Loading [Contrib]/a11y/accessibility-menu.js
Published Online: April 2017
Accepted: December 2016
American Journal of Physics 85, 369 (2017); https://doi.org/10.1119/1.4973423
more...View Affiliations
We show that the concept of electric current was elaborated only after the discovery by Oersted in 1820 of a connection between electricity and magnetism, and thanks to the subsequent work of Ampère. In his study of the interaction between a compass and an electric circuit, Ampère set up a crucial experiment when he put a compass above his Voltaic pile, and another one above the connecting wire. Indeed, this experiment supported his creation of a new physical quantity, independent of the nature of physical phenomena, identical in the pile and in the wire, and only characterized by its direction and its intensity. To the experimental definition of this physical quantity—the electric current—by the oriented deviation of a magnetic needle, Ampère added in his manuscripts the substance of the two present theoretical definitions of the intensity of the current, namely, the ratio of charge to time q/t, and the ratio of electromotive force to the conducting wire's resistance E/R.
  1. 1. On the history of electricity in 18th century see J. L. Heilbron , Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics, 2nd ed. ( Dover Publications, New York, 1999). Google Scholar
    On the history of electromagnetism, see O. Darrigol , Electrodynamics from Ampère to Einstein (Oxford U.P., Oxford, 2003). A large part of the documents referred to in this paper are available on the website Ampère and the history of electricity (www.ampere.cnrs.fr) which gives access to Ampère publications, correspondence and archives, and presents a series of multimedia files on the history of electricity. Google Scholar
  2. 2. W. N. Cottingham and D. A. Greenwood , Electricity and Magnetism (Cambridge U.P., Cambridge, 1991), p. 31. Google ScholarCrossref
  3. 3. A.-M. Ampère , “ Expériences relatives à de nouveaux phénomènes électro-dynamiques,” Ann. Chim. Phys. 20, 60–74 (1822). Google Scholar
  4. 4.A Leyden jar is a glass jar with conducting metallic foils coating its inner and outer surfaces.
  5. 5. A. Volta , “ On the electricity excited by the mere contact of conducting substances of different kinds,” Philos. Trans. R. Soc. 90, 403–430 (1800) (original text in French); translated to English in Philos. Mag. 7, 289–311 (1800). Google ScholarCrossref
  6. 6. On the reception of Volta battery, see G. Pancaldi , Volta: Science and Culture in the Age of Enlightenment (Princeton U.P., Princeton, N.J., 2003), chap. “Appropriating invention. The reception of the Voltaic battery in Europe.”, Google Scholar
    In France, C. J. Lehot was one of the few to take on Volta's thesis: C. J. Lehot , “ Mémoire sur le galvanisme,” J. Phys. Chim. Hist. Nat. 52, 135–149 (1801); a large extract of Lehot memoir is available in C. H. Wilkinson, Elements of Galvanism, in Theory and Practice, Vol. 1 (London, 1804), pp. 340–362. Google Scholar
  7. 7. R. J. Haüy , Elementary Treatise on Natural Philosophy, Vol. 2 (George Kearsley, London, 1807) [Traite elementaire de physique, Vol. 2 (Delance et Lesueur, Paris, 1803)]. Google Scholar
  8. 8. The word “battery” meant a battery of Leyden jars that could be discharged on one moment as a battery of cannons. For an early use of the denomination “pile” see: W. Nicholson , “ Account of the new electrical or galvanic apparatus of sig. volta, and experiments performed with the same,” J. Nat. Philos. Chem. Arts. 4, 179–187 (1800). Google Scholar
  9. 9. W. Nicholson , Ibid.; Google Scholar
    C. H. Pfaff , “ Notice des phénomènes d'attraction et de répulsion dépendant de la pile galvanique, observés par M. Ritter,” J. Phys. Chim. Hist. Nat. 53, 152–155 (1801); Google Scholar
    P. Erman , “ Sur les phénomènes électrométriques de la colonne de Volta,” J. Phys. Chim. Hist. Nat. 53, 121–134 (Barrau et Dumotiez, 1801); other researches are described in J. Izarn, Manuel du Galvanisme (Longman, Hurst, Rees, Orme, and Brown, and R. Triphook, Paris, 1804) or G. J. Singer, Elements of Electricity and Electro-chemistry (London, 1814). Google Scholar
  10. 10. E. G. Robertson , “ Nouvelles expériences sur le fluide galvanique,” Ann. Chim. (Paris) 37, 132–150 (1800), p. 138. The potential difference between the ends of a closed-circuit battery was too weak to be detected by an electroscope, because the internal resistance of a Voltaic battery was much higher than the resistance of an external metallic conductor. Google Scholar
    On what is measured by an electroscope, see J. L. Heilbron , Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics ( Dover Publications, Mineola, N.Y., 1999), pp. 451–453. Google Scholar
  11. 11. R. J. Haüy , Ref. 7, p. 28. Google Scholar
  12. 12. Dictionnaire des sciences naturelles, Vol. 3 (1816), p. 115. Google Scholar
  13. 13. A. Volta , “ De l'électricité dite galvanique,” Ann. Chim. (Paris) 40, 225–256 (1801), p. 227. Google Scholar
  14. 14. On the history of the electrolysis of water, see H. Chang , Is Water H2O? Evidence, Realism and Pluralism ( Springer, Dordrecht, 2012), chap. 2; Google ScholarCrossref
    G. Cuvier , “ Rapport sur le galvanisme,” J. Phys. Chim. Hist. Nat. 52, 318–321 (1801), p. 320; Google Scholar
    P. Erman , Ref. 9, p. 129. Google Scholar
  15. 15. Still in 1828 see the negative assessment of Claude-Servais Pouillet , Elémens de physique exp érimentale et de météorologie, Vol. 1 (Béchet jeune, Paris, 1828), p. 651. Google Scholar
  16. 16. H. Davy , “ An account of some Experiments made with the Galvanic apparatus of signor volta,” J. Nat. Philos. Chem. Arts. 4, 275–281 (1800), p. 276. Google Scholar
  17. 17. T. von Grotthuss , “ Memoir upon the decomposition of water, and of the Bodies which it holds in solution, by means of galvanic electricity,” Philos. Mag. 25, 330–339 (1806). Google ScholarCrossref
  18. 18. H. Davy , “ The Bakerian lecture, on some chemical agencies of electricity,” Philos. Mag. 28, 3–18, 104–119, 220–233 (1807); Google ScholarCrossref
    H. Davy , “Mémoire sur quelques effets chimiques de l'électricité,” J. Phys. Chim. Hist. Nat. 64, 422–461 (1807); Google Scholar
    W. H. Wollaston , “ Experiments on the chemical production and agency of electricity,” Philos. Trans. R. Soc. 91, 427–434 (1801); https://doi.org/10.1098/rstl.1801.0024, Google ScholarCrossref
    W. Henry , “ Theory of excitement of Galvanic Electricity,” J. Nat. Philos. Chem. Arts. 35, 259–271 (1813); Google Scholar
    A. Anderson , “ On the decomposition of water in two or more separate vessels,” J. Nat. Philos. Chem. Arts. 30, 183–189 (1811). Google Scholar
  19. 19. G. Cuvier , Ref. 14. Google Scholar
  20. 20. J. A. Deluc , “ Analysis of Galvanic pile. Part I,” J. Nat. Philos. Chem. Arts. 26, 113–136 (1810); Google Scholar
    on Deluc see G. Pancaldi , “ Deluc, Davy, and the impact of the battery on natural philosophy,” in Jean-André Deluc Historian of Earth and Man, edited by J. L. Heilbron and R. Sigrist ( Slatkine, Geneva, 2011), pp. 277–298. Google Scholar
  21. 21. G. J. Singer , “ Observations on some phenomena of electro-chemical decomposition,” J. Nat. Philos. Chem. Arts. 31, 90–95 (1812); Google Scholar
    Elements…, Ref. 9, pp. 204–206; Google Scholar
    M. Donovan , Essay on the Origin, Progress, and Present State of Galvanism (Hodges and McArthur, Dublin, 1816), p. 188. Google Scholar
  22. 22. L. J. Gay-Lussac and L. J. Thénard , Recherches Physico-Chimiques Faites Sur la Pile, Vol. 1 (Deterville, Paris, 1811), pp. 1–52. Google Scholar
  23. 23. G. J. Singer , Ref. 9, p. 430. Google Scholar
  24. 24. See M. von Marum , Description d'une Très-Grande Machine Électrique (Jean Enschedé et fils, et Jean van Walré, Haarlem, 1785); G. J. Singer, Ref. 9, pp. 204–206. Google Scholar
  25. 25. T. von Grotthuss , Ref. 17, p. 335. Google Scholar
  26. 26. J. W. Ritter , “ Experiments on magnetism,” J. Nat. Philos. Chem. Arts. 8, 184–186 (1804); https://doi.org/10.1007/978-1-4020-2987-5_16, Google ScholarCrossref
    R. Martins , “ Oersted, Ritter and magnetochemistry,” in Hans Christian Ørsted and the Romantic Legacy in Science: Ideas, Disciplines, Practices, edited by R. M. Brain , R. S. Cohen , and O. Knudsen ( Springer, New York, 2007), pp. 339–385; Google ScholarCrossref
    R. Martins , H.C. Ørsted's Theory of Force: An Unpublished Textbook in Dynamical Chemistry, edited by A. S. Jacobsen , A. D. Jackson , K. Jelved , and H. Kragh ( Det Kongelige Danske Videnskabernes Selskab, Reitzel, 2003); Google Scholar
    J. N. Hachette , “ Expérience sur le magnétisme de la pile électrique,” Correspond. l'École Polytech. 5, 151–153 (1805). Google Scholar
  27. 27. This Romagnosi experiment has been improperly considered at several occasions since 19th century as a prefiguration of Oersted's one, see R. Martins , “ Romagnosi and Volta's Pile: Early difficulties in the interpretation of voltaic electricity,” in Nuova Voltiana: Studies on Volta and his Times, edited by F. Bevilacqua and L. Fregonese , vol. 3 ( Hoepli, Milano, 2001), pp. 81–102. Google Scholar
  28. 28. A. Boisgiraud , “ On the action of the voltaic pile upon the magnetic needle,” Philos. Mag. 57, 203–206 (1821). Google ScholarCrossref
  29. 29. H. C. Oersted , Experimenta Circa Effectum Conflictus Electrici in Acum Magneticam ( Hafniae, Schultz, 1820); Google ScholarCrossref
    fac-simile in B. Dibner , Oersted and the Discovery of Electromagnetism ( Burndy Library, Norwalk, Connecticut, 1961), p. 23; Google Scholar
    B. Dibner , “Expériences sur l'effet du conflict électrique sur l'aiguille aimantée,” Ann. Chim. Phys. 14, 417–425 (1820); Google Scholar
    B. Dibner , “Expériences sur un effet que le courant de la Pile excite dans l'Aiguille aimantée,” J. Phys. Chim. Hist. Nat. 91, 72–78 (1820); Google Scholar
    B. Dibner , “Experiments on the effects of a current of electricity on the magnetic needle,” Ann. Philos. (London) 16, 273–276 (1820); Google Scholar
    B. Dibner , “Versuche über die wirkung des elektrischen conflicts auf die magnetnadel,” Ann. Phys. (Leipzig) 66, 295–304 (1820). Google Scholar
  30. 30. The controversy began shortly after the announcement of the discovery: H. C. Oersted , “ On electro-magnetism,” Ann. Philos. 2, 321–337 (1821). Google Scholar
    See N. Kipnis , “ Chance in science: The discovery of electromagnetism by H.C. Oersted,” Sci. Educ. 14, 1–28 (2005); Google ScholarCrossref
    O. I. Franken , H. C. Ørsted a Man of the Two Cultures ( Bang & Olufsen, Birkerod, 1981); Google Scholar
    K. L. Caneva , “ Colding, Oersted and the meaning of force,” Hist. Stud. Phys. Biol. Sci. 28, 1–138 (1977); Google ScholarCrossref
    R. Martins , “ Resistance to the discovery of electromagnetism: Oersted and the symmetry of the magnetic field,” in Volta and the History of Electricity, edited by F. Bevilacqua and E. Giannetto ( Hoepli, Pavia, Milano, 2003), pp. 245–265. Google Scholar
  31. 31. H. C. Oersted , “ Experiments on the effects…,” Ref. 29, p. 276. Google Scholar
  32. 32. H. C. Oersted , “ Expériences sur l'effet du conflit…,” Ref. 29, p. 419. Other examples of inaccurate translations: the ambiguous latin expression effectibus unius vel alterius vis electricae, rather accurately translated in English “effects of either of the electricities” (ordinary electricity or galvanism), became in French “action de l'un ou de l'autre pôle, considérés séparément” in Ann. Chim. Phys. or “forces d'attraction et de répulsion électrique” in J. Phys. Chim. Hist. Nat. These French mistranslations emphasized the weight of the electrostatic understanding of the Voltaic battery. Google Scholar
  33. 33. Ibid., pp. 274–275. Google Scholar
  34. 34. Ibid., p. 273. Johann Wilhelm Ritter was probably the main physicist alluded to by Oersted. Google Scholar
  35. 35. H. C. Oersted , “ Sur la propagation de l'électricité,” J. Phys. Chim. Hist. Nat. 62, 369–375 (1806). Google Scholar
  36. 36. H. C. Oersted , Ansicht der Chemischen Naturgesetze, Durch die Neueren Entdeckungen Gewonnen (Realschulbuchhandlung, Berlin, 1812); Google Scholar
    H. C. Oersted , Recherches sur l'identité des Forces Électriques et Chimiques (Paris, 1813); see an analysis of this account in Ann. Philos. (London) 13, 368–377; 456–463; 14, 47–50 (1819). Google Scholar
  37. 37. H. C. Oersted , Recherches…, Ref. 36, pp. 236–238. Google Scholar
  38. 38. H. C. Oersted , Ref. 35, p. 372. Google Scholar
  39. 39. P. Erman , “ Extract of a memoir upon two new classes of galvanic conductors,” Philos. Mag. 28, 297–304 (1807), p. 303. Google ScholarCrossref
  40. 40. H. C. Oersted , Ref. 30, p. 321. Google Scholar
  41. 41. H. C. Oersted , “ Experiments…,” Ref. 29, p. 274. Google Scholar
  42. 42. Ibid., p. 276. Google Scholar
  43. 43. See also Ref. 30, p. 323. Google Scholar
  44. 44. Ibid., p. 321; Google Scholar
    see also M. Faraday , “ Historical Sketch of Electro-magnetism,” Ann. Philos. (London) 3, 107–108 (1822). Google Scholar
  45. 45. F. Steinle , “ Experiment, instrument und begriffsbildung: Ampère, das galvanometer und der stromkreis,” in Christoph Meinel, Instrument-Experiment. HistorischeStudien ( GNT-Verlag, Berlin, 2010), pp. 98–108. Google Scholar
  46. 46.In the English translation, the title uses “current of electricity” while the body of the text uses “electric conflict.”
  47. 47. Note of the editor Jules Joubert , Collection de Mémoires relatifs à la Physique, Vol. 2, Mémoires sur l'électrodynamique, 1ère partie (Paris, 1885), p. 2. Google Scholar
  48. 48. Oersted experiment was repeated on 19th August 1820 in Geneva by Gaspard de la Rive in the presence of François Arago ( A. Pictet , “ Bibliothèque universelle,” Sci. Arts 14, 281–284 (1820)). The announcement was made by Arago at the Academy of sciences on September 4 (“Extraits des séances de l'académie royale des sciences,” Ann. Chim. Phys. 15, 78–82 (1820), p. 80); Ampère began to read his memoirs at the Academy of sciences on September 18 and 25. During the following weeks, Davy in England, Van Beck in Netherlands, Berzelius in Sweden, Erman in Germany, Gazzieri in Italy, etc. published memoirs in the wake of Oersted experiment. Google Scholar
  49. 49. M. Faraday , “ Historical sketch of electro-magnetism,” Ann. Philos. (new series) 2, 274–290 (1821). Google Scholar
  50. 50. On Ampère first researches see K. Caneva , “ Ampère, the etherians and the Oersted connexion,” Br. J. Hist. Sci. 13, 121–138 (1980); Google ScholarCrossref
    C. Blondel , Ampère et la Création de l'électrodynamique ( Bibliothèque nationale, Paris, 1982); Google Scholar
    L. P. Williams , “ What were Ampère's earliest discoveries in electrodynamics?,” ISIS 74, 492–508 (1983); https://doi.org/10.1086/353358, Google ScholarCrossref
    F. Steinle , Exploratory Experiments. Ampère, Faraday and the Origins of Electrodynamics ( University of Pittsburgh Press, Pittsburgh, 2016); Google Scholar
    A. Assis and J. P. Chaib , Ampère's Electrodynamics ( Apeiron, Montreal, 2015) https://amzn.com/1987980034 (with a translation of Ampère first memoir on electrodynamics and of his book Theory of Electrodynamic Phenomena, uniquely deduced from Experience, 1826). Google Scholar
  51. 51. A.-M. Ampère , “ Mémoire […] sur les effets des courants électriques,” Ann. Chim. Phys. 15, 59–76, 170–218 (1820); Google Scholar
    translation in A. Assis and J. P. Chaib, Ampère's Electrodynamics […], Ref. 50, pp. 289–320. Google Scholar
  52. 52. Archives Ampère, chemise 208bis, p. 89; “Mémoire […]” Ref. 51, p. 203. Google Scholar
  53. 53. Archives Ampère, chemise 205, pp. 2, 8. Google Scholar
  54. 54. J.-B. Biot , Précis Élémentaire de Physique expérimentale, Vol. 2, 3rd ed. (Deterville, Paris, 1824), p. 773. Google Scholar
  55. 55. Letter from Ampère to Auguste de La Rive, 11th October 1822, in Louis de Launay , Correspondance du Grand Ampère, Vol. 2 (Paris, 1936), p. 610. (http://www.ampere.cnrs.fr/correspondance/L1822-10-11-a.html). Google Scholar
  56. 56. A.-M. Ampère , “Mémoire […]” Ref. 51, p. 65. Google Scholar
    This argument was supported in particular by G. J. Singer, Ref. 9, p. 430. Google Scholar
    It was taken on later on by Auguste de la Rive , “ Mémoire sur quelques-uns des phénomènes que représente l'électricité voltaïque dans son passage à travers les conducteurs liquides,” Ann. Chim. Phys. 28, 190–221 (1825), p. 193. Google Scholar
  57. 57. A.-M. Ampère , “ Analyse des mémoires lus par M. Ampère à l'Académie des sciences, dans les séances des 18 et 25 septembre, des 9 et 30 octobre 1820,” Ann. Gen. Sci. Phys. 6, 238–257 (1820), p. 247; Google Scholar
    “Mémoire […]” Ref. 51, p. 72. Google Scholar
  58. 58. A.-M. Ampère , “Mémoire […]” Ref. 51, p. 72 (highlighted by ourselves). Google Scholar
  59. 59. A. M. Ampère , Ref. 3, p. 60. Google Scholar
  60. 60. It means around 12 couples, 30 cm × 30 cm, see A.-M. Ampère , “ Réponse de M. Ampère à la lettre de M. Van Beck sur une nouvelle exp érience électro-magnétique,” J. Phys. Chim. Hist. Nat. 93, 447–467 (1821), p. 448. Google Scholar
  61. 61. Archives Ampère, chemise 208bis, p. 128; Letter from Ampère to X, 7 septembre 1821 (http://www.ampere.cnrs.fr/correspondance/L1821-09-07-a.html). Google Scholar
  62. 62. A.-M. Ampère , Ref. 57, p. 240. Google Scholar
  63. 63. The experiment was described by Ampère in his “Mémoire […]” Ref. 51, pp. 66-68, and in his later publications. Google Scholar
  64. 64. F. Steinle , Ref. 50, pp. 110–112. Google Scholar
  65. 65.Archives Ampère, chemise 208bis, p. 101 (crossed off passage in the manuscript).
  66. 66. Archives Ampère, chemise 205, p. 8. Google Scholar
  67. 67. Archives Ampère, chemise 208bis, p. 129. Google Scholar
  68. 68. A.-M. Ampère , “Mémoire […]” Ref. 51, pp. 197–198 (highlighted by ourselves). Google Scholar
  69. 69. Ibid., p. 67. Google Scholar
  70. 70. Archives Ampère, chemise 205, p. 7 (“Potasse dissoute entre cuivre et zinc. Le contraire”) and p. 239. Google Scholar
  71. 71. F. Steinle , Ref. 50, p. 98 (Archives Ampère, chemise 205, p. 239). Google Scholar
  72. 72. G. Cuvier , Ref. 14, p. 321; Google Scholar
    C. J. Lehot , Ref. 6; Google Scholar
    G. J. Singer , Ref. 9, p. 430. Google Scholar
  73. 73. Archives Ampère, chemise 208bis, p. 75. Google Scholar
  74. 74. F. Arago , “ Expériences relatives à l'aimantation du fer et de l'acier par l'action du courant voltaïque,” Ann. Chim. Phys. 15, 93–103 (1820); Google Scholar
    A.-M. Ampère , “Mémoire […]” Ref. 51, p. 197. Google Scholar
  75. 75.The electrolysis of water by electric discharges had been carried out by Martinus van Marum in 1802, Extrait d'une lettre […] sur la décomposition de l'eau à l'aide d'un nouvel appareil électrique, Ann. Chim. (Paris) 41, 77–78 (1802). Ampère planned to study the action on a magnetized needle of electrical discharges through a conducting wire but he does not seem to have obtained concluding results (Archives Ampère, chemise 205, 7–8).
  76. 76.For an earlier use of the expressions courant électrique and circuit électrique, see, for example, P. Erman, Ref. 99. W. Nicholson , Ibid.; C. H. Pfaff , “ Notice des phénomènes d'attraction et de répulsion dépendant de la pile galvanique, observés par M. Ritter,” J. Phys. Chim. Hist. Nat. 53, 152–155 (1801); P. Erman , “ Sur les phénomènes électrométriques de la colonne de Volta,” J. Phys. Chim. Hist. Nat. 53, 121–134 (Barrau et Dumotiez, 1801); other researches are described in J. Izarn, Manuel du Galvanisme (Longman, Hurst, Rees, Orme, and Brown, and R. Triphook, Paris, 1804) or G. J. Singer, Elements of Electricity and Electro-chemistry (London, 1814)., p. 181. The expression “galvanic current” was the most common together with “current of galvanic electricity,” “current of electricity,” “current of electrical fluid,” etc.
  77. 77. Archives Ampère, chemise 162, p. 50 (Autumn 1820). Google Scholar
  78. 78. Archives Ampère, chemise 173, p. 125 (probably 1823). The word conductibility characterised both the nature of the metal and the (supposed constant) diameter of the wire. Google Scholar
  79. 79. A.-M. Ampère , Théorie [mathématique] des Phénomènes Électrodynamiques ( Méquignon-Marvis, Paris, 1826), p. 199. Google Scholar
  80. 80. M. R. Stetzer et al., “ New insights into student understanding of complete circuits and the conservation of current,” Am. J. Phys. 81, 134–143 (2013); https://doi.org/10.1119/1.4773293, Google ScholarScitation
    M. Leone , “ History of physics as a tool to detect the conceptual difficulties experienced by students: The case of simple electric circuits in primary education,” Sci. Educ. 23, 923–953 (2014). https://doi.org/10.1007/s11191-014-9676-z, Google ScholarCrossref
  81. 81. A sequence of teaching based on this historical research has been led since several years by A. Benseghir at the Ferhat Abbas University of Setif (Algeria). For a pedagogical use of the controversy between Ampère and Biot, see M. Braga , A. Guerra , and J. C. Reis , “ The role of historical-philosophical controversies in teaching sciences: The debate between Biot and Ampère,” Sci. Educ. 21, 921–934 (2012). https://doi.org/10.1007/s11191-010-9312-5, Google ScholarCrossref
  82. © 2017 American Association of Physics Teachers.