c 

where the E is given by [20] 

qR 
E (1 

~2) R3(1 _ 82 sin 2 0)3/2' 
(2) 

where R is the distance between the charge and a point of observation 

(in our case, n = 4 X ( t )  "~ + y 2 + z 2 , X ( t )  = x - z,(t)).  
Using Amp~re's law [18] without MaxweU's displacement cur- 

rent gives curl H = ~ j ,  where j is the conducting current density 
j = #V. Use of Gauss's theorem [18] div E = 4r# results in 

curl H = l v (d iv  E) = lcurl(V x E) + -lc(v. V)E 
C c 

(3) 

(using div V = (E.  V)V = 0). However, from Eq. (1), 

curt I t  = 1-curt(V x E); (4) 
c 

and Eqs. (3) and (4) produce a paradox, because ( V .  V)E is rigor- 
ously non-zero. There is a term needed to cancel out the first term on 
the right hand side of Eq. (3), which has been derived in the steady 
state [17] assuming that there is no change in net charge density any- 
where in space, i.e., by using the Amp~re's law without MaxweU's 
displacement current. The missing term must therefore originate in 
an entirely novel displacement current, ja, hitherto unconsidered in 
electrodynamics. Thus Amp~re's law becomes 

curl H = 4~r(j + jd). (5) 
C 

We know that div curl H = 0 from vector analysis [19]; so, since 
jd is not Maxwell's famous displacement current by construction [15] 
(thus div Jd = 0), the only possible alternative is 

jd = ~---~curl(LlF), (6) 
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where/ / (x,  y, z, t) and F(z,  y, z, t) 
space and time. We also note that 
general, well-known, Eq. [17] 

are scalar and vector functions of 
the solution (6) is part of a more 

1.(o) 
div j~l = -~dzv --~ . 

From Eq. (3), it is seen that F is in the Z-axis, mutually perpendicu- 
lar to Vx and Ey and has been introduced in the context of a steady 
state, pha~e-~ee, problem. Also, l~F/c has the units of magnetic 
field strength, which we denote H (3). This is clearly the analogue of 
B (s) [16]. Equations (3) and (4) become the same therefore if 

curl(llF) = - ( V .  V)E. (7) 

In source-free regions of space (i.e., very far from the charge) we 
obtain 1 

curl(l.lF) = 0. (8) 

Since F is phase-free in vacuum, its curl is zero, and so: 

grad U× F = 0. (9) 

Since F is in the Z-axis by construction, it is given, from Eq. (9), 
finally, by 

OU 
F . = -  w, (lO) 

1 The rigorous derivation of Eq. (7) requires the separation of fields 
[14]: 

E(toO = Eo + E*, 

where E0 becomes the solution of Poisson's equation in the static 
limit, and where E* is the solution of the wave equation for free field. 
Therefore E* is a function of retarded time, but E0 is not. This 
requires a careful re-examination of precepts in partial differential 
analysis, and we have carried this out in the course of our derivation 
of Eq. (7). More details was reported in [15] and will be reported in 
future work. Equation (7) is rigorously correct if and only if E0 is a 
function of the type .~(X(T), y, z), where time T does not dependent 
on retarded time (T is not denoted by the retarded time); and if E* 
is a function of the type 9r(x, y, z, t) where t is compound function 
of retarded time (t is denoted by the retarded time and vice versa). 
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where w is an arbitrary constant scalar. 
Thi~ iJ a phase-free, radiated longitudinal magnetic field, which 

can ezist in the absence or pre~ence of Maxwell's displacement cur- 
rent, and which i~ produced by our novel displacement current jd. 

Thus F has the same properties precisely as the previously 
inferred B (3) magnetic flux density [16]. It is the radiated longitudi- 
nal magnetic field due to the infinitely distant charge q. Such a field 
does not exist in the received view in the absence of Maxwell's dis- 
placement current 0E/0t .  Furthermore, since curl F = 0 in vacuo, 
it follows that F = grad ~m, where ~m is the magnetic scalar po- 
tential of Munera and Guzman [16]. Also, since div F = 0 in vacuo, 
then F = curl  A; and so curl A = grad ~o,~ in vacuo. This leads to 
the magnetic dual interpretation of Maxwell's equations by Munera 
and Guzman [16], who used the conventional displacement current. 
In general, B (a) coexists with, and is linked geometrically to, the 
transverse irradiated wave component B O) = B (2)* [17] through the 
vacuum B cyclic equations. The transverse irradiated waves, how- 
ever, are phase dependent in vacuo. The field F can exist when E 
(free) is not zero and V = 0 because determinants of Eqs. (7) and 
(9) are zero and Eq. (9) must have a non-zero solution, even when all 
minors of (9) are zero. In other words, this is true even when E on 
the right hand side of Eq. (7) is zero, i.e., when the only field present 
is the irradiated (source-free) field. The results of our calculation are 
different from those of Jackson [18], p. 381, where the relativistic ra- 
diation from a charge translating with constant velocity is shown to 
be a plane polarized transverse wave, with an oscillating longitudinal 
component. Jackson uses implicitly Maxwell's displacement current 
because the non-zero field components resulting from his calculation 
are time dependent. A complete understanding of this basic prob- 
lem in electrodynamics requires therefore consideration of both the 
Maxwell displacement current and our novel current jd. This should 
produce, consistently, the B cyclic theorem in vacuo, i.e., 

B 0) x B (2) = iB(°)B (3)* (11) 

in cyclic permutation in the basis ((1),(2),(3)) [17]. 
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