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ABSTRACT

By using a torsion pendulum, we determine the gravitational constant G to be
(9.46 ± 0.11) × 10−11 m3 kg−1 s2, ∼ 43% accuracy compared to the NIST value of
(6.674210± 0.000010)× 10−11 m3 kg−1 s2.

1. Introduction

Newton in his Principia Mathematica out-
lined what is knows as the inverse square law
of gravity. He noticed that just as apples fell
to the earth from a near on earth’s surface,
there was a certain force responsible and that
it was the same force that keeps the moon
revolving around the earth despite the moon
being much farther away from the earth than
an apple from a tree. From this Newton con-
cluded that the gravitational force ~F depends
both on the mass m1 and m2 of the two at-
tracting bodies and the distance r between
them:

F = −Gm1m2

r2
, (1)

where G is known as the universal gravita-
tional constant.

Mohr et al. (2007) find the NIST1 value of
G to be (6.674210±0.000010)×10−11 m3 kg−1 s2.
They note that this measurement of G, ba-
sically using a torsion pendulum as we will,
is valid on 0.01 − 1.0 m scales. Hoyle et al.
(2001) search for extra dimensions by mea-
suring G on sub-millimeter scales. Our ex-
periment, however, will measure G roughly
on centimeter scales.

1http://physics.nist.gov/cgi-bin/cuu/Value?bg

2. Theory and Experimental Setup

So how does one go about determining G,
a small, imprecisely-known physical constant?
We use a torsion pendulum, as shown in Fig-
ure 1, which is a part of the basic experimen-
tal setup shown in Figure 2.

A laser incident on a mirror attached to
the fulcrum of the pendulum, where a thin
tungsten wire coming out of the page of Fig-
ure 1 suspends it, reflects off the mirror onto
a screen on which we attached a meter stick
to measure the small angular displacements of
the pendulum. We show in Figure 2 the view
of the screen as seen by the mirror attached
to the torsion pendulum.

Referring to Figure 1, we see that there
are two fixed big masses each of mass M sep-
arated by a distance 2d. These masses will
exert a gravitational force predominately on
the small mass m closest to each of big masses
M . The small masses m are affixed to the
ends of the torsion pendulum’s beam, which
is entirely enclosed in an evacuated chamber,
hence the gravitational force between each of
the small and big masses exerts a torque on
the pendulum causing a displacement which
we can measure via the reflected laser beam
on the screen a distance L away. We then
change the configuration of the stationary big
masses such that it is not rotating counter-
clockwise as shown in the figure but clockwise.
Based on the amplitude of the oscillations and
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Fig. 1.— Top view of the torsion pendulum.
The laser and screen of Figure 2.
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Fig. 2.— Basic experimental setup

the difference in the mean displacements of
the clockwise and counter-clockwise configu-
rations’ oscillations, we can eliminate many
non-gravitational effects to determine G.

Thus from Equation 1 we can see that the
torque ~τ ≡ ~d× ~F on the small masses affixed
to the pendulum would be

∑
τ = 2d

GM

r2
. (2)

If the angle α ≈ 0 of Figure 1, then r = dα.
For small angular displacements, we know
that a classical pendulum has an angular fre-
quency ω =

√
k/m, where k is a constant.

Similarly, for the torsion pendulum case,

ω =
√
k/I, (3)

where I = md2. Now we see that the pe-
riod T0 = 2π/ω = 2π

√
I/k, from which we

can solve for k:

k =
2π2d2m

T 2
0

. (4)

Looking at Figure 2, we can see that if
we assume L � S—where L is the distance
from the torsion pendulum to the screen and
S, shown in Figure 2, is twice the amplitude
of the displacement of the laser point on the
screen—, then a corresponding angle θ relat-
ing L and S would be S/L. Now assuming
that the total torque

∑
τ ∝ S with a con-

stant of proportionality of k, we can solve for
G:

∑
τ = kθ (5)

= k
S

L
(6)

=
π2d2mS

T 2
0L

, (7)

from which we get

G =
π2dsr2

T 2
0ML

. (8)
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We then used the following Mathematica
code (see Appendix A) to find an optimal fit
to an exponentially damped sinusoid for de-
termining the S and T0 of our measured time
series.

3. Analysis and Results

Shown in Tables 1 and 2 are the setup pa-
rameters for each of our configurations with
a big stationary ball and a small stationary
ball, respectively. See the Mathematica code
at the end of this document for the exactly fit
angular frequencies and displacements.

M = 1.465± 0.001 kg
L = 4.26± 0.08 m

d ≡ 0.05 m
r = 0.03± 0.01 m

G = (9.46± 0.11)× 10−11 m3 kg−1 s2

Table 1: Parameters for determining G using
a big mass

M = 0.500± 0.001 kg
L = 4.26± 0.08 m

d ≡ 0.05 m
r = 0.03± 0.01 m

G = (3.08± 0.68)× 10−11 m3 kg−1 s2

Table 2: Parameters for determining G using
a small mass

Note that the errors in G are estimated be-
cause we did not run Monte Carlo simulations
varying the parameters of our fit to see how
much they change, for example, T0 and S.

Shown in Figure 4 are the four plots of
our time series. Forming a time series aided
us in determining a precise displacement for
the torsion pendulum in each of its clockwise
and counterclockwise configurations by fitting
these data with a damped sine wave function.

View of Screen from Torsion Pendulum with Mirror
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Reflected Laser Point along Meter Stick
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Fig. 3.— View of the screen from the torsion
pendulum

Fig. 4.— Times series of displacements of
the laser beam on the screen. Clockwise
from top left : big ball clockwise rotation,
big ball counter-clockwise rotation, small ball
counter-clockwise rotation, and small ball
clockwise rotation. The fit exponentially-
damped sinusoids are not shown for clarity.
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4. Conclusion

Our most accurately determined G was
found when using the more massive station-
ary balls: G = (9.46±0.11)×10−11 m3 kg−1 s2

with ∼ 43% accuracy compared to the
NIST2 value of (6.674210 ± 0.000010) ×
10−11 m3 kg−1 s2 (Mohr et al. 2007). We
could have improved the accuracy by mea-
suring r more precisely than 1 mm because
this was the largest source of error, due to the
fact we could not take apart the evacuated
chamber within which the torsion pendulum
oscillated. That we neglected the gravity of
the big mass on the small mass farther away
(≈ 2d away) is a more minor effect due to
gravity’s strong inverse dependence on dis-
tance.
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A. Mathematica fitting commands

cw1data=Import["cw_1.txt","Table"];
ccw1data=Import["ccw_1.txt","Table"];
cw2data=Import["cw_2.txt","Table"];
ccw2data=Import["ccw_2.txt","Table"];
fitfunc = c+d Exp[t e] Sin[g+f t];
cw1fit = FindFit[cw1data,fitfunc,{{c,450.},{d,150.},{e,1/2000.},{f,2 Pi/645.},{g,Pi/2.}},t]
{c -> 451.68, d -> 141.134, e -> -0.000954096, f -> 0.010418, g -> 1.3649}
ccw1fit = FindFit[ccw1data,fitfunc,{{c,600.},{d,250.},{e,1/2000.},{f,2 Pi/600.},{g,Pi/4.}},t]
{c -> 568.309, d -> 351.253, e -> -0.00106222, f -> 0.0101228, g -> -0.359714}
G=(Pi^2*(0.03)^2*0.05*Abs[568.309-468.769]/100.)/(2*1.465*(2*Pi/((0.010418+0.0101228)/2))^2*4.26)
9.46341*10^(-11)
cw2fit = FindFit[cw2data,fitfunc,{{c,475.},{d,150.},{e,1/2000.},{f,2 Pi/600.},{g,Pi/2.}},t]
{c -> 468.769, d -> 96.8258, e -> -0.00106601, f -> 0.0103371, g -> 1.31574}
ccw2fit = FindFit[ccw2data,fitfunc,{{c,1525.},{d,250.},{e,1/2000.},{f,2 Pi/600.},{g,-Pi/2.}},t]
{c -> 1553.18, d -> 303.663, e -> -0.00114088, f -> 0.0103936, g -> -1.53367}
G=(Pi^2*(0.03)^2*0.05*Abs[468.769-1553.18]/100.)/(2*0.5*(2*Pi/((0.0103371+0.0103936)/2))^2*4.26)
3.07684*10^(-9)
Export["plots.eps",Show[ListPlot[cw1data],ListPlot[ccw1data],ListPlot[cw2data],ListPlot[ccw2data]]];
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